doi: 10.14202/vetworld.2017.869-872
Share this article on [Facebook] [LinkedIn]
Article history: Received: 15-03-2017, Accepted: 13-06-2017, Published online: 06-08-2017
Corresponding author: Rasedee Abdullah
E-mail: rasedee@upm.edu.my
Citation: Abdulkhaleq LA, Assi MA, Noor MHM, Abdullah R, Saad MZ, Taufiq-Yap YH (2017) Therapeutic uses of epicatechin in diabetes and cancer, Veterinary World, 10(8): 869-872.Epicatechin is a natural flavonoid found in green tea. It has been reported to possess an immense antioxidant effect which contributes to its therapeutic effect against a handful of ailments. In this review, we discuss its therapeutic role in the management of two of the most important human diseases; diabetes and cancer. The consumption of epicatechin has been shown to reduce blood glucose levels in diabetic patients, while is anticancer effect was attributed to its antioxidant properties, antiangiogenic and direct cytotoxicity to cancer cells. Although the exact mechanism of action of epicatechin is still being explored, there is no doubt that it is a promising candidate as an alternative. The significance of this review is to highlight the importance of the usage of natural products (in this case, epicatechin) as an alternative for the treatment of two potentially fatal diseases which is diabetes and cancer. The aim of this review is to educate the scientific community on the role of epicatechin in ameliorating the effects of diabetes and cancers on human while understanding the potential mechanisms of these aforementioned effects.
Keywords: angiogenesis, carcinoma, diabetes mellitus, epicatechin, oxidative stress.
1. Neilson, A.P. and Ferruzzi, M.G. (2011) Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa. Annu. Rev. Food Sci. Technol., 2: 125-151. [Crossref] [PubMed]
2. Azam, S., Hadi, N., Khan, N.U. and Hadi, S.M. (2004) Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: Implications for anticancer properties. Toxicol. In Vitro., 18(5): 555-561. [Crossref] [PubMed]
3. Iacopini, P., Baldi, M., Storchi, P. and Sebastiani, L. (2008), Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: Content, in vitro antioxidant activity and interactions. J. Food Compos. Anal., 21(8): 589-598. [Crossref]
4. Urpi-Sarda, M., Monagas, M., Khan, N., Lamuela-Raventos, R.M., Santos-Buelga, C., Sacanella, E. and Andres-Lacueva, C. (2009) Epicatechin, procyanidins, and phenolic microbial metabolites after cocoa intake in humans and rats. Anal. Bioanal. Chem., 394(6): 1545-1556. [Crossref] [PubMed]
5. Rein, D., Lotito, S., Holt, R.R., Keen, C.L., Schmitz, H.H. and Fraga, C.G. (2000) Epicatechin in human plasma: In vivo determination and effect of chocolate consumption on plasma oxidation status. J. Nutr., 130(8): 2109S-2114S. [PubMed]
6. Schnorr, O., Brossette, T., Momma, T.Y., Kleinbongard, P., Keen, C.L., Schroeter, H. and Sies, H. (2008) Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo. Arch. Biochem. Biophys., 476(2): 211-215. [Crossref] [PubMed]
7. Lotito, S.B. and Frei, B. (2006) Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: Cause, consequence, or epiphenomenon? Free Radic. Biol. Med., 41(12): 1727-1746. [Crossref]
8. Drouin, A., Bolduc, V., Thorin-Trescases, N., Belanger, E., Fernandes, P., Baraghis, E. and Ferland, G. (2011) Catechin treatment improves cerebrovascular flow-mediated dilation and learning abilities in atherosclerotic mice. Am. J. Physiol. Heart Circ. Physiol., 300(3): H1032-H1043. [Crossref]
9. Faridi, Z., Njike, V.Y., Dutta, S., Ali, A. and Katz, D.L. (2008) Acute dark chocolate and cocoa ingestion and endothelial function: A randomized controlled crossover trial. Am. J. Clin. Nutr., 88(1): 58-63. [PubMed]
10. Jernberg, T., Payne, C.D., Winters, K.J., Darstein, C., Brandt, J.T., Jakubowski, J.A. and Wallentin, L. (2006) Prasugrel achieves greater inhibition of platelet aggregation and a lower rate of non-responders compared with clopidogrel in aspirin-treated patients with stable coronary artery disease. Eur. Heart J., 27(10): 1166-1173. [Crossref] [PubMed]
11. Del Rio, D., Rodriguez-Mateos, A., Spencer, J.P., Tognolini, M., Borges, G. and Crozier, A. (2013) Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 18(14): 1818-1892. [Crossref] [PubMed] [PMC]
12. Gu, L., House, S.E., Wu, X., Ou, B. and Prior, R.L. (2006) Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J. Agric. Food Chem., 54(11): 4057-4061. [Crossref] [PubMed]
13. Loke, W.M., Hodgson, J.M., Proudfoot, J.M., McKinley, A.J., Puddey, I.B. and Croft, K.D. (2008) Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr., 88(4): 1018-1025. [PubMed]
14. Kamruzzaman, S.M., Endale, M., Oh, W.J., Park, S.C., Kim, K.S., Hong, J.H. and Rhee, M.H. (2010) Inhibitory effects of bulnesiasarmienti aqueous extract on agonist-induced platelet activation and thrombus formation involves mitogen-activated protein kinases. J. Ethnopharmacol., 130(3): 614-620. [Crossref] [PubMed]
15. Taylor, R. (2012) Insulin resistance and Type 2 diabetes. Diabetes, 61(4): 778-779. [Crossref] [PubMed] [PMC]
16. Chen, L., Chen, R., Wang, H. and Liang, F. (2015) Mechanisms linking inflammation to insulin resistance. Int. J. Endocrinol., 2015: Article ID: 508409, 9.
17. Cremonini, E., Bettaieb, A., Haj, F.G., Fraga, C.G. and Oteiza, P.I. (2016) (-)-epicatechin improves insulin sensitivity in high fat diet-fed mice. Arch. Biochem. Biophys, 599: 13-21. [Crossref] [PubMed] [PMC]
18. Josic, J., Olsson, A.T., Wickeberg, J., Lindstedt, S. and Hlebowicz, J. (2010) Does green tea affect postprandial glucose, insulin and satiety in healthy subjects: A randomized controlled trial. Nutr. J., 9(1): 63. [Crossref]
19. Dower, J.I., Geleijnse, J.M., Gijsbers, L., Zock, P.L., Kromhout, D. and Hollman, P.C. (2015) Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardio metabolic health: A randomized, double-blind, placebo-controlled, crossover trial. Am. J. Clin. Nutr., 101(5): 914-921. [Crossref] [PubMed]
20. Ellinger, S., Reusch, A., Stehle, P. and Helfrich, H.P. (2012) Epicatechin ingested via cocoa products reduces blood pressure in humans: A nonlinear regression model with a bayesian approach. Am. J. Clin. Nutr., 95 (6): 1365-1377. [Crossref] [PubMed]
21. Grassi, D., Desideri, G., Necozione, S., Lippi, C., Casale, R., Properzi, G. and Ferri, C. (2008) Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J. Nutr., 138(9): 1671-1676. [PubMed]
22. Fraga, C.G., Litterio, M.C., Prince, P.D., Calabro, V., Piotrkowski, B. and Galleano, M. (2010) Cocoa flavanols: Effects on vascular nitric oxide and blood pressure. J. Clin. Biochem. Nutr., 48(1): 63-67. [Crossref] [PubMed] [PMC]
23. Galleano, M., Bernatova, I., Puzserova, A., Balis, P., Sestakova, N., Pechanova, O. and Fraga, C.G. (2013) (-)-Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. IUBMB Life, 65(8): 710-715. [Crossref] [PubMed]
24. Bhattacharyya, A., Chattopadhyay, R., Mitra, S. and Crowe, S.E. (2014) Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 94(2): 329-354. [Crossref] [PubMed] [PMC]
25. Lobo, V., Patil, A., Phatak, A. and Chandra, N. (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacog. Rev., 4(8): 118. [Crossref]
26. Filomeni, G., de Zio, D. and Cecconi, F. (2015) Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell. Death Differ., 22(3): 377-388. [Crossref] [PubMed] [PMC]
27. Strzelczyk, J.K. and Wiczkowski, A. (2012) Oxidative damage and carcinogenesis. Contemp. Oncol. Pozn., 16(3): 230-233. [Crossref]
28. Xiong, Y. (2008) Role of Reactive Oxygen Species Peroxynitrite in Traumatic Spinal Cord Injury. Oxford University Press, USA.
29. Jabeur, I. (2016) The Broad Spectrum of Bioactive Properties of Phenolic Extracts: A Prospective Study in Three Different Plants, (Doctoral Dissertation).
30. Choudhary, M.I., editor. (2015) Anti-Angiogenesis Drug Discovery and Development. Vol. 2. Elsevier, Amsterdam, Netherlands.
31. Cao, Y. (2013) Angiogenesis in Adipose Tissue. Springer Science and Business Media, New York. [Crossref]
32. Vasudev, N.S. and Reynolds, A.R. (2014) Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis, 17(3): 471-494. [Crossref] [PubMed] [PMC]
33. Keskin, D., Kim, J., Cooke, V.G., Wu, C.C., Sugimoto, H., Gu, C. and LeBleu, V.S. (2015) Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell. Rep., 10(7): 1066-1081. [Crossref] [PubMed] [PMC]
34. Lim, T.K. (2012) Theobroma cacao. In: Edible Medicinal and Non Medicinal Plants. Springer, Netherlands. p208-251. [Crossref]
35. Shay, J., Elbaz, H.A., Lee, I., Zielske, S.P., Malek, M.H. and Huttemann, M. (2015) Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid. Med. Cell. Longev., 2015: Article ID: 181260, 13.
36. Singh, B.N., Shankar, S. and Srivastava, R.K. (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 82(12): 1807-1821. [Crossref] [PubMed] [PMC]
37. Horie, N., Hirabayashi, N., Takahashi, Y., Miyauchi, Y., Taguchi, H. and Takeishi, K. (2005) Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biol. Pharm. Bull., 28(4): 574-579. [Crossref]
38. Philips, B.J., Coyle, C.H., Morrisroe, S.N., Chancellor, M.B. and Yoshimura, N. (2009) Induction of apoptosis in human bladder cancer cells by green tea catechins. Biomed. Res., 30(4): 207-215. [Crossref]
39. Huang, Y., Zhang, A., Lau, C.W. and Chen, Z.Y. (1998) Vasorelaxant effects of purified green tea epicatechin derivatives in rat mesenteric artery. Life Sci., 63(4): 275-283. [Crossref]
40. Ramirez-Sanchez, I., Maya, L., Ceballos, G. and Villarreal, F. (2010) (-)-epicatechin activation of endothelial cell endothelial nitric oxide synthase, nitric oxide, and related signaling pathways. Hypertension, 55(6): 1398-1405. [Crossref] [PubMed] [PMC]
41. Steffen, Y., Gruber, C., Schewe, T. and Sies, H. (2008) Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Arch. Biochem. Biophys., 469(2): 209-219. [Crossref] [PubMed]
42. Gomez-Guzman, M., Jimenez, R., Sanchez, M., Romero, M., O'Valle, F., Lopez-Sepulveda, R. and Delpon, E. (2011) Chronic (-)-epicatechin improves vascular oxidative and inflammatory status but not hypertension in chronic nitric oxide-deficient rats. Br. J. Nutr., 106(9): 1337-1348. [Crossref] [PubMed]