Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 18-02-2017)

12. Biochemical components of seminal plasma and their correlation to the fresh seminal characteristics in Marwari stallions and Poitou jacks - Thirumala Rao Talluri, Gorakh Mal and Sanjay Kumar Ravi

Veterinary World, 10(2): 214-220

 

 

   doi: 10.14202/vetworld.2017.214-220

 

Thirumala Rao Talluri: Department of Animal Reproduction, Equine Production Campus, Indian Council of Agricultural Research-National Research Centre on Equines, Bikaner, Rajasthan-334001, India.

Gorakh Mal: Department of Biochemistry, Biochemistry Laboratory, Indian Council of Agricultural Research - Indian Veterinary Research Institute, Palampur - 176 061, Himachal Pradesh, India.

Sanjay Kumar Ravi: Department of Animal Reproduction, Equine Production Campus, Indian Council of Agricultural Research-National Research Centre on Equines, Bikaner, Rajasthan-334001, India.

 

Received: 24-10-2016, Accepted: 18-01-2017, Published online: 18-02-2017

 

Corresponding author: Thirumala Rao Talluri, e-mail: raotalluri98@gmail.com


Citation: Talluri TR, Mal G, Ravi SK (2017) Biochemical components of seminal plasma and their correlation to the fresh seminal characteristics in Marwari stallions and Poitou jacks, Veterinary World, 10(2): 214-220.



Aim: To investigate various biochemical components of seminal plasma in Marwari stallions and Poitou Jacks and to find out their correlation with that of the seminal characteristics.

Materials and Methods: In this study, semen was collected from six Marwari stallions and six Poitou jacks aged from 4 to 6 years and with known fertility status. The semen collection from the stallions were collected during the breeding season, i.e., between the months of April and June. From the collected semen ejaculates, we estimated the values of some biochemical components, viz., total protein content, total lipid content, and enzymes such as glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), alkaline phosphatase (ALP), acid phosphatase (ACP), and lactate dehydrogenase (LDH) as well as concentrations of glucose, cholesterol, total calcium (Ca), and phosphorus (P) and correlations among different seminal parameters were statistically examined using the Pearson correlation coefficient.

Results: In this study, we found positive correlations between semen volume as well as sperm concentration and GOT, GPT, ALP and ACP for both the group stallions. Significant correlation between motility and glucose, GOT and GPT could be an indication for their role metabolism and protection against free radicals to the spermatozoa.

Conclusion: Based on the results, it is concluded that there is a positive correlation between some biochemical values such as glucose, Ca, ALP, and LDH and seminal parameters which play a key role in capacitation and onward movement of the spermatozoa.

Keywords: alkaline phosphatase, biochemical components, lactate-dehydrogenase, Marwari, Poitou, stallion, seminal plasma.



1. Juyena, N.S. and Stelletta, C. (2012) Seminal plasma: An essential attribute to spermatozoa. J. Androl., 33: 536-551.
https://doi.org/10.2164/jandrol.110.012583
PMid:22016346
 
2. Asadpour, R. (2012) Relationship between mineral composition of seminal plasma and semen quality in various ram breeds. Acta Sci. Vet., 40: 1027.
 
3. Tvrda, E., Sikeli, P., Lukacova, J., Massanyi, P. and Lukac, N. (2013) Mineral nutrients and male fertility. J. Microbiol. Biotechnol. Food Sci., 3: 1-14.
 
4. El-Bishbishy, H.A., Aly, H.A. and El-Shafey, M. (2013) Lipoic acid mitigates bisphenol A-induced testicular mitochondrial toxicity in rats. Environ. Health, 29(10): 875-887.
https://doi.org/10.1177/0748233712446728
 
5. Bucci, D., Giaretta, E., Spinaci, M., Rizzato, G. and Isani, G. (2016) Characterization of alkaline phosphatase activity in seminal plasma and in fresh and frozen-thawed stallion spermatozoa. Theriogenology, 85: 288-295.
https://doi.org/10.1016/j.theriogenology.2015.09.007
PMid:26433714
 
6. Duan, C. and Goldberg, E. (2003) Inhibition of lactate dehydrogenase C4 (LDHC4) blocks capacitation of mouse sperm in vitro. Cytogenet. Genome. Res., 103(3-4): 352-359.
https://doi.org/10.1159/000076824
PMid:15051959
 
7. Eghbali, M., Alavi-Shoushtari, S.M., Asri-Rezaei, S. and Ansari, M.H.K. (2010) Effects of the seminal plasm iron and lead content on semen quality of water buffalo (Bubalus bubalis) bulls. Vet. Res. Forum, 3: 142-148.
 
8. Pesch, S., Bergmann, M. and Bostedt, H. (2006) Determination of some enzymes and macro and microelements in stallion seminal plasma and their correlations to semen quality. Theriogenology., 66(2): 307-313.
https://doi.org/10.1016/j.theriogenology.2005.11.015
PMid:16413936
 
9. Intasqui, P., Camargo, M., Antoniassi, M.P., Cedenho, A.P. and Carvalho, M. (2016) Association between the seminal plasma proteome and sperm functional traits. Fertil. Steril., 105: 617-628.
https://doi.org/10.1016/j.fertnstert.2015.11.005
PMid:26621572
 
10. Knazicka, Z., Lukacova, J., Gren, A., Formicki, G., Massanyi, P. and Lukac, N. (2013) Relationship between level of copper in bovine seminal plasma and spermatozoa motility. J. Microbiol. Biotechnol. Food Sci., 2: 1351-1362.
 
11. Argov-Argaman, N., Mahgrefthe, K., Zeron, Y. and Roth, Z. (2013) Variation in lipid profiles within semen compartment - The bovine model of aging. Theriogenology, 80: 712-721.
https://doi.org/10.1016/j.theriogenology.2013.05.024
PMid:23830232
 
12. Talluri, T.R., Arangasamy, A., Ravi, S.K. and Pal, Y. (2012) Hypo-osmotic swelling test for quality evaluation of fresh and frozen semen quality in horses. Indian Vet. J., 89(11): 68-70.
 
13. Macanovic, B., Vucetic, M., Jankovic, A., Stancic, A., Buzadzic, B., Garalejic, E., Korac, A., Korac, B. and Otasevic, V. (2015) Correlation between sperm parameters and protein expression of antioxidative defense enzymes in seminal plasma: A pilot study. Dis. Markers, 2015: 436236.
https://doi.org/10.1155/2015/436236
 
14. Arangasamy, A. and Tandon, S.N. (2008) Evaluation of frozen semen characteristics of Marwari stallions and Poitou Jacks. Indian Vet. J., 11: 1168-1169.
 
15. Pal, Y., Legha, R.A. and Tandon, S.N. (2009) Comparative assessment of seminal characteristics of horse and donkey stallions. Indian J. Anim. Sci., 79(10): 1028-1029.
 
16. Dogan, I., Polat, U. and Nur, Z. (2009) Correlations between seminal plasma enzyme activities and semen parameters in seminal fluid of Arabian horses. Iran. J. Vet. Res., 10(2): 119-124.
 
17. Aguiar, G.V., Van Tilburg, M.F., Catunda, A.G.V., Celes, C.K.S., Lima, I.C.S., Campos, A.C.N., Moura, A.A.A. and Araujo, A.A. (2013) Sperm parameters and biochemical components of goat seminal plasma in the rainy and dry seasons in the Brazilian Northeast: The season's influence on the cooling of semen. Arq. Bras. Med. Vet. Zootec., 65(1): 6-12.
https://doi.org/10.1590/S0102-09352013000100002
 
18. Mahsud, T., Jamil, H., Qureshi, Z.I., Asi, M.N., Lodhi, L.A. and Waqas, M.S. (2013) Semen quality parameters and selected bio-chemical constituents level in plasma of Lohi rams. Small Rumin. Res., 113: 175-178.
https://doi.org/10.1016/j.smallrumres.2013.04.004
 
19. Lopez Rodriguez, A., Rijsselaere, T., Beek, J., Vyt, P., Van Soom, A. and Maes, D. (2013) Boar seminal plasma components and their relation with semen quality. Syst. Biol. Reprod. Med., 59: 5-12.
https://doi.org/10.3109/19396368.2012.725120
PMid:23083319
 
20. Hinton, B.T., Lan, Z.J., Rudolph, D.B., Labus, J.C. and Lye, R.J. (1998) Testicular regulation of epididymal gene expression. J. Reprod. Fertil. Suppl., 53: 47-57.
PMid:10645265
 
21. Coleman, J.E. (1992) Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct., 21: 441-483.
https://doi.org/10.1146/annurev.bb.21.060192.002301
PMid:1525473
 
22. Bucci, D., Giaretta, E., Spinaci, M., Rizzato, G., Isani, G., Mislei, B., Mari, G., Tamanini, C. and Galeati, G (2016) Characterization of alkaline phosphatase activity in seminal plasma and in fresh and frozen-thawed stallion spermatozoa. Theriogenology, 85: 288-295.
https://doi.org/10.1016/j.theriogenology.2015.09.007
PMid:26433714
 
23. Turner, R.M. and McDonnell, S.M. (2003) Alkaline phosphatase in stallion semen: Characterization and clinical applications. Theriogenology, 60(1): 1-10.
https://doi.org/10.1016/S0093-691X(02)00956-1
 
24. Schafer-Somi, S., Frohlich, T. and Schwendenwein, I. (2013) Measurement of alkaline phosphatase in canine seminal plasma - An update. Reprod. Domest. Anim., 48: e10-12.
https://doi.org/10.1111/j.1439-0531.2012.02025.x
PMid:22524622
 
25. Kiso, W.K., Selvaraj, V., Nagashima, J., Asano, A., Brown, J.L., Schmitt, D.L., Leszyk, J., Travis, A.J. and Pukazhenthi, B.S. (2013) Lactotransferrin in Asian elephant (Elephas maximus) seminal plasma correlates with semen quality. PLoS One, 8: e71033.
https://doi.org/10.1371/journal.pone.0071033
 
26. Stornelli, A., Arauz, M., Baschard, H. and de la Sota, R.L. (2003) Unilateral and bilateral vasectomy in the dog: Alkaline phosphatase as an indicator of tubular patency. Reprod. Domest. Anim., 38: 1-4.
https://doi.org/10.1046/j.1439-0531.2003.00369.x
PMid:12535322
 
27. Kashir, J., Jones, C., Child, T., Williams, S.A. and Coward, K. (2012) Viability assessment for artificial gametes: The need for biomarkers of functional competency. Biol. Reprod., 87(5): 1-11.
https://doi.org/10.1095/biolreprod.112.103853
 
28. Kurien, M., Katheresan, D., Selvaraju, M. and Pattabiraman, S. (2015) Macroscopic, microscopic and bio-chemical characteristics of fresh dog semen. Indian J. Anim. Reprod., 33(1): 18-20
 
29. Feng, R.X., Lu, J.C., Zhang, H.Y. and Lü, N.Q. (2015) A pilot comparative study of 26 biochemical markers in seminal plasma and serum in infertile men. BioMed Res. Int., 2015: 1-7.
https://doi.org/10.1155/2015/805328
 
30. Tanaka, M., Kishi, Y., Takanezawa, Y., Kakehi, Y., Aoki, J. and Arai, H. (2004) Prostatic acid phosphatase degrades lysophosphatidic acid in seminal plasma. FEBS. Lett., 571: 197-204.
https://doi.org/10.1016/j.febslet.2004.06.083
PMid:15280042
 
31. Tappel, A. (2005) Lysosomal and prostasomal hydrolytic enzymes and redox processes and initiation of prostate cancer. Med. Hypotheses, 64: 1170-1172.
https://doi.org/10.1016/j.mehy.2004.11.039
PMid:15823710
 
32. Alkafafy, M., Ebada, S., Rashed, R. and Attia, H. (2012) Comparative morphometric and glycohistochemical studies on the epididymal duct in the donkey (Equus asinus) and dromedary camel (Camelus dromedarius). Acta Histochem., 114: 434-447.
https://doi.org/10.1016/j.acthis.2011.08.005
PMid:21906788
 
33. Knecht, D., Środoń, S. and Duziński, K. (2014) The influence of boar breed and season on semen parameters. S. Afr. J. Anim. Sci., 44(1): 1-9.
https://doi.org/10.4314/sajas.v44i1.1
 
34. Kamp, G., Busselmann, G. and Lauterwein, J. (1996) Spermatozoa: Models for studying regulatory aspects of energy metabolism. Experientia, 52: 487-494.
https://doi.org/10.1007/BF01919321
PMid:8641386
 
35. Mahamud, M.A., Onu, J.E., Shehu, S.A., Umar, M.A., Bello, A. and Danmaigoro, A. (2015) Cryptorchidism in mammals: A review. Glob. J. Anim. Sci. Res., 3(1): 128-135.
 
36. Baker, M.A., Hetherington, L., Ecroyd, H., Roman, S.D. and Aitken, R.J. (2004) Analysis of the mechanisms by which calcium negatively regulates the tyrosine phosphorylation cascade associated with sperm capacitation. J. Cell Sci., 117: 211-222.
https://doi.org/10.1242/jcs.00842
PMid:14676274
 
37. Marquez, B. and Suarez, S.S. (2004) Different signaling pathways in bovine sperm regulate capacitation and hyper activation. Biol. Reprod., 70: 1626-1633.
https://doi.org/10.1095/biolreprod.103.026476
PMid:14766720
 
38. Kwon, W.S., Park, Y.J., El-Mohamed, S.A. and Pang, M.G. (2013) Voltage-dependent anion channels are a key factor of male fertility. Fertil. Steril., 99: 354-361.
https://doi.org/10.1016/j.fertnstert.2012.09.021
PMid:23062735