Open Access
Research
(Published
online: 08-02-2017)
5.
Evaluation of tissue-engineered bone
constructs using rabbit fetal osteoblasts on acellular bovine
cancellous bone matrix -
Rashmi, Rekha Pathak, Amarpal, H. P. Aithal, P. Kinjavdekar, A. M.
Pawde, A. K. Tiwari, P. Sangeetha, P. Tamilmahan, and A. B.
Manzoor
Veterinary World, 10(2): 163-169
doi:
10.14202/vetworld.2017.163-169
Rashmi:
Division of Veterinary Surgery, Indian Veterinary Research
Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
Rekha Pathak:
Division of Veterinary Surgery, Indian Veterinary Research
Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
Amarpal:
Division of Veterinary Surgery, Indian Veterinary Research
Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
H. P. Aithal:
Division of Veterinary Surgery, Indian Veterinary Research
Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
P. Kinjavdekar:
Division of Veterinary Surgery, Indian Veterinary Research
Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
A. M. Pawde:
Division of Veterinary Surgery, Indian Veterinary Research
Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
A. K. Tiwari:
Division of Standardization, Indian Veterinary Research Institute,
Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
P. Sangeetha:
Division of Veterinary Surgery, Indian Veterinary Research
Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
P. Tamilmahan:
Division of Veterinary Surgery, Indian Veterinary Research
Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
A. B. Manzoor:
Division of Veterinary Surgery, Indian Veterinary Research
Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.
Received: 10-11-2016, Accepted: 04-01-2017, Published online:
08-02-2017
Corresponding author:
Rekha Pathak, e-mail: rekhasurgery@rediffmail.com
Citation:
Rashmi, Pathak R, Amarpal, Aithal HP, Kinjavdekar P, Pawde AM,
Tiwari AK, Sangeetha P, Tamilmahan P, Manzoor AB (2017) Evaluation
of tissue-engineered bone constructs using rabbit fetal
osteoblasts on acellular bovine cancellous bone matrix,
Veterinary World, 10(2): 163-169.
Abstract
Aim:
The aim of this study was to generate composite bone graft and
investigate the rabbit fetal osteoblasts adhesion, proliferation
and penetration on acellular matrices of cancellous bone.
Materials and Methods:
Acellular cancellous bone was prepared and developed as in the
previous study with little modification. These matrices were
decellularized by rapid freeze and thaw cycle. To remove the cell
debris, they were then treated with hydrogen peroxide (3%) and
ethanol to remove antigenic cellular and nuclear materials from
the scaffold. Primary osteoblast cells were harvested from 20 to
22 days old rabbit fetal long and calvarial bone. These cells were
cultured and characterized using a specific marker. The third
passaged fetal osteoblast cells were then seeded on the scaffold
and incubated for 14 days. The growth pattern of the cells was
observed. Scanning electron microscope and hematoxylin and eosin
staining were used to investigate cells proliferation.
Results:
The cells were found to be growing well on the surface of the
scaffold and were also present in good numbers with the matrix
filopodial extensions upto inside of the core of the tissue.
Conclusion:
Thus, a viable composite scaffold of bone could be developed which
has a great potential in the field of bone tissue engineering.
Keywords:
composite grafts, osteoblasts, tissue engineering.
References
1. Pilia,
M., Guda, T. and Appleford, M. (2013) Development of composite
scaffolds for load-bearing segmental bone defects. Biomed.
Res. Int., 2013: 458253.
https://doi.org/10.1155/2013/458253
PMid:23984363 PMCid:PMC3745947 |
|
2. Trentz,
O.A., Hoerstrup, S.P., Sun, L.K., Bestmann, L., Platz, A. and
Trentz, O.L. (2003) Osteoblasts response to allogenic and
xenogenic solvent dehydrated cancellous bone in vitro.
Biomaterials, 24: 3417-3426.
https://doi.org/10.1016/S0142-9612(03)00205-9 |
|
3. Lucarelli,
E., Fini, M., Beccheroni, A., Giavaresi, G., DiBella, C.,
Aldini, N.N., Guzzardella, G., Martini, L., Cenacchi, A.,
DiMaggio, N., Sangiorgi, L., Fornasari, P. M., Mecuri, M.,
Giardino, R. and Donati, D. (2005) Stromal stem cells and
platelet-rich plasma improve bone allograft integration. Clin.
Orthop. Relat. Res., 435: 62-68.
https://doi.org/10.1097/01.blo.0000165736.87628.12
PMid:15930922 |
|
4.
Bauermeister, A. (1961) Treatment of cysts, tumors and
inflammatory processes of the bone with the ''Kiel graft''.
Bruns Beitr. Klin. Chir., 203: 287-316.
PMid:13865890 |
|
5. Hammer,
C., Linke, R., Wagner, F. and Diefenbeck, M. (1998) Organs
from animals or man. Int. Arch. Allergy Immunol., 116: 5-21.
https://doi.org/10.1159/000023919
PMid:9623504 |
|
6. Feng, W.,
Fu, L., Liu, J. and Li, D. (2012) The expression and
distribution of xenogeneic targeted antigens on porcine bone
tissue. Transplant. Proc., 44: 1419-1422.
https://doi.org/10.1016/j.transproceed.2011.11.070
PMid:22664027 |
|
7. Badylak,
S.F. and Gilbert, T.W. (2008) Immune response to biologic
scaffold materials. Semin. Immunol., 20: 109-116.
https://doi.org/10.1016/j.smim.2007.11.003
PMid:18083531 PMCid:PMC2605275 |
|
8. Jahn, K.,
Braunstein, V., Furlong, P.I., Simpson, A.E., Richards, R.G.
and Stoddart, M.J. (2010) A rapid method for the generation of
uniform acellular bone explants: A technical note. J. Orthop.
Surg. Res., 5: 32.
https://doi.org/10.1186/1749-799X-5-32
PMid:20459728 PMCid:PMC2873550 |
|
9. Pathak,
R., Amarpal, A., Tiwari, A.K., Kurade, N.P. and Amarnath,
(2012) Decellularization of buffalo bone to prepare bone
scaffolds for effective bone tissue engineering. J. Cell
Tissue Res., 12(3): 3291-3295. |
|
10.
Tamilmahan, P. (2013) Development of Acellular Osseous
Xenograft for Bone Tissue Engineering in Rabbits. M.V. Sc.
Thesis Submitted to Indian Veterinary Research Institute,
Izatnagar. |
|
11. Yang,
Y., Zhao, Y., Tang, G., Li, H., Yuan, X. and Fan, Y. (2008) In
vitro degradation of porous poly (L-lactide-co-glycolide)/β-tricalcium
phosphate (PLGA/β-TCP) scaffolds under dynamic and static
conditions. Polym. Degrad. Stab., 93: 1838-1845.
https://doi.org/10.1016/j.polymdegradstab.2008.07.007 |
|
12. Schieker,
M., Seitz, H., Drosse, I., Seitz, S. and Mutschler, W. (2006)
Biomaterials as scaffold for bone tissue engineering. Eur. J.
Trauma, 32: 114-124.
https://doi.org/10.1007/s00068-006-6047-8 |
|
13.
Breitbart, A.S., Grande, D.A., Kessler, R., Ryaby, J.T.,
Fitzsimmons, R.J. and Grant, R.T. (1998) Tissue engineered
bone repair of calvarial defects using cultured periosteal
cells. Plast. Reconstr. Surg., 101: 567-574.
https://doi.org/10.1097/00006534-199803000-00001
PMid:9500373 |
|
14. Ohgushi,
H., Miyake, J. and Tateishi, T. (2003) Mesenchymal stem cells
and bioceramics: Strategies to regenerate the skeleton.
Novartis Found. Symp., 249: 118-127.
https://doi.org/10.1002/0470867973.ch9
PMid:12708653 |
|
15. Kneser,
U., Stangenberg, L., Ohnolz, J., Buettner, O., Stern-Straeter,
J., Möbest, D., Horch, R.E., Stark, G.B. and Schaefer, D.J.
(2006) Evaluation of processed bovine cancellous bone matrix
seeded with syngenic osteoblasts in a critical size calvarial
defect rat model. J. Cell Mol. Med., 10(3): 695-707.
https://doi.org/10.1111/j.1582-4934.2006.tb00429.x
PMCid:PMC3933151 |
|
16. Katzburg,
S., Lieberherr, M., Ornoy, A., Klein, B.Y., Hendel, D. and
Somjen, D. (1999) Isolation and hormonal responsiveness of
primary cultures of human bone-derived cells: Gender and age
differences. Bone, 25: 667-673.
https://doi.org/10.1016/S8756-3282(99)00225-2 |
|
17. Tsigkou,
O., Jones, J.R., Polak, J.M. and Stevens, M.M. (2009)
Differentiation of fetal osteoblasts and formation of
mineralized bone nodules by 45S5 bioglass conditioned medium
in the absence of osteogenic supplements. Biomaterials, 30:
3542-3550.
https://doi.org/10.1016/j.biomaterials.2009.03.019
PMid:19339047 |
|
18. Zuliani,
T., Saiagh, S., Knol, A.C., Esbelin, J. and Dreno, B. (2013)
Fetal fibroblasts and keratinocytes with immunosuppressive
properties for allogeneic cell-based wound therapy. PLoS One,
8: 1-12.
https://doi.org/10.1371/journal.pone.0070408
PMid:23894651 PMCid:PMC3722184 |
|
19. DePaula,
C.A., Truncale, K.G., Gertzman, A.A., Sunwoo, M.H. and Dunn,
M.G. (2005) Effects of hydrogen peroxide cleaning procedures
on bone graft osteoinductivity and mechanical properties. Cell
Tissue Bank, 6: 287-298.
https://doi.org/10.1007/s10561-005-3148-2
PMid:16308768 |
|
20. Amarpal,
A., Kinjavdekar, P., Aithal, H.P., Pawde, A.M. and Pratap, K.
(2010) Evaluation of xylazine, acepromazine and medetomidine
with ketamine for general anaesthesia in rabbits. Scand. J.
Lab. Anim. Sci., 37(3): 223-229. |
|
21. Cao, X.Y.,
Yin, M.Z., Zhang, L.N., Li, S.P. and Cao, Y. (2006)
Establishment of a new model for culturing rabbit osteoblasts
in vitro. Biomed. Mater., 1: L16-L19.
https://doi.org/10.1088/1748-6041/1/4/l02 |
|
22. Liao,
S.S., Cui, F.Z., Zhang, W. and Feng, Q.L. (2004)
Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA
composite. J. Biomed. Mater. Res. B. Appl. Biomater., 69:
158-65.
https://doi.org/10.1002/jbm.b.20035
PMid:15116405 |
|
23.
Wallington, E.A. (1972) Histological Methods for Bone.
Butterworths, London.
PMid:4629481 PMCid:PMC1412372 |
|
24. Luna,
L.G. (1968) Manual of Histologic Staining Methods of the Armed
Forces Institute of Pathology. 3rd ed. McGraw-Hill Company,
New York. |
|
25.
Hasegawa, Y., Shimada, K., Suzuki, N., Takayama, T., Kato, T.,
Iizuka, T., Sato, S. and Ito, K. (2008) The in vitro
osteogenetic characteristics of primary osteoblastic cells
from a rabbit Calvarium. J. Oral Sci., 50: 427-434.
https://doi.org/10.2334/josnusd.50.427
PMid:19106470 |
|
26. Rui, G.,
Jin, X. and Lin, S. (2012) Histocompatibility of acellular
matrix bone with osteoblast and vascular endothelial cells.
In: Haim, T., editor. Bone Regeneration. InTech open access
publisher. P321-348..
https://doi.org/10.5772/36032 |
|
27. Flautre,
B., Descamps, M., Delecourt, C., Blary, M. and Hardouin, P.
(2001) Porous HA ceramic for bone replacement: Role of the
pores and interconnections-experimental study in the rabbit.
J. Mater. Sci. Mater. Med., 12: 679-682.
https://doi.org/10.1023/A:1011256107282
PMid:15348237 |
|
28. Grayson,
W.L., Bhumiratana, S., Cannizzaro, C., Chao, G.P.H., Lennon,
D.P., Caplan, A.I. and Vunjak-Novakovic, G. (2008) Effects of
initial seeding density and fluid perfusion rate on formation
of tissue-engineered bone. Tissue Eng., 14: 1809-1820.
https://doi.org/10.1089/ten.tea.2007.0255
PMid:18620487 PMCid:PMC2773295 |
|
29. Meinel,
L., Karageorgiou, V. and Fajardo, R. (2004) Bone tissue
engineering using human mesenchymal stem cells: Effects of
scaffold material and medium flow. Ann. Biomed. Eng., 32:
112-122.
https://doi.org/10.1023/b:abme.0000007796.48329.b4 |
|
30. Chan,
L.K., Leung, V.Y., Tama, V., Lu, W.W., Sze, K.Y. and Cheung,
K.M. (2012) Decellularized bovine intervertebral disc as a
natural scaffold for xenogenic cell studies. Acta Biomater.,
9: 5262-5272.
https://doi.org/10.1016/j.actbio.2012.09.005
PMid:23000521 |
|
31. Chen,
L., Sun, L., Tao, J.F., Jiang, J., Gao, X.S., Jie, Y.S. and
Tian, W. (2010) Xenographic bone graft materials safely
prepared by compound surfactant. J. Rehabil. Tissue Eng. Res.
Clin., 14: 1499-1503. |
|
32. Sulaiman,
S.B., Keong, T.K., Cheng, C.H., Saim, A.B. and Hj Idrus, R.B.
(2013) Tricalcium phosphate/hydroxyapatite (TCP-HA) bone
scaffold as potential candidate for the formation of tissue
engineered bone. Indian J. Med. Res., 137: 1093-1110.
PMid:23852290 PMCid:PMC3734714 |
|