Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 08-02-2017)

5. Evaluation of tissue-engineered bone constructs using rabbit fetal osteoblasts on acellular bovine cancellous bone matrix - Rashmi, Rekha Pathak, Amarpal, H. P. Aithal, P. Kinjavdekar, A. M. Pawde, A. K. Tiwari, P. Sangeetha, P. Tamilmahan, and A. B. Manzoor

Veterinary World, 10(2): 163-169

 

 

   doi: 10.14202/vetworld.2017.163-169

 

Rashmi: Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

Rekha Pathak: Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

Amarpal: Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

H. P. Aithal: Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

P. Kinjavdekar: Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

A. M. Pawde: Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

A. K. Tiwari: Division of Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

P. Sangeetha: Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

P. Tamilmahan: Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

A. B. Manzoor: Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India.

 

Received: 10-11-2016, Accepted: 04-01-2017, Published online: 08-02-2017

 

Corresponding author: Rekha Pathak, e-mail: rekhasurgery@rediffmail.com


Citation: Rashmi, Pathak R, Amarpal, Aithal HP, Kinjavdekar P, Pawde AM, Tiwari AK, Sangeetha P, Tamilmahan P, Manzoor AB (2017) Evaluation of tissue-engineered bone constructs using rabbit fetal osteoblasts on acellular bovine cancellous bone matrix, Veterinary World, 10(2): 163-169.



Aim: The aim of this study was to generate composite bone graft and investigate the rabbit fetal osteoblasts adhesion, proliferation and penetration on acellular matrices of cancellous bone.

Materials and Methods: Acellular cancellous bone was prepared and developed as in the previous study with little modification. These matrices were decellularized by rapid freeze and thaw cycle. To remove the cell debris, they were then treated with hydrogen peroxide (3%) and ethanol to remove antigenic cellular and nuclear materials from the scaffold. Primary osteoblast cells were harvested from 20 to 22 days old rabbit fetal long and calvarial bone. These cells were cultured and characterized using a specific marker. The third passaged fetal osteoblast cells were then seeded on the scaffold and incubated for 14 days. The growth pattern of the cells was observed. Scanning electron microscope and hematoxylin and eosin staining were used to investigate cells proliferation.

Results: The cells were found to be growing well on the surface of the scaffold and were also present in good numbers with the matrix filopodial extensions upto inside of the core of the tissue.

Conclusion: Thus, a viable composite scaffold of bone could be developed which has a great potential in the field of bone tissue engineering.

Keywords: composite grafts, osteoblasts, tissue engineering.



1. Pilia, M., Guda, T. and Appleford, M. (2013) Development of composite scaffolds for load-bearing segmental bone defects. Biomed. Res. Int., 2013: 458253.
https://doi.org/10.1155/2013/458253
PMid:23984363 PMCid:PMC3745947
 
2. Trentz, O.A., Hoerstrup, S.P., Sun, L.K., Bestmann, L., Platz, A. and Trentz, O.L. (2003) Osteoblasts response to allogenic and xenogenic solvent dehydrated cancellous bone in vitro. Biomaterials, 24: 3417-3426.
https://doi.org/10.1016/S0142-9612(03)00205-9
 
3. Lucarelli, E., Fini, M., Beccheroni, A., Giavaresi, G., DiBella, C., Aldini, N.N., Guzzardella, G., Martini, L., Cenacchi, A., DiMaggio, N., Sangiorgi, L., Fornasari, P. M., Mecuri, M., Giardino, R. and Donati, D. (2005) Stromal stem cells and platelet-rich plasma improve bone allograft integration. Clin. Orthop. Relat. Res., 435: 62-68.
https://doi.org/10.1097/01.blo.0000165736.87628.12
PMid:15930922
 
4. Bauermeister, A. (1961) Treatment of cysts, tumors and inflammatory processes of the bone with the ''Kiel graft''. Bruns Beitr. Klin. Chir., 203: 287-316.
PMid:13865890
 
5. Hammer, C., Linke, R., Wagner, F. and Diefenbeck, M. (1998) Organs from animals or man. Int. Arch. Allergy Immunol., 116: 5-21.
https://doi.org/10.1159/000023919
PMid:9623504
 
6. Feng, W., Fu, L., Liu, J. and Li, D. (2012) The expression and distribution of xenogeneic targeted antigens on porcine bone tissue. Transplant. Proc., 44: 1419-1422.
https://doi.org/10.1016/j.transproceed.2011.11.070
PMid:22664027
 
7. Badylak, S.F. and Gilbert, T.W. (2008) Immune response to biologic scaffold materials. Semin. Immunol., 20: 109-116.
https://doi.org/10.1016/j.smim.2007.11.003
PMid:18083531 PMCid:PMC2605275
 
8. Jahn, K., Braunstein, V., Furlong, P.I., Simpson, A.E., Richards, R.G. and Stoddart, M.J. (2010) A rapid method for the generation of uniform acellular bone explants: A technical note. J. Orthop. Surg. Res., 5: 32.
https://doi.org/10.1186/1749-799X-5-32
PMid:20459728 PMCid:PMC2873550
 
9. Pathak, R., Amarpal, A., Tiwari, A.K., Kurade, N.P. and Amarnath, (2012) Decellularization of buffalo bone to prepare bone scaffolds for effective bone tissue engineering. J. Cell Tissue Res., 12(3): 3291-3295.
 
10. Tamilmahan, P. (2013) Development of Acellular Osseous Xenograft for Bone Tissue Engineering in Rabbits. M.V. Sc. Thesis Submitted to Indian Veterinary Research Institute, Izatnagar.
 
11. Yang, Y., Zhao, Y., Tang, G., Li, H., Yuan, X. and Fan, Y. (2008) In vitro degradation of porous poly (L-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions. Polym. Degrad. Stab., 93: 1838-1845.
https://doi.org/10.1016/j.polymdegradstab.2008.07.007
 
12. Schieker, M., Seitz, H., Drosse, I., Seitz, S. and Mutschler, W. (2006) Biomaterials as scaffold for bone tissue engineering. Eur. J. Trauma, 32: 114-124.
https://doi.org/10.1007/s00068-006-6047-8
 
13. Breitbart, A.S., Grande, D.A., Kessler, R., Ryaby, J.T., Fitzsimmons, R.J. and Grant, R.T. (1998) Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast. Reconstr. Surg., 101: 567-574.
https://doi.org/10.1097/00006534-199803000-00001
PMid:9500373
 
14. Ohgushi, H., Miyake, J. and Tateishi, T. (2003) Mesenchymal stem cells and bioceramics: Strategies to regenerate the skeleton. Novartis Found. Symp., 249: 118-127.
https://doi.org/10.1002/0470867973.ch9
PMid:12708653
 
15. Kneser, U., Stangenberg, L., Ohnolz, J., Buettner, O., Stern-Straeter, J., Möbest, D., Horch, R.E., Stark, G.B. and Schaefer, D.J. (2006) Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model. J. Cell Mol. Med., 10(3): 695-707.
https://doi.org/10.1111/j.1582-4934.2006.tb00429.x
PMCid:PMC3933151
 
16. Katzburg, S., Lieberherr, M., Ornoy, A., Klein, B.Y., Hendel, D. and Somjen, D. (1999) Isolation and hormonal responsiveness of primary cultures of human bone-derived cells: Gender and age differences. Bone, 25: 667-673.
https://doi.org/10.1016/S8756-3282(99)00225-2
 
17. Tsigkou, O., Jones, J.R., Polak, J.M. and Stevens, M.M. (2009) Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials, 30: 3542-3550.
https://doi.org/10.1016/j.biomaterials.2009.03.019
PMid:19339047
 
18. Zuliani, T., Saiagh, S., Knol, A.C., Esbelin, J. and Dreno, B. (2013) Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy. PLoS One, 8: 1-12.
https://doi.org/10.1371/journal.pone.0070408
PMid:23894651 PMCid:PMC3722184
 
19. DePaula, C.A., Truncale, K.G., Gertzman, A.A., Sunwoo, M.H. and Dunn, M.G. (2005) Effects of hydrogen peroxide cleaning procedures on bone graft osteoinductivity and mechanical properties. Cell Tissue Bank, 6: 287-298.
https://doi.org/10.1007/s10561-005-3148-2
PMid:16308768
 
20. Amarpal, A., Kinjavdekar, P., Aithal, H.P., Pawde, A.M. and Pratap, K. (2010) Evaluation of xylazine, acepromazine and medetomidine with ketamine for general anaesthesia in rabbits. Scand. J. Lab. Anim. Sci., 37(3): 223-229.
 
21. Cao, X.Y., Yin, M.Z., Zhang, L.N., Li, S.P. and Cao, Y. (2006) Establishment of a new model for culturing rabbit osteoblasts in vitro. Biomed. Mater., 1: L16-L19.
https://doi.org/10.1088/1748-6041/1/4/l02
 
22. Liao, S.S., Cui, F.Z., Zhang, W. and Feng, Q.L. (2004) Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. B. Appl. Biomater., 69: 158-65.
https://doi.org/10.1002/jbm.b.20035
PMid:15116405
 
23. Wallington, E.A. (1972) Histological Methods for Bone. Butterworths, London.
PMid:4629481 PMCid:PMC1412372
 
24. Luna, L.G. (1968) Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. 3rd ed. McGraw-Hill Company, New York.
 
25. Hasegawa, Y., Shimada, K., Suzuki, N., Takayama, T., Kato, T., Iizuka, T., Sato, S. and Ito, K. (2008) The in vitro osteogenetic characteristics of primary osteoblastic cells from a rabbit Calvarium. J. Oral Sci., 50: 427-434.
https://doi.org/10.2334/josnusd.50.427
PMid:19106470
 
26. Rui, G., Jin, X. and Lin, S. (2012) Histocompatibility of acellular matrix bone with osteoblast and vascular endothelial cells. In: Haim, T., editor. Bone Regeneration. InTech open access publisher. P321-348..
https://doi.org/10.5772/36032
 
27. Flautre, B., Descamps, M., Delecourt, C., Blary, M. and Hardouin, P. (2001) Porous HA ceramic for bone replacement: Role of the pores and interconnections-experimental study in the rabbit. J. Mater. Sci. Mater. Med., 12: 679-682.
https://doi.org/10.1023/A:1011256107282
PMid:15348237
 
28. Grayson, W.L., Bhumiratana, S., Cannizzaro, C., Chao, G.P.H., Lennon, D.P., Caplan, A.I. and Vunjak-Novakovic, G. (2008) Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Eng., 14: 1809-1820.
https://doi.org/10.1089/ten.tea.2007.0255
PMid:18620487 PMCid:PMC2773295
 
29. Meinel, L., Karageorgiou, V. and Fajardo, R. (2004) Bone tissue engineering using human mesenchymal stem cells: Effects of scaffold material and medium flow. Ann. Biomed. Eng., 32: 112-122.
https://doi.org/10.1023/b:abme.0000007796.48329.b4
 
30. Chan, L.K., Leung, V.Y., Tama, V., Lu, W.W., Sze, K.Y. and Cheung, K.M. (2012) Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies. Acta Biomater., 9: 5262-5272.
https://doi.org/10.1016/j.actbio.2012.09.005
PMid:23000521
 
31. Chen, L., Sun, L., Tao, J.F., Jiang, J., Gao, X.S., Jie, Y.S. and Tian, W. (2010) Xenographic bone graft materials safely prepared by compound surfactant. J. Rehabil. Tissue Eng. Res. Clin., 14: 1499-1503.
 
32. Sulaiman, S.B., Keong, T.K., Cheng, C.H., Saim, A.B. and Hj Idrus, R.B. (2013) Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J. Med. Res., 137: 1093-1110.
PMid:23852290 PMCid:PMC3734714