Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 12-02-2017)

6. Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect - Tarun Kumar Varun, Swaraj Senani, Natasha Jayapal, Jayaram Chikkerur, Sohini Roy, Vijay Bhasker Tekulapally, Mayank Gautam, and Narender Kumar

Veterinary World, 10(2): 170-175

 

 

   doi: 10.14202/vetworld.2017.170-175

 

Tarun Kumar Varun: Department of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, India.

Swaraj Senani: Department of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, Karnataka, India.

Natasha Jayapal: Department of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, Karnataka, India.

Jayaram Chikkerur: Department of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, Karnataka, India.

Sohini Roy: Department of Animal Nutrition, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, Karnataka, India.

Vijay Bhasker Tekulapally: ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.

Mayank Gautam: Department of Animal Nutrition, ICAR-National Dairy Research Institute, Karnal, Haryana, India.

Narender Kumar: ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.

 

Received: 21-07-2016, Accepted: 31-12-2016, Published online: 12-02-2017

 

Corresponding author: Tarun Kumar Varun, e-mail: dr.tkvarun@gmail.com


Citation: Varun TK, Senani S, Jayapal N, Chikkerur J, Roy S, Tekulapally VB, Gautam M, Kumar N (2017) Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect, Veterinary World, 10(2): 170-175.



Aim: The present study was performed to utilize the shrimp shell waste for chitin and chitosan production, characterization by Fourier transform infrared (FT-IR) technique and to evaluate the antimicrobial effects of chitosan oligomers produced by depolymerization of chitosan by nitrous acid.

Materials and Methods: Chitosan was extracted from the shrimp shell waste by the chemical method and characterized by FT-IR. Chitooligomers were produced by depolymerising chitosan using nitrous acid, and the chitooligomers were tested for antimicrobial effect against four gut pathogenic organisms, i.e., Enterobacter aerogen (National Collection of Dairy Culture [NCDC] 106), Enterococcus faecalis (NCDC 119), Escherichia coli (NCDC 134), and Staphylococcus aureus (NCDC 109) by well diffusion method using Muller-Hinton agar. A pure culture of pathogenic organisms was collected from NCDC, ICAR-National Dairy Research Institute, Karnal.

Results: Extracted chitosan characterized by FT-IR and chitooligomers demonstrated antimicrobial effect against four gut pathogenic organisms used in this study. Zone of inhibitions (mm) were observed in E. faecalis (13±0.20), E. coli (11.5±0.4), S. aureus (10.7±0.2), and E. aerogen (10.7±0.3). E. faecalis showed larger inhibition zone as compared to all other organisms and inhibitions zones of E. aerogen and S. aureus were comparable to each other.

Conclusion: Shrimp waste can be utilized for chitosan production, and the chitooligomers can be used as feed additive for gut health enhancement and have potential to replace antibiotics from the feed. Along with value addition pollutant load could be reduced by waste utilization.

Keywords: chitin, chitooligomers, chitosan, Fourier transform infrared, shrimp waste.



1. CMFRI. (2015) Annual Report 2014-15. Central Marine Fisheries Research Institute, Cochin. p353.
 
2. Je, J.Y. and Kim, S.K. (2006) Antimicrobial action of novel chitin derivative. Biochim. Biophys. Acta, 1760(1): 104-109.
https://doi.org/10.1016/j.bbagen.2005.09.012
PMid:16271284
 
3. Costa, E.M., Silva, S., Pina, C., Tavaria, F.K. and Pintado, M.M. (2012) Evaluation and insights into chitosan anti microbial activity against anaerobic oral pathogens. Anaerobe, 18(3): 305-309.
https://doi.org/10.1016/j.anaerobe.2012.04.009
PMid:22561525
 
4. Ramirez, M.A., Rodriguez, A.T., Alfonso, L. and Peniche, C. (2010) Chitin and its derivatives as biopolymers with potential agricultural applications. Biotechnol. Appl., 27: 270-276.
 
5. Kumirska, J., Weinhold, M.X., Thöming, J. and Stepnowski, P. (2011) Biomedical activity of chitin/chitosan based materials—Influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers, 3: 1875-1901.
https://doi.org/10.3390/polym3041875
 
6. Raafat, D. and Sahl, H.G. (2009) Chitosan and its antimicrobial potential - A critical literature survey. Microb. Biotechnol., 2(2): 186-201.
https://doi.org/10.1111/j.1751-7915.2008.00080.x
PMid:21261913 PMCid:PMC3815839
 
7. Sathiadhas, R. and Aswathy, N. (2004) Techno-economic analysis of production and marketing of marine by-products in India. J. Indian Fish. Assoc., 31: 155-165.
 
8. Younes, I. and Rinaudo, M. (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs, 13(3): 1133-1174.
https://doi.org/10.3390/md13031133
PMid:25738328 PMCid:PMC4377977
 
9. Yang, E.J., Kim, J.G., Kim, J.Y., Kim, S. and Lee, N. (2010) Anti-inflammatory effect of chitosan oligosaccharides in RAW 264.7 cells. Cent. Eur. J. Biol., 5(1): 95-102.
https://doi.org/10.2478/s11535-009-0066-5
 
10. Choi, C.R., Kim, E.K., Kim, Y.S., Je, J.Y., An, S.H., Lee, J.D., Wang, J.H., Ki, S.S., Jeon, B.T., Moon, S.H. and Park, P.J. (2012) Chitooligosaccharides decreases plasma lipid levels in healthy men. Int. J. Food Sci. Nutr., 63(1): 103-106.
https://doi.org/10.3109/09637486.2011.602051
PMid:21781022
 
11. Jan, S.S., Liu, D.D., Dong, X.Y., Hu, Y.M. and Chen, J.D. (2012) Effects of chitosan and its derivative added to water on immunological enhancement and disease control. Immunotherapy, 4(7): 697-701.
https://doi.org/10.2217/imt.12.68
PMid:22853756
 
12. Xu, W., Jiang, C., Kong, X., Liang, Y., Rong, M. and Liu, W. (2012) Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell mediated antitumor immune responses. Mol. Med. Rep., 6(2): 385-390.
PMid:22614871
 
13. Pangestuti, R. and Kim, S.K. (2010) Neuroprotective properties of chitosan and its derivatives. Mar. Drugs, 8(7): 2117-2128.
https://doi.org/10.3390/md8072117
PMid:20714426 PMCid:PMC2920545
 
14. Park, S.C., Nam, J.P., Kim, J.H., Kim, Y.M., Nah, J.W. and Jang, M.K. (2015) Antimicrobial action of water-soluble β-chitosan against clinical multi-drug resistant bacteria. Int. J. Mol. Sci., 16(4): 7995-8007.
https://doi.org/10.3390/ijms16047995
PMid:25867474 PMCid:PMC4425063
 
15. Hussain, I., Singh, T. and Chittenden, C. (2012) Preparation of chitosan oligomers and characterization: Their antifungal activities and decay resistance. Holzforschung, 66(1): 119-125.
https://doi.org/10.1515/hf.2011.130
 
16. Padmanabhan, A. and Nair, L.S. (2016) Chitosan hydrogels for regenerative engineering. In. Dutta, P.K., editor. Chitin and Chitosan for Regenerative Medicine. Springers, New Delhi. p3-40.
https://doi.org/10.1007/978-81-322-2511-9_1
 
17. Mano, J.F., Hugerford, G. and Ribelles, J.L.G. (2008) Bioactive poly (l-lactic acid)-chitosan hybrid scaffolds. Mater. Sci. Eng. C, 28(8): 1356-1365.
https://doi.org/10.1016/j.msec.2008.03.005
 
18. Defaye, J., Gadelle, A. and Pedersen, C. (1994) A convenient access to β-(1→4)-linked 2-amino-2-deoxy-D-glucopyranosyl fluoride oligosaccharides and β-(1→4)-linked 2-amino-2-deoxy-d-glucopyranosyl oligosaccharides by fluorolysis and fluorohydrolysis of chitosan. Carbohydr. Res., 261(2): 267-277.
https://doi.org/10.1016/0008-6215(94)84023-7
 
19. Tian, M., Chen, F., Ren, D., Yu, X., Zhang, X., Zhong, R. and Wan, C. (2010) Preparation of a series of chitooligomers and their effect on hepatocytes. Carbohydr. Polym., 79(1): 137-144.
https://doi.org/10.1016/j.carbpol.2009.07.039
 
20. Mourya, V.K., Inamdar, N.N. and Choudhari, Y.M. (2011) Chitooligosaccharides: synthesis, characterization and applications. Polym. Sci. Ser. A, 53(7): 583-612.
https://doi.org/10.1134/S0965545X11070066
 
21. Liu, X., Yun, L., Dong, Z., Zhi, L. and Kang, D. (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci., 79(7): 1324-1335.
https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L
 
22. AOAC. (1990) Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA.
 
23. Benhabiles, M.S., Salah, R., Lounici, H., Drouiche, N., Goosen, M.F.A. and Mameri, N. (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food hydr., 29(1): 48-56.
https://doi.org/10.1016/j.foodhyd.2012.02.013
 
24. Abdulkarim, A., Isa, M.T., Abdulsalam, S., Muhammad, A.J. and Ameh, A.O. (2013) Extraction and characterisation of chitin and chitosan from mussel shell. Civ. Environ. Res., 3(2): 108-114.
 
25. Isa, M.T., Ameh, A.J., Gabreil, J.O. and Adama, K.K. (2012) Extraction and characterization of chitin from Nigeria sources. Leonardo Electron. J. Pract. Technol., 21: 73-81.
 
26. Brugnerotto, J., Lizardi, J., Goycoolea, F.M., Argüelles-Monal, W., Desbrieres, J. and Rinaudo, M. (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42(8): 3569-3580.
https://doi.org/10.1016/S0032-3861(00)00713-8
 
27. Zakaria, Z., Izzah, Z., Jawaid, M. and Hassan, A. (2012) Effect of degree of deacetylation of chitosan on thermal stability and compatibility of chitosan-polyamide blend. Bioresources, 7(4): 5568-5580.
https://doi.org/10.15376/biores.7.4.5568-5580
 
28. Fernandes, J.C., Tavaria, F.K., Soares, J.C., Ramos, O.S., Monterio, M.J., Pintado, M.E. and Malcata, F.X. (2008) Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol., 25(7): 922-928.
https://doi.org/10.1016/j.fm.2008.05.003
PMid:18721683
 
29. Šimůnek, J., Koppová, I., Filip, L., Tishchenko, G. and BeŁżecki, G. (2010) The antimicrobial action of low-molar-mass chitosan, chitosan derivatives and chitooligosaccharides on bifidobacteria. Folia Microbiol., 55(4): 379-382.
https://doi.org/10.1007/s12223-010-0063-0
PMid:20680576
 
30. Shanmugama, A., Kathiresan, K. and Nayak, L. (2016) Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol. Rep., 9: 25-30.
https://doi.org/10.1016/j.btre.2015.10.007