Open Access
Research
(Published
online: 14-02-2017)
9.
Preparation of mucosal nanoparticles and
polymer-based inactivated vaccine for Newcastle disease and H9N2
AI viruses -
Heba M. El Naggar, Mohamed Sayed Madkour and Hussein Ali Hussein
Veterinary World, 10(2): 187-193
doi:
10.14202/vetworld.2017.187-193
Heba M. El Naggar:
Department of Poultry Vaccines Production Unit Veterinary Serum
and Vaccine Research Institute, Abbasia 11759, Egypt.
Mohamed Sayed Madkour:
Department of Poultry Vaccines Production Unit Veterinary Serum
and Vaccine Research Institute, Abbasia 11759, Egypt.
Hussein Ali Hussein:
Department of Virology, Faculty of Veterinary Medicine, Cairo
University, Giza 12211, Egypt.
Received: 22-08-2016, Accepted: 10-01-2017, Published online:
14-02-2017
Corresponding author:
Hussein Ali Hussein, husvirol@cu.edu.eg
Citation:
El Naggar HM, Madkour MS, Hussein HA (2017) Preparation of mucosal
nanoparticles and polymer-based inactivated vaccine for Newcastle
disease and H9N2 AI viruses,
Veterinary World,
10(2): 187-193.
Abstract
Aim:
To develop a mucosal inactivated
vaccines for Newcastle disease (ND) and H9N2 viruses to protect
against these viruses at sites of infections through mucosal
immunity.
Materials and Methods:
In this study, we prepared two
new formulations for mucosal bivalent inactivated vaccine
formulations for Newcastle and Avian Influenza (H9N2) based on the
use of nanoparticles and polymer adjuvants. The prepared vaccines
were delivered via intranasal and spray routes of administration
in specific pathogen-free chickens. Cell-mediated and humoral
immune response was measured as well as challenge trial was
carried out. In addition, ISA71 water in oil was also evaluated.
Results:
Our results showed that the use of
spray route as vaccination delivery method of polymer and
nanoparticles MontanideTM adjuvants revealed that it enhanced the
cell mediated immune response as indicated by phagocytic activity,
gamma interferon and interleukin 6 responses and induced
protection against challenge with Newcastle and Avian Influenza
(H9N2) viruses.
Conclusion:
The results of this study
demonstrate the potentiality of polymer compared to nanoparticles
adjuvantes when used via spray route. Mass application of such
vaccines will add value to improve the vaccination strategies
against ND virus and Avian influenza viruses.
Keywords:
adjuvant,
H9N2, mucosal, nanoparticles, Newcastle, polymer.
References
1. Naeem,
K., Ullah, A., Manvell, R.J. and Alexander, D.J. (1999) Avian
influenza A subtype H9N2 in poultry in Pakistan. Vet. Rec.,
145: 560.
https://doi.org/10.1136/vr.145.19.560
PMid:10609578 |
|
2. Bano, S.,
Naeem, K. and Malik, S.A. (2003) Evaluation of pathogenic
potential of avian influenza virus serotype H9N2 in chickens.
Avian Dis., 47: 817-822.
https://doi.org/10.1637/0005-2086-47.s3.817
PMid:14575070 |
|
3. Capua, I.
and Aalxander, D.J. (2004) Avian influenza: Recent
developments. Avian Pathol., 33: 393-404.
https://doi.org/10.1080/03079450410001724085
PMid:15370036 |
|
4. Guo, Y.J.,
Krauss, S., Senne, D.A., Mo, I.P., Lo, K.S., Xiong, X.P.,
Orwood, M., Shortridge, K.F., Webster, R.G. and Guan, Y.
(2000) Characterization of the pathogenicity of members of the
newly established H9N2 influenza virus lineages in Asia.
Virology, 267(2): 279-288.
https://doi.org/10.1006/viro.1999.0115
PMid:10662623 |
|
5. Hussien,
H.A. and Elazab, M. (2001) Evidence for the presence of H6 and
H9 among broiler and layer breeders in Egypt. Proceedings XII
International Congress World Veterinary Poultry Association,
Cairo-Egypt. p227-235. |
|
6. Arafa,
A., Hagag, N., Erfan, A., Mady, W., El-Husseiny, M., Adel, A.
and Nasef, S. (2012) Complete genome characterization of avian
influenza virus subtype H9N2 from a commercial quail flock in
Egypt. Virus Genes, 45: 283-294.
https://doi.org/10.1007/s11262-012-0775-0
PMid:22752536 |
|
7. El-Zoghby,
E.F., Arafa, A.S., Hassan, M.K., Aly, M.M., Selim, A., Kilany,
W.H., Selim, U., Nasef, S., Aggor, M.G., Abdelwhab, E.M. and
Hafez, H.M. (2012) Isolation of H9N2 avian influenza virus
from bobwhite quail (Colinus virginianus) in Egypt. Arch.
Virol., 157(6): 1167-1172.
https://doi.org/10.1007/s00705-012-1269-z
PMid:22426861 |
|
8. Ekiert,
D.C., Friesen, R.H., Bhabha, G., Kwaks, T., Jongeneelen, M.,
Yu, W., Ophorst, C., Cox, F., Korse, H.J., Brandenburg, B.,
Vogels, R., Brakenhoff, J.P., Kompier, R., Koldijk, M.H.,
Cornelissen, L.A., Poon, L.L., Peiris, M., Koudstaal, W.,
Wilson, I.A. and Goudsmit, J. (2011) A highly conserved
neutralizing epitope on group 2 influenza a virus. Science,
333: 843-850.
https://doi.org/10.1126/science.1204839
PMid:21737702 PMCid:PMC3210727 |
|
9. Wei, T.C.,
Wei, P., Li, H.Q., He, C.W., Mo, M.L., Liu, L. and Chen, X.
(2012) Molecular and genetic analysis of isolates of Newcastle
disease virus of different poultry species origins during
1999-2012 in Guangxi, China. WVPAC, Nantes France. |
|
10. Diel,
D.G., da Silva, L.H.A., Liu, H., Wang, Z. and Miller, P.J.
(2012) Genetic diversity of avian paramyxovirus Type 1:
Proposal for a unified nomenclature and classification system
of Newcastle disease virus genotypes. Infect. Genet. Evol.,
12: 1770-1779.
https://doi.org/10.1016/j.meegid.2012.07.012 |
|
11. Li, J.,
Hu, H., Yu, Q., Diel, D.G., Li, D.S. and Miller, P.J. (2012)
Generation and characterization of a recombinant Newcastle
disease virus expressing the red fluorescent protein for use
in co-infection studies. J. Virol., 9: 227.
https://doi.org/10.1186/1743-422X-9-227
PMid:23034005 PMCid:PMC3502164 |
|
12. Huang,
Y., Wan, H.Q., Liu, H.Q., Wu, Y.T. and Liu, X.F. (2004)
Genomic sequence of an isolate of Newcastle disease virus
isolated from an outbreak in geese: A novel six nucleotide
insertion in the non-coding region of the nucleoprotein gene.
Arch. Virol., 149(7): 1445-1457.
https://doi.org/10.1007/s00705-004-0297-8 |
|
13. Radwan,
M.M., Darwish, S.F., El-Sanousi, A.A. and Shalaby, M.A. (2013)
Isolation and molecular characterization of Newcastle disease
virus genotypes in Egypt between 2011 and 2012. Virus Genes,
47(2): 311-316.
https://doi.org/10.1007/s11262-013-0950-y
PMid:23842723 |
|
14. Amer,
M.M., Wafaa, A. and El-Ghany, A. (2006) The effect of
different Newcastle disease live vaccines and vaccination
schedules on the immune response and performance of broiler
chickens serologically positive to Mycoplasma. Beni-Suef Vet.
Med. J., 16(1): 18-26. |
|
15. Hussein,
H.A., Emara, M.M., Samy, A.M. and Shalaby, M.A. (2000)
Antigenic diversity of Newcastle disease virus isolated from
52 breeder and broiler flocks in Egypt. Egypt. J. Immune Vet.,
2: 3-15. |
|
16. Hassan,
M.K., Afifi, M.M. and Ali, M.M. (2004) Genetic resistance of
Egyptian chicken to infectious bursal disease and Newcastle
diseases viruses. Trop. Anim. Health Prod., 36(1): 111-119.
https://doi.org/10.1023/B:TROP.0000009524.47913.d4 |
|
17. Hussein,
H.A., El-Sanousi, A.A., Youssif, A.A., Shalaby, M.A., Saber,
M.S. and Reda, I.M. (2005) Sequence analysis of fusion and
matrix protein genes of the velogenic viscerotropic Newcastle
disease virus. Int. J. Virol., 1(1): 38.
https://doi.org/10.3923/ijv.2005.38.38 |
|
18. Hussein,
H.A., Emara, M.M. and Rohaim, M.A. (2014) Molecular
characterization of Newcastle disease virus genotype VIID in
avian influenza H5N1 infected broiler flock in Egypt. Int. J.
Virol., 10(1): 46.
https://doi.org/10.3923/ijv.2014.46.54 |
|
19. Kang,
S.M., Guo, L., Yao, Q., Skountzou, I. and Compans, R.W. (2004)
Intranasal immunization with inactivated influenza virus
enhances immune responses to coadministered simian-human
immunodeficiency virus-like particle antigens. J. Virol., 78:
9624-9632.
https://doi.org/10.1128/JVI.78.18.9624-9632.2004
PMid:15331695 PMCid:PMC514968 |
|
20.
Armerding, D., Rossiter, H., Ghazzouli, I. and Liehl, E.
(1982) Evaluation of live and inactivated influenza A virus
vaccines in a mouse model. J. Infect. Dis., 145: 320-330.
https://doi.org/10.1093/infdis/145.3.320
PMid:6977595 |
|
21. Sha, Z.
and Compans, R.W. (2000) Induction of CD4 T-cell-independent
immunoglobulin responses by inactivated influenza virus. J.
Virol., 74: 4999-5005.
https://doi.org/10.1128/JVI.74.11.4999-5005.2000
PMid:10799573 PMCid:PMC110851 |
|
22. Takada,
A., Matsushita, S., Ninomiya, A., Kawaoka, Y. and Kida, H.
(2003) Intranasal immunization with formalin-inactivated virus
vaccine induces a broad spectrum of heterosubtypic immunity
against influenza A virus infection in mice. Vaccine, 21:
3212-3218.
https://doi.org/10.1016/S0264-410X(03)00234-2 |
|
23. Tamura,
S.I., Asanuma, H., Ito, Y., Hirabayashi, Y., Suzuki, Y.,
Nagamine, T., Aizawa, C., Kurata, T. and Oya, A. (1992)
Superior cross-protective effect of nasal vaccination to
subcutaneous inoculation with influenza hemagglutinin vaccine.
Eur. J. Immunol., 22: 477-481.
https://doi.org/10.1002/eji.1830220228
PMid:1537382 |
|
24. Tumpey,
T.M., Renshaw, M., Clements, J.D. and Katz, J.M. (2001)
Mucosal delivery of inactivated influenza vaccine induces
B-cell-dependent heterosubtypic cross-protection against
lethal influenza A H5N1 virus infection. J. Virol., 75:
5141-5150.
https://doi.org/10.1128/JVI.75.11.5141-5150.2001
PMid:11333895 PMCid:PMC114919 |
|
25. de Geusa,
E.D., van Haarlema, D.A., Poetria, O.N., de Wit, J.J. and
Vervelde, L. (2011) A lack of antibody formation against
inactivated influenza virus after aerosol vaccination in
presence or absence of adjuvantia. Vet. Immunol. Immunopathol.,
143: 143-147.
https://doi.org/10.1016/j.vetimm.2011.05.023
PMid:21683456 |
|
26. de Wit,
J.J., Swart, W.A. and Fabri, T.H. (2010) Efficacy of
infectious bronchitis virus vaccinations in the field:
Association between the alpha-IBV IgM response, protection and
vaccine application parameters. Avian Pathol., 2: 123-131.
https://doi.org/10.1080/03079451003604639
PMid:20390547 |
|
27. Ley, D.H.
(2003) Mycoplasmosis. In: Saif, Y.M., Barnes, H.J., Glission,
J.R., Fadly, A.M., McDougald, L.R., Swayne, D.E., editors.
Diseases of Poultry. Iowa State University Press, Ames, IA.
p722-744. |
|
28. Atmar,
R.L., Keitel, W.A., Cate, T.R., Munoz, F.M., Ruben, F. and
Couch, R.B. (2007) A dose-response evaluation of inactivated
influenza vaccine given intranasally and intramuscularly to
healthy young adults. Vaccine, 29: 5367-5373.
https://doi.org/10.1016/j.vaccine.2007.05.002
PMid:17559990 PMCid:PMC2063441 |
|
29. Worrall
E.E., Sudarisman, Priadi A. (2009) Sialivac: An intranasal
homologous inactivated split virus vaccine containing
bacterial sialidase for the control of avian influenza in
poultry. Vaccine, 31: 4161-4168.
https://doi.org/10.1016/j.vaccine.2009.04.058
PMid:19406183 |
|
30.
Kapczynski, D.R., Afonso, C.L. and Miller, P.J. (2013) Immune
responses of poultry to Newcastle disease virus. Dev. Comp.
Immunol., 41: 447-453.
https://doi.org/10.1016/j.dci.2013.04.012
PMid:23623955 |
|
31. Akbari,
O., DeKruyff, R.H. and Umetsu, D.T. (2001) Pulmonary dendritic
cells producing IL-10 mediate tolerance induced by respiratory
exposure to antigen. Nat. Immunol., 8: 725-731.
https://doi.org/10.1038/90667
PMid:11477409 |
|
32.
Hagenaars, N., Mastrobattista, E., Glansbeek, H., Heldens, J.,
van den Bosch, H., Schijns, V., Betbeder, D., Vromans, H. and
Jiskoot, W. (2008) Head-to-head comparison of four
nonadjuvanted inactivated cell culture-derived influenza
vaccines: Effect of composition, spatial organization and
immunization route on the immunogenicity in a murine challenge
model. Vaccine, 26: 6555-6563.
https://doi.org/10.1016/j.vaccine.2008.09.057
PMid:18848856 |
|
33. Tseng,
L.P., Chiou, C.J., Chen, C.C., Deng, M.C., Chung, T.W., Huang,
Y.Y. and Liu, D.Z. (2009) Effect of lipopolysaccharide on
intranasal administration of liposomal Newcastle disease virus
vaccine to SPF chickens. Vet. Immunol. Immunopathol., 3-4:
285-289.
https://doi.org/10.1016/j.vetimm.2009.04.009
PMid:19439366 |
|
34. Riffault,
S., Meyer, G., Deplanche, M., Dubuquoy, C., Durand, G.,
Soulestin, M., Castagné, N., Bernard, J., Bernardet, P.,
Dubosclard, V., Bernex, F., Petit-Camurdan, A., Deville, S.,
Schwartz-Cornil, I. and Eléouët, J.F. (2010) A new subunit
vaccine based on nucleoprotein nanoparticles confers partial
clinical and virological protection in calves against bovine
respiratory syncytial virus. Vaccine, 28: 3722-3734.
https://doi.org/10.1016/j.vaccine.2010.03.008
PMid:20307593 |
|
35. Deville,
S., Arous, J.B., Bertrand, F., Borisov, V. and Dupuis, L.
(2012) Efficacy of intranasal and spray delivery of adjuvanted
live vaccine against infectious bronchitis virus in
experimentally infected poultry. Procedia Vaccinol., 6: 85-92.
https://doi.org/10.1016/j.provac.2012.04.012 |
|
36. Branton,
S.L., Roush, W.B., Lot, B.D., Evans, J.D., Dozier, W.A.,
Collier, S.D., Bearson, S.M., Bearson, B.L. and Pharr, G.T.
(2005) A self propelled constant-speed spray vaccinator for
commercial layer chicken. Avian Dis., 49: 147-151.
https://doi.org/10.1637/7258-081004R
PMid:15839429 |
|
37. Jang,
S.I., Lillehoj, H.S., Lee, S.H., Lee, K.W., Lillehoj, E.P.,
Bertrand, F., Dupuis, L. and Deville, S.(2011) Montanide™ IMS
1313 N VG PR nanoparticle adjuvant enhances antigen-specific
immune responses to profilin following mucosal vaccination
against Eimeria acervulina. Vet. Parasitol., 182: 163-170.
https://doi.org/10.1016/j.vetpar.2011.05.019
PMid:21700391 |
|
38. Corbanie,
E.A., Matthijs, M.G., van Eck, J.H., Remon, J.P., Landman, W.J.
and Vervaet, C. (2006) Deposition of differently sized
airborne microspheres in the respiratory tract of chickens.
Avian Pathol., 35: 475-485.
https://doi.org/10.1080/03079450601028845
PMid:17121737 |
|
39. Shakya,
A.K. and Nandakumar, K.S (2012) Applications of Polymeric
Adjuvants in Studying Autoimmune Responses and Vaccination
against Infectious Diseases. J R Society Interface 10:
20120536. Medical Inflammation Research, Department of Medical
Biochemistry and Biophysics, Karolinska Institute, Stockholm,
Sweden.
https://doi.org/10.1098/rsif.2012.0536
PMid:23173193 PMCid:PMC3565688 |
|
40. Deville,
S. and Parker, R. (2008) Laval A. - Adjuvant formulation for
influenza H1N1 and H3N2 pig vaccines. Montanide™ Gel safety
and efficacy study. Proceedings of the Conference of Research
of Workers in Animal Diseases, Chicago. |
|
41. Purswell,
J.L., Mayer, J.J., Evans, J.D., Branton, S.L. and Davis, J.D.
(2012) Eye surface area and dosage rates for spray
vaccination. Avian Dis., 54: 1310-1315.
https://doi.org/10.1637/9478-072110-ResNote.1
PMid:21313856 |
|
42. Hu, Z.,
Hu, J., Hu, S., Liu, X., Wang, X., Zhu, J. and Liu, X. (2012)
Strong innate immune response and cell death in chicken
splenocytes infected with genotype VIId Newcastle disease
virus. Virol. J., 9: 208.
https://doi.org/10.1186/1743-422X-9-208
PMid:22988907 PMCid:PMC3489799 |
|
43. Katze,
M.G., He, Y. and Gale, M.Jr. (2002) Viruses and interferon: A
fight for supremacy. Nat. Rev. Immunol., 2(9): 675-687.
https://doi.org/10.1038/nri888
PMid:12209136 |
|
44.
Lienenluke, B. and Christ, B. (2007) Impact of interleukin-6
on the glucose metabolic capacity in rat liver. Histochem.
Cell Biol., 128(4): 371-377.
https://doi.org/10.1007/s00418-007-0327-1
PMid:17805558 |
|
45.
Mizuguchi, M., Yamanouchi, H., Ichiyama, T. and Shiomi, M.
(2007) Acute encephalopathy associated with influenza and
other viral infections. Acta Neurol. Scand., 115(4): 45-56.
https://doi.org/10.1111/j.1600-0404.2007.00809.x
PMid:17362276 |
|
46.
Ichinohe, T., Watanabe, I., Tao, E., Ito, S., Kawaguchi, A.,
Tamura, S., Takahashi, H., Sawa, H., Moriyama, M., Chiba, J.,
Komase, K., Suzuki, Y., Kurata, T., Sata, T. and Hasegawa, H.
(2006) Protection against influenza virus infection by
intranasal vaccine with surf clam microparticles (SMP) as an
adjuvant. J. Med. Virol., 7: 954-963.
https://doi.org/10.1002/jmv.20647
PMid:16721854 |
|
47. Joo, H.M.,
He, Y., Sundararajan, A., Huan, L. and Sangster, M.Y. (2010)
Quantitative analysis of influenza virus-specific B cell
memory generated by different routes of inactivated virus
vaccination. Vaccine, 28(10): 2186-2194.
https://doi.org/10.1016/j.vaccine.2009.12.058
PMid:20056191 |
|
48. Rice-Ficht,
A.C., Arenas-Gamboa, A.M., Kahl-McDonagh, M.M. and Ficht, T.A.
(2009) Polymeric particles in vaccine delivery. Curr. Opin.
Microbiol., 13(1): 106-112.
https://doi.org/10.1016/j.mib.2009.12.001
PMid:20079678 |
|
49. Thomasin,
C., Corradin, G., Men, Y., Merkle, H.P. and Gander, B. (1996)
Tetanus toxoid and synthetic malaria antigen containing
poly(lactide)/poly(lactide-co-glycolide) microspheres:
Importance of polymer degradation and antigen release for
immune response. J. Controlled Release, 41(1-2): 131-145.
https://doi.org/10.1016/0168-3659(96)01363-6 |
|
50. Karpala,
A.J., Bingham, J., Schat, K.A., Chen, L.M., Donis, R.O.,
Lowenthal, J.W. and Bean, A.G. (2011) Highly pathogenic (H5N1)
avian influenza induces an inflammatory T helper Type 1
cytokine response in the chicken. J. Interferon Cytokine Res.,
31(4): 393-400.
https://doi.org/10.1089/jir.2010.0069
PMid:21194349 |
|
51. Adams,
S.C., Xing, Z., Li, J.L. and Cardona, C.J. (2009)
Immune-related gene expression in response to H11N9 low
pathogenic avian influenza virus infection in chicken and
Pekin duck peripheral blood mononuclear cells. Mol. Immunol.,
46(8): 1744-1749.
https://doi.org/10.1016/j.molimm.2009.01.025
PMid:19250679 |
|
52.
HogenEsch, H. (2002) Mechanisms of stimulation of the immune
response by aluminum adjuvants. Vaccine, 20 Suppl 3: S34-S39.
https://doi.org/10.1016/s0264-410x(02)00169-x |
|
53. Adams,
J.R., Haughney, S.L. and Mallapragada, S.K. (2014) Effective
polymer adjuvants for sustained delivery of protein subunit
vaccines. Acta Biomater.14:104-114.
https://doi.org/10.1016/j.actbio.2014.11.050
PMid:25484331 |
|
54. Susta,
L., Hamel, K.R., Miller, P.J., Garcia, S.C., Brown, C.C.,
Pedersen, J.C., Gongora, V. and Afonso, C.L. (2012) Separate
evolution of virulent Newcastle disease viruses from Mixico
and Central American. J. Clin. Microbiol., 52: 1382-1390.
https://doi.org/10.1128/JCM.00066-14
PMid:24523463 PMCid:PMC3993629 |
|
55. Fentie,
T., Dadi, K., Kassa, T., Sahle, M. and Cattoli, G. (2014)
Effect of vaccination on transmission characteristics of
highly virulent Newcastle disease virus in experimentally
infected chickens. Avian Pathol., 43(5): 420-426.
https://doi.org/10.1080/03079457.2014.951832
PMid:25105514 |
|
56. Damen,
D., Fusaro, A., Sombo, M., Belaineh, R., Heidari, A., Kebede,
A., Kidane, M. and Chaka, H. (2016) Characterization of
Newcastle disease virus isolates obtained from outbreak cases
in commercial chickens and wild pigeons in Ethiopia.
Springerplus, 5: 476.
https://doi.org/10.1186/s40064-016-2114-8
PMid:27217991 PMCid:PMC4835400 |
|