Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 24-01-2017)

16. Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus) - A. A. Laith, Mohd Azmi Ambak, Marina Hassan, Shahreza Md. Sheriff, Musa Nadirah, Ahmad Shuhaimi Draman, Wahidah Wahab, Wan Nurhafizah Wan Ibrahim, Alia Syafiqah Aznan, Amina Jabar and Musa Najiah

Veterinary World, 10(1): 101-111

 

 

   doi: 10.14202/vetworld.2017.101-111

 

A. A. Laith: School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia; Institute of Tropical Aquaculture (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

Mohd Azmi Ambak: School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia; Institute of Tropical Aquaculture (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

Marina Hassan: School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia; Institute of Tropical Aquaculture (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

Shahreza Md. Sheriff: School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia; Institute of Tropical Aquaculture (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

Musa Nadirah: School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia; Institute of Tropical Aquaculture (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

Ahmad Shuhaimi Draman: Institute of Tropical Aquaculture (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

Wahidah Wahab: Institute of Tropical Aquaculture (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

Wan Nurhafizah Wan Ibrahim: School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

Alia Syafiqah Aznan: School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

Amina Jabar: Department of Microbiology, Zhejiang University School of Medicine, 866 YuHuaTang Lu, Hangzhou, Zhejiang, China.

Musa Najiah: School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia; Institute of Tropical Aquaculture (AQUATROP), Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia.

 

Received: 19-07-2016, Accepted: 09-12-2016, Published online: 24-01-2017

 

Corresponding author: Laith Abdul Razzak, e-mail: laith.abdul@umt.edu.my


Citation: Laith AA, Ambak MA, Hassan M, Sheriff SM, Nadirah M, Draman AS, Wahab W, Ibrahim WNW, Aznan AS, Jabar A, Najiah M (2017) Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus), Veterinary World, 10(1): 101-111.



Aim: The main objective of this study was to emphasize on histopathological examinations and molecular identification of Streptococcus agalactiae isolated from natural infections in hybrid tilapia (Oreochromis niloticus) in Temerloh Pahang, Malaysia, as well as to determine the susceptibility of the pathogen strains to various currently available antimicrobial agents.

Materials and Methods: The diseased fishes were observed for variable clinical signs including fin hemorrhages, alterations in behavior associated with erratic swimming, exophthalmia, and mortality. Tissue samples from the eyes, brain, kidney, liver, and spleen were taken for bacterial isolation. Identification of S. agalactiae was screened by biochemical methods and confirmed by VITEK 2 and 16S rRNA gene sequencing. The antibiogram profiling of the isolate was tested against 18 standard antibiotics included nitrofurantoin, flumequine, florfenicol, amoxylin, doxycycline, oleandomycin, tetracycline, ampicillin, lincomycin, colistin sulfate, oxolinic acid, novobiocin, spiramycin, erythromycin, fosfomycin, neomycin, gentamycin, and polymyxin B. The histopathological analysis of eyes, brain, liver, kidney, and spleen was observed for abnormalities related to S. agalactiae infection.

Results: The suspected colonies of S. agalactiae identified by biochemical methods was observed as Gram-positive chained cocci, β-hemolytic, and non-motile. The isolate was confirmed as S. agalactiae by VITEK 2 (99% similarity), reconfirmed by 16S rRNA gene sequencing (99% similarity) and deposited in GenBank with accession no. KT869025. The isolate was observed to be resistance to neomycin and gentamicin. The most consistent gross findings were marked hemorrhages, erosions of caudal fin, and exophthalmos. Microscopic examination confirmed the presence of marked congestion and infiltration of inflammatory cell in the eye, brain, kidney, liver, and spleen. Eye samples showed damage of the lens capsule, hyperemic an d hemorrhagic choroid tissue, and retina hyperplasia accompanied with edema. Brain samples showed perivascular and pericellular edema and hemorrhages of the meninges. Kidney samples showed hemorrhage and thrombosis in the glomeruli and tubules along with atrophy in hematopoietic tissue. Liver samples showed congestion of the sinusoids and blood vessel, thrombosis of portal blood vessel, and vacuolar (fatty) degeneration of hepatocytes. Spleen samples showed large thrombus in the splenic blood vessel, multifocal hemosiderin deposition, congestion of blood vessels, and multifocal infiltration of macrophages.

Conclusion: Therefore, it can be concluded that pathological changes in tissues and organs of fish occur proportionally to the pathogen invasion, and because of their high resistance, neomycin and gentamicin utilization in the prophylaxis or treatment of S. agalactiae infection should be avoided.

Keywords: 16S rDNA, antibiotic resistance, aquaculture, histopathological examination, polymerase chain reaction, Streptococcus agalactiae.



1. Marcel, G., Sabri, M.Y., Siti-Zahrah, A. and Emikpe, O.B. (2013) Water condition and identification of potential pathogenic bacteria from red tilapia reared in cage-cultured system in two different water bodies in Malaysia. Afr. J. Microbiol. Res., 7(47): 5330-5337.
https://doi.org/10.5897/AJMR12.1468
 
2. Ma, Y.P., Ke, H., Liang, Z.L., Liu, Z.X., Hao, L., Ma, J.Y. and Li, Y.G. (2016) Multiple evolutionary selections involved in synonymous codon usages in the Streptococcus agalactiae Genome. Int. J. Mol. Sci., 17(3): 1-12.
https://doi.org/10.3390/ijms17030277
 
3. Pradeep, P.J., Suebsing, R., Sirthammajak, S., Kampeera, J., Jitrakorn, S., Saksmerprome, V., Turner, W., Palang, I., Vanichviriyakit, R., Senapin, S., Jeffs, A., Kiatpathomchai, W. and Withyachumanarnkul, B. (2016) Evidence of vertical transmission and tissue tropism of Streptococcosis from naturally infected red tilapia (Oreochromis spp.). Aquac. Rep., 3: 58-66.
https://doi.org/10.1016/j.aqrep.2015.12.002
 
4. Pereira, U.P., Mian, G.F., Oliveira, I.C.M., Benchetrit, L.C., Costa, G.M. and Figueiredo, H.C.P. (2010) Genotyping of Streptococcus agalactiae strains isolated from fish, human and cattle and their virulence potential in nile tilapia. Vet. Microbiol., 140: 186-192.
https://doi.org/10.1016/j.vetmic.2009.07.025
PMid:19726142
 
5. Austin, B. and Austin, D.A., editors. (1999) Bacterial Fish Pathogens Diseases of Farmed and Wild Fish. 4th ed. Praxis Publishing, Chichester, UK.
 
6. Siti-Zahrah, A., Padilah, B., Azila, A., Rimatulhana, R. and Shahidan, H. (2008) Multiple streptococcal species infection in cage-cultured red tilapia but showing similar clinical signs. In: Bondad-Reantaso MG, Mohan CV, Crumlish M, Subasinghe RP, editors. Diseases in Asian Aquaculture VI. Manila: Fish Health Section, Asian Fisheries Society; 2008. pp: 313-320. .
 
7. Abuseliana, A., Daud, H., Aziz, S.A., Bejo, S.K. and Alsaid, M. (2010) Streptococcus agalactiae the etiological agent of mass mortality in farmed red tilapia (Oreochromis sp.). J. Anim. Vet. Adv., 9(20): 2640-2646.
https://doi.org/10.3923/javaa.2010.2640.2646
 
8. Musa, N., Wei, L.S., Musa, N., Hamdan, R.H., Leong, L.K., Wee, W., Amal, M.N., Kutty, B.M. and Abdullah, S.Z. (2009) Streptococcosis in red hybrid tilapia (Oreochromis niloticus) commercial farms in Malaysia. Aquac. Res., 40(5): 630-632.
https://doi.org/10.1111/j.1365-2109.2008.02142.x
 
9. Pretto-Giordano, L.G., Müller, E.E., de Freitas, J.C. and da Silva, V.G. (2010) Evaluation on the pathogenesis of Streptococcus agalactiae in nile tilapia (Oreochromis niloticus). Braz. Arch. Biol. Technol., 53(1): 87-92.
https://doi.org/10.1590/S1516-89132010000100011
 
10. Rodkhum, C., Kayansamruaj, P. and Pirarat, N. (2011) Effect of water temperature on susceptibility to Streptococcus agalactiae serotype Ia infection in nile tilapia (Oreochromis niloticus). Thai. J. Vet. Med., 41(3): 309-314.
 
11. Ye, X., Li, J., Lu, M., Deng, G., Jiang, X., Tian, Y., Quan, Y. and Jian, Q. (2011) Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China. Fish. Sci., 77(4): 623-632.
https://doi.org/10.1007/s12562-011-0365-4
 
12. Zamri-Saad, M., Amal, M.N. and Siti-Zahrah, A. (2010) Pathological changes in red tilapias (Oreochromis spp.) naturally infected by Streptococcus agalactiae. J. Comp. Pathol., 2-3: 227-229.
https://doi.org/10.1016/j.jcpa.2010.01.020
PMid:20334871
 
13. Najiah, M., Aqilah, N.I., Lee, K.L., Khairulbariyyah, Z., Mithun, S., Jalal, K.C.A., Shaharom, H.F. and Nadirah, M. (2012) Massive mortality associated with Streptococcus agalactiae infection in cage-cultured red hybrid tilapia Oreochromis niloticus in Como River, Kenyir Lake, Malaysia. J. Biol. Sci., 12(8): 438-442.
https://doi.org/10.3923/jbs.2012.438.442
 
14. Jolaine, M.W., Ralph, M.B. and Anthony, J.C. (2009) Evaluation of rapid cooling and tricaine methanesulfonate (MS222) as methods of euthanasia in zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci., 48(6): 785-789.
 
15. Breed, S.R., Murray, E.G.D. and Smith, N.R. (1957) Bergey's Manual of Determinative Bacteriology. 7th ed. The Williams & Wilkins Company, USA. p1-194.
 
16. Buller, N.B. (2004) Bacteria from Fish and Other Aquatic Animals: A Practical Identification Manual. CABI Publishing, Alabama, USA. p1-361.
https://doi.org/10.1079/9780851997384.0000
 
17. Evans, J.J., Pasnik, D.J., Klesius, P.H. and Al-Ablani, S. (2006) First report of Streptococcus agalactiae and Lactococcus garvieae from a wild bottlenose folphin (Tursiops truncatus). J. Wildl. Dis. Assoc., 42(3): 561-569.
https://doi.org/10.7589/0090-3558-42.3.561
PMid:17092887
 
18. Yang, Y., Liu, Y., Ding, Y., Yi, L., Ma, Z., Fan, H. and Lu, C. (2013) Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in Eastern China. PLoS One, 8(7): 1-8.
https://doi.org/10.1371/journal.pone.0067755
 
19. Fay, A.B., Corrigan, J. and Murphy, R.A. (2016) Short-term effects of mechanical drainage on fungal and bacterial community structure in a managed grassland soil. Appl. Soil Ecol., 101: 93-100.
https://doi.org/10.1016/j.apsoil.2016.01.014
 
20. Bauer, A.W., Kirby, W.M., Sherris, J.C. and Turck, M. (1966) Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 45(4): 493-496.
PMid:5325707
 
21. CLSI. (2012) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. Vol. 32. Clinical and Laboratory Standards Institute, Wayne, PA. p1-184.
 
22. Al-Darwesh, A.A., Al-Shabbani, M.A.A. and Faris, B.H. (2014) Diagnostic and pathological study of Argulus japonicus in goldfish (Carassius auratus). Glob. J. BioSci. Biotechnol., 3(4): 384-387.
 
23. Abdullah, S., Omar, N., Yusoff, S.M., Obukwho, E.B., Nwunuji, T.P., Hanan, L. and Samad, J. (2013) Clinicopathological features and immunohistochemical detection of antigens in acute experimental Streptococcus agalactiae infection in red tilapia (Oreochromis spp.). Springerplus, 2(286): 1-7.
https://doi.org/10.1186/2193-1801-2-286
 
24. Chiang, Y.C., Pai, W.Y., Chen, C.Y. and Tsen, H.Y. (2008) Use of primers based on the heat shock protein genes hsp70, hsp40, and hsp10, for the detection of bovine mastitis pathogens Streptococcus agalactiae, Streptococcus uberis and Streptococcus bovis. Mol. Cell Probes., 22(4): 262-266.
https://doi.org/10.1016/j.mcp.2008.05.004
PMid:18602244
 
25. Netto, L.N., Leal, C.A.G. and Figueiredo, H.C.P. (2011) Streptococcus dysgalactiae as an agent of septicaemia in nile tilapia, Oreochromis niloticus (L.). J. Fish Dis., 34(3): 251-254.
https://doi.org/10.1111/j.1365-2761.2010.01220.x
PMid:21306592
 
26. Lukkana, M., Jantrakajorn, S. and Wongtavatchai, J. (2015) Antimicrobial susceptibility and enrofloxacin resistance of Streptococcal bacteria from farmed nile tilapia, Oreochromis niloticus (Linnaeus 1758) in Thailand. Aquac. Res., 47(10):3136-3144.
https://doi.org/10.1111/are.12764
 
27. Suanyuk, N., Kanghear, H., Khongpradit, R. and Supamattaya, K. (2005) Streptococcus agalactiae infection in tilapia (Oreochromis niloticus). Songklanakarin J. Sci. Technol., 27: 307-319.
 
28. Suanyuk, N., Kong, F., Ko, D., Gilbert, G.L. and Supamattaya, K. (2008) Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and nile tilapia O. niloticus in Thailand—Relationship to human isolates? Aquaculture, 284(1): 35-40.
https://doi.org/10.1016/j.aquaculture.2008.07.034
 
29. Yiagnisis, M. and Athanassopoulou, F. (2011) Bacteria isolated from diseased wild and farmed marine fish in Greece. Recent Adv. Fish Farms, 27(2): 61-69.
https://doi.org/10.5772/27674
 
30. Mian, G.F., Godoy, D.T., Leal, C.A.G., Yuhara, T.Y., Costa, G.M. and Figueiredo, H.C.P. (2009) Aspects of the natural history and virulence of S. agalactiae infection in nile tilapia. Vet. Microbiol., 136: 180-183.
https://doi.org/10.1016/j.vetmic.2008.10.016
PMid:19042097
 
31. Russo, R., Mitchell, H. and Yanong, R.P.E. (2006) Characterization of Streptococcus iniae isolated from ornamental cyprinid fishes and development of challenge models. Aquaculture, 256(1): 105-110.
https://doi.org/10.1016/j.aquaculture.2006.02.046
 
32. Filho, C.I., Müller, E.E., Pretto-Giordano, L.G. and Bracarense, F.R.L. (2009) Histological findings of experimental Streptococcus agalactiae infecion in nile tilapias (Oreochromis niloticus). Braz. J. Vet. Pathol., 2(1): 12-15.
 
33. Hernández, E., Figueroa, J. and Iregui, C. (2009) Streptococcosis on a red tilapia, Oreochromis sp., Farm: A case study. J. Fish Dis., 32(3): 247-252.
https://doi.org/10.1111/j.1365-2761.2008.00981.x
PMid:19236558
 
34. Noraini, O. and Jahwarhar, N.A. (2013) The effect of heat stress on clinicopathological changes and immunolocalization of antigens in experimental Streptococcus agalactiae infection in red hybrid tilapia (Oreochromis Spp.). Vet. World, 6: 997-1003.
https://doi.org/10.14202/vetworld.2013.997-1003
 
35. Suwannasang, A., Dangwetngam, M., Issaro, A., Phromkunthong, W. and Suanyuk, N. (2014) Pathological manifestations and immune responses of serotypes Ia and III Streptococcus agalactiae infections in nile tilapia (Oreochromis niloticus). Songklanakarin J. Sci. Technol., 36(5): 499-506.
 
36. Bowater, R.O., Forbes-Faulkner, J., Anderson, I.G., Condon, K., Robinson, B., Kong, F., Gilbert, G.L., Reynolds, A., Hyland, S., McPherson, G., Brien, J.O. and Blyde, D. (2012) Natural outbreak of Streptococcus agalactiae (GBS) infection in wild giant Queensland grouper, Epinephelus lanceolatus (Bloch), and other wild fish in Northern Queensland, Australia. J. Fish Dis., 35(3): 173-186.
https://doi.org/10.1111/j.1365-2761.2011.01332.x
PMid:22324342
 
37. Chen, C.Y., Chao, C.B. and Bowser, P.R. (2007) Comparative histopathology of Streptococcus iniae and Streptococcus agalactiae-infected tilapia. Bull. Eur. Assoc. Fish Pathol., 27(2): 2-9.
 
38. Eldar, A., Bejerano, Y., Livoff, A., Horovitcz, A. and Bercovier, H. (1995) Experimental streptococcal meningo-encephalitis in cultured fish. Vet. Microbiol., 43(1): 33-40.
https://doi.org/10.1016/0378-1135(94)00052-X
 
39. Okwari, O.O., Ettarh, R.R., Akpogomeh, B.A. and Eteng, M.U. (2000) Gastric anti-secretory and anti-ulcerogenic effects of Dombeya buettneri in rats. J. Ethnopharmacol., 71: 315-319.
https://doi.org/10.1016/S0378-8741(99)00196-8
 
40. Koo, H.J., Kwak, H.S., Yoon, S.H. and Woo, G.J. (2012) Phylogenetic group distribution and prevalence of virulence genes in Escherichia coli isolates from food samples in South Korea. World J. Microbiol. Biotechnol., 28(4): 1813-1816.
https://doi.org/10.1007/s11274-011-0954-5
PMid:22805965
 
41. Amyes, S.G.B. (2007) Enterococci and Streptococci. Int. J. Antimicrob. Agents, 29: S43-S52.
https://doi.org/10.1016/s0924-8579(07)72177-5
 
42. Geng, Y., Wang, K.Y., Huang, X.L., Chen, D.F., Li, C.W., Ren, S.Y., Liao, Y.T., Zhou, Z.Y., Liu, Q.F., Du, Z.J. and Lai, W.M. (2012) Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China. Transbound Emerg. Dis., 59(4): 369-375.
https://doi.org/10.1111/j.1865-1682.2011.01280.x
PMid:22146014
 
43. Wang, K., Chen, D., Huang, L., Lian, H., Wang, J., Xiao, D., Geng, Y., Yang, Z. and Lai, W. (2013) Isolation and characterization of Streptococcus agalactiae from nile tilapia Oreochromis niloticus in China. Afr. J. Microbiol. Res., 7(4): 317-323.
https://doi.org/10.5897/AJMR12.1207