Open Access
Review
(Published
online: 25-01-2017)
17.
Molecular markers for resistance against
infectious diseases of economic importance -
B. M. Prajapati, J. P. Gupta, D. P. Pandey, G. A. Parmar and J. D.
Chaudhari
Veterinary World, 10(1): 112-120
doi:
10.14202/vetworld.2017.112-120
B. M. Prajapati:
Department of Animal Genetics and Breeding, College of
Veterinary Science and Animal Husbandry, Sardarkrushinagar
Dantiwada Agricultural University, Sardarkrushinagar - 385 506,
Gujarat, India.
J. P. Gupta:
Department of Animal Genetics and Breeding, College of Veterinary
Science and Animal Husbandry, Sardarkrushinagar Dantiwada
Agricultural University, Sardarkrushinagar - 385 506, Gujarat,
India.
D. P. Pandey:
Department of Animal Genetics and Breeding, College of Veterinary
Science and Animal Husbandry, Sardarkrushinagar Dantiwada
Agricultural University, Sardarkrushinagar - 385 506, Gujarat,
India.
G. A. Parmar:
Department of Animal Genetics and Breeding, College of Veterinary
Science and Animal Husbandry, Sardarkrushinagar Dantiwada
Agricultural University, Sardarkrushinagar - 385 506, Gujarat,
India.
J. D. Chaudhari:
Department of Animal Genetics and Breeding, College of Veterinary
Science and Animal Husbandry, Sardarkrushinagar Dantiwada
Agricultural University, Sardarkrushinagar - 385 506, Gujarat,
India.
Received: 27-09-2016, Accepted: 31-12-2016, Published online:
25-01-2017
Corresponding author:
B. M. Prajapati, e-mail: bmprajapati1993@gmail.com
Citation:
Prajapati BM, Gupta JP, Pandey DP, Parmar GA, Chaudhari JD (2017)
Molecular markers for resistance against infectious diseases of
economic importance,
Veterinary World,
10(1): 112-120.
Abstract
Huge livestock population of India is under threat by a large
number of endemic infectious (bacterial, viral, and parasitic)
diseases. These diseases are associated with high rates of
morbidity and mortality, particularly in exotic and crossbred
cattle. Beside morbidity and mortality, economic losses by these
diseases occur through reduced fertility, production losses, etc.
Some of the major infectious diseases which have great economic
impact on Indian dairy industries are tuberculosis (TB), Johne’s
disease (JD), mastitis, tick and tick-borne diseases (TTBDs), foot
and mouth disease, etc. The development of effective strategies
for the assessment and control of infectious diseases requires a
better understanding of pathogen biology, host immune response,
and diseases pathogenesis as well as the identification of the
associated biomarkers. Indigenous cattle (Bos
indicus)
are reported to be comparatively less affected than exotic and
crossbred cattle. However, genetic basis of resistance in
indigenous cattle is not well documented. The association studies
of few of the genes associated with various diseases, namely,
solute carrier family 11 member 1, Toll-like receptors 1, with TB;
Caspase associated recruitment domain 15, SP110 with JD; CACNA2D1,
CD14 with mastitis and interferon gamma, BoLA -DRB3.2 alleles with
TTBDs, etc., are presented. Breeding for genetic resistance is one
of the promising ways to control the infectious diseases. High
host resistance is the most important method for controlling such
diseases, but till today no breed is total immune. Therefore, work
may be undertaken under the hypothesis that the different
susceptibility to these diseases are exhibited by indigenous and
crossbred cattle is due to breed-specific differences in the
dealing of infected cells with other immune cel ls, which
ultimately influence the immune response responded against
infections. Achieving maximum resistance to these diseases is the
ultimate goal, is technically possible to achieve, and is
permanent. Progress could be enhanced through introgression of
resistance genes to breeds with low resistance. The quest for
knowledge of the genetic basis for infectious diseases in
indigenous livestock is strongly warranted.
Keywords:
biomarkers, foot and mouth disease, genetic resistance, Johne’s
disease, mastitis, tick and tick-borne diseases, tuberculosis.
References
1. Thakur, A., Sharma, M., Vipin, C.K., Dhar, P. and Katoch,
R.C. (2010) A study on the prevalence of bovine tuberculosis
in farmed dairy cattle in Himachal Pradesh. Vet. World, 3(9):
409-414.
https://doi.org/10.5455/vetworld.2010.408-413 |
|
2. Ahuja, V., Rajasekhar, M. and Ramalinga, R. (2008) Animal
Health for Poverty Alleviation: A Review of Key Issues for
India. Background Paper Prepared for "Livestock Sector Review"
of the World Bank. |
|
3. Jovanovic, S., Savic, M. and Zivkovic, D. (2009) Genetic
variation in disease resistance among farm animals. Biotechnol.
Anim. Husb., 25(5): 339-347.
https://doi.org/10.2298/BAH0906339J |
|
4. Shyma, K.P., Gupta, J.P. and Singh, V. (2015) Breeding
strategies for tick resistance in tropical cattle: A
sustainable approach for tick control. J. Parasit. Dis.,
39(1): 1-6.
https://doi.org/10.1007/s12639-013-0294-5
PMid:25698850 PMCid:PMC4328023 |
|
5. Shyma, K.P., Gupta, J.P., Singh, V. and Patel, K.K. (2015)
In vitro detection of acaricidal resistance status of
Rhipicephalus (Boophilus) microplus against commercial
preparation of deltamethrin, flumethrin, and fipronil from
North Gujarat, India. J. Parasitol. Res., 2015: 1-7.
https://doi.org/10.1155/2015/506586
PMid:26788362 PMCid:PMC4691617 |
|
6. Bansal, B.K. and Gupta, D.K. (2009) Economic analysis of
bovine mastitis in India and Punjab - A review. Indian J.
Dairy Sci., 67: 337-345. |
|
7. Tuggle, C.K. and Waters, W.R. (2015) Tuberculosis-resistant
transgenic cattle. Proc. Natl. Acad. Sci. India, 112(3):
3854-3855.
https://doi.org/10.1073/pnas.1502972112 |
|
8. Wadhwa, A., Foote, R.S., Shaw, R.W. and Eda, S. (2012)
Bead-based microfluidic immunoassay for diagnosis of Johne's
disease. J. Immunol. Methods, 382(2): 196-202.
https://doi.org/10.1016/j.jim.2012.06.006
PMid:22705087 |
|
9. Singh, B., Prasad, S., Sinha, D.K. and Verma, M.R. (2013)
Estimation of economic losses due to foot and mouth disease in
India. Indian J. Anim. Sci., 83(9): 964-970. |
|
10. Walker, A.R. (2011) Eradication and control of livestock
ticks: Biological, economic and social perspectives. J.
Parasitol., 138: 945-959.
https://doi.org/10.1017/s0031182011000709 |
|
11. Minjauw, B. and McLeod, A. (2003) Tick-borne Diseases and
Poverty. The Impact of Ticks and Tick-borne Diseases on the
Livelihoods of Small Scale and Marginal Livestock Owners in
India and Eastern and Southern Africa. Research Report, DFID
Animal Health Programme. Centre for Tropical Veterinary
Medicine, University of Edinburgh. p116. |
|
12. Arentz, M. and Hawn, T.R. (2007) Tuberculosis infection:
Insight from immunogenomics. Drug Discov. Today Dis. Mech.,
4(4): 231-236.
https://doi.org/10.1016/j.ddmec.2007.11.003
PMid:18677418 PMCid:PMC2493064 |
|
13. Thoen, C.O. and Bloom, B.R. (1995) Pathogenesis of
Mycobacterium bovis. In: Thoen, C.O. and Steele, J.H.,
editors. Mycobacterium bovis Infection in Animals and Humans.
1st ed. Lowa State University Press, Ames, Lowa. p3-14. |
|
14. Russell, D.G. (2007) Who puts the tubercle in
tuberculosis? Nat. Rev. Microbiol., 5: 39-47.
https://doi.org/10.1038/nrmicro1538
PMid:17160001 |
|
15. Olsen, I., Barletta, R.G. and Thoen, C.O. (2010)
Mycobacterium. In: Gyles, C.L., Prescott, J.F., Songer, J.G.
and Thoen, C.O., editors. Pathogenesis of Bacterial Infections
in Animals. John Wiley & Sons, Ames, Lowa.
https://doi.org/10.1002/9780470958209.ch7 |
|
16. Singh, S.V., Singh, P.K., Singh, A.V., Sohal, J.S., Kumar,
N., Chaubey, K.K., Gupta, S., Kumar, A., Bhatia, A.K.,
Srivastav, A.K. and Dhama, K. (2014) Bio-load and bio-type
profiles of Mycobacterium avium subspecies Paratuberculosis
infection in the farm and farmer's herds/flocks of domestic
livestock population endemic for Johne's disease. Transbound.
Emerg. Dis., 61(8): 1-13. |
|
17. Slagame, P., Abrams, J.S. and Clayberger, C. (1991)
Differing lymphokine profiles of functional subsets of human
CD4 and CD8 T cell clones. Science, 254: 279-282.
https://doi.org/10.1126/science.1681588 |
|
18. Orme, I.M. (1993) Immunity to mycobacteria. Curr. Opin.
Immunol., 5: 497-502.
https://doi.org/10.1016/0952-7915(93)90029-R |
|
19. Radostits, O., Gay, C., Hinchcliff, K. and Constable, P.
(2006) Veterinary Medicine: A Textbook of the Diseases of
Cattle, Sheep, Goats, Pigs and Horses. 10th ed. Bailliere
Tindal, London. p1223-1231. |
|
20. Arzt, J., Juleff, N., Zhang, Z. and Rodriguez, L.L. (2011)
The pathogenesis of foot-and-mouth disease I: Viral pathways
in cattle. Transbound. Emerg. Dis., 58(4): 291-304.
https://doi.org/10.1111/j.1865-1682.2011.01204.x
PMid:21366894 |
|
21. Arzt, J., Pacheco, J.M. and Rodriguez, L.L. (2010) The
early pathogenesis of foot-and-mouth disease in cattle after
aerosol inoculation: Identification of the naso-pharynx as the
primary site of infection. Vet. Pathol., 47(6): 1048-1063.
https://doi.org/10.1177/0300985810372509
PMid:20587691 |
|
22. Pestka, S., Krause, C.D., Sarkar, D., Walter, M.R., Shi,
Y. and Fisher, P.B. (2004) Interleukin-10 and related
cytokines and receptors. Annu. Rev. Immunol., 22: 929-979.
https://doi.org/10.1146/annurev.immunol.22.012703.104622
PMid:15032600 |
|
23. Toka, F.N., Nfon, C., Dawson, H. and Golde, W.T. (2009)
Natural killer cell dysfunction during acute infection with
foot-and-mouth disease virus. Clin. Vaccine Immunol., 16(12):
1738-1749.
https://doi.org/10.1128/CVI.00280-09
PMid:19828769 PMCid:PMC2786395 |
|
24. Peter, R.J., Vanden, B.P., Penzhorn, B.L. and Sharp, B.
(2005) Tick, fly, and mosquito control-lessons from the past,
solutions for the future. Vet. Parasitol., 132(3): 205-215.
https://doi.org/10.1016/j.vetpar.2005.07.004
PMid:16099104 |
|
25. Ghosh, S. and Gaurav, N. (2014) Problem of ticks and
tick-borne diseases in India with special emphasis on progress
in tick control research: A review. J. Vector Borne Dis.,
51(12): 259-270.
PMid:25540956 |
|
26. Ahmed, J.S. (2002) The role of cytokines in immunity to
and in immunopathogenisis of piroplasmoses. Parasitol. Res.,
88: 548-550.
https://doi.org/10.1007/s00436-001-0573-4 |
|
27. Hunfeld, K.P., Hildebrandt, A. and Gray, J.S. (2008)
Recent insights into babesiosis. Int. J. Parasitol., 38:
1219-1237.
https://doi.org/10.1016/j.ijpara.2008.03.001
PMid:18440005 |
|
28. Yitayew, D. and Samuel, D. (2015) Tick borne hemoparasitic
diseases of ruminants: A review. Adv. Biol. Res., 9(4):
210-224. |
|
29. Taylor, M.A., Coop, R.L. and Wall, R.L. (2007) Veterinary
Parasitology. 3rd ed. Blackwell Publishing, USA. p103-115.
PMCid:PMC1964552 |
|
30. Bobos, S., Radinovic, M., Vidic, B., Pajic, M., Vidic, V.
and Galfi, A. (2013) Mastitis therapy-direct and indirect
costs. Biotechnol. Anim. Husb., 29: 269-275.
https://doi.org/10.2298/BAH1302269B |
|
31. Varatanovic, N., Podzo, M., Mutevelic, T., Podzo, K.,
Cengic, B., Hodzic, A. and Hodzic, E. (2010) Use of California
mastitis test, somatic cells count and bacteriological
findings in diagnostics of subclinical mastitis. Biotechnol.
Anim. Husb., 26: 65-74.
https://doi.org/10.2298/BAH1002065V |
|
32. Sharif, A. and Muhammad, G. (2008) Somatic cell count as
an indicator of udder health status under modern dairy
production: A review. Pak. Vet. J., 28: 194-200. |
|
33. Kelly, A.L., Leitner, G. and Merin, U. (2011) Milk quality
and udder health-test methods and standards. In: Fuquay, J.W.,
Fox, P.F. and McSweeney, P.L.H., editors. Encyclopedia of
Dairy Science. 2nd ed. Academic Press, London. p894-901.
https://doi.org/10.1016/b978-0-12-374407-4.00353-8 |
|
34. Galfi, A., Radinovic, M., Milanov, D., Bobos, S., Pajic,
M., Savic, S. and Davidov, I. (2015) Electrical conductivity
of milk and bacteriological findings in cows with subclinical
mastitis. Biotechnol. Anim. Husb., 31(4): 533-541.
https://doi.org/10.2298/BAH1504533G |
|
35. Daley, M.J., Coyle, P.A., Williams, T.J., Furda, G.,
Dougherty, R. and Hayes, P.W. (1991) Staphylococcus aureus
mastitis: Pathogenesis and treatment with bovine interleukin-1
beta and interleukin-2. J. Dairy Sci., 74(12): 4413-4124.
https://doi.org/10.3168/jds.S0022-0302(91)78637-2 |
|
36. Feuk, L., Carson, A.R. and Scherer, S.W. (2006) Structural
variation in the human genome. Nat. Rev. Genet., 7(2): 85-97.
https://doi.org/10.1038/nrg1767
PMid:16418744 |
|
37. Firas, R.S. and Abdulkareem A. (2015) Molecular markers:
An introduction and applications. Eur. J. Mol. Biotechnol.,
9(3): 118-130.
https://doi.org/10.13187/ejmb.2015.9.118 |
|
38. Gizaw, S., Van Arendonk, J.A.M., Komen, H., Windig, J.J.
and Hanotte, O. (2007) Population structure, genetic variation
and morphological diversity in indigenous sheep of Ethiopia.
J. Anim. Breed. Genet., 38: 621-628.
https://doi.org/10.1111/j.1365-2052.2007.01659.x
PMid:18028516 |
|
39. Yang, W., Kang, X., Yang, Q., Lin, Y. and Fang, M. (2013)
Review on the development of genotyping methods for assessing
farm animal diversity. J. Anim. Sci. Biotechnol., 4(2): 1-6.
https://doi.org/10.1186/2049-1891-4-2 |
|
40. Hayes, B.J., Chamberlain, A.C., McPartlan, H., McLeod, I.,
Sethuraman, L. and Goddard, M.E. (2007) Accuracy of marker
assisted selection with single markers and marker haplotypes
in cattle. Genet. Res., 89: 215-220.
https://doi.org/10.1017/S0016672307008865
PMid:18208627
|
41. Emadi, A., Crim, M.T. and Brotman, D.J. (2010)
Analytic validity of genetic tests to identify factor V
leiden and prothrombin G20210A. Am. J. Hematol., 85(4):
264-270.
https://doi.org/10.1002/ajh.21617
PMid:20162544 |
|
42. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. and
Sekiya, T. (1989) Detection of polymorphisms of human DNA
by gel electrophoresis as single-strand conformation
polymorphisms. Proc. Natl. Acad. Sci. U.S.A., 86:
2766-2770.
https://doi.org/10.1073/pnas.86.8.2766
PMid:2565038 PMCid:PMC286999 |
|
43. Defaveri, J., Viitaniemi, I., Leder, H. and Meril, J.
(2013) Characterizing genic and nongenic molecular
markers: Comparison of microsatellites and SNPs. Mol.
Ecol. Resour., 13: 377-392.
https://doi.org/10.1111/1755-0998.12071
PMid:23356957 |
|
44. Lander, E.S. (1996) The new genomics: Global views of
biology. Science, 274: 536-539.
https://doi.org/10.1126/science.274.5287.536
PMid:8928008 |
|
45. Deb, R., Singh, U., Kumar, S., Kumar, A., Singh, R.,
Sengar, G., Mann, S. and Sharma, A. (2014) Genotypic to
expression profiling of bovine calcium channel,
voltage-dependent, alpha-2/delta subunit 1 gene, and their
association with bovine mastitis among Frieswal (HFX
sahiwal) crossbred cattle of Indian origin. Anim.
Biotechnol., 25(2): 128-138.
https://doi.org/10.1080/10495398.2013.836106
PMid:24555798 |
|
46. Yuan, Z.R., Li, J., Liu, L., Zhang, L.P., Zhang, L.M.,
Chen, C., Chen, X.J., Gao, X., Li, J.Y., Chen, J.B., Gao,
H.J. and Xu, S.Z. (2011) Single nucleotide polymorphism of
CACNA2D1 gene and its association with milk somatic cell
score in cattle. Mol. Biol. Rep., 38(8): 5179-5183.
https://doi.org/10.1007/s11033-010-0667-0
PMid:21225462 |
|
47. Yuan, Z., Chu, G., Yang, D., Li, J., Zhang, L., Li,
J., Gao, X., Gao, H., Xu, S. and Liu, Z. (2012) BRCA1: A
new candidate gene for bovine mastitis and its association
analysis between single nucleotide polymorphisms and milk
somatic cell score. Mol. Biol. Rep., 39: 6625-6631.
https://doi.org/10.1007/s11033-012-1467-5 |
|
48. Asaf, V.N., Bhushan, B., Panigrahi, M., Kumar, A.,
Dewangan, P., Gaur, G.K. and Sharma, D. (2015) Lack of
association of allelic variants of BRCA1 gene with
mastitis susceptibility in Vrindavani cattle. Indian J.
Anim. Sci., 85(1): 81-83. |
|
49. Wang, X., Xu, S., Gao, X., Ren, H. and Chen, J. (2007)
Genetic polymorphism of TLR4 gene and correlation with
mastitis in cattle. J. Genet. Genomics, 34(5): 406-412.
https://doi.org/10.1016/S1673-8527(07)60044-7 |
|
50. Deb, R., Singh, U., Kumar, S., Kumar, A., Sharma, A.,
Mann, S. and Singh, R. (2013) TIR domain of bovine TLR4
gene in Frieswal crossbred cattle: An early marker for
mastitis resistance. Indian J. Anim. Sci., 83(6): 633-635. |
|
51. Yang, Y., Huang, J.M., Ju, Z.H., Li, Q.L., Zhou, L.,
Li, R.L., Li, J.B., Shi, F.X., Zhong, J.F. and Wang, C.F.
(2012) Increased expression of a novel splice variant of
the complement component 4 (C4A) gene in mastitis-infected
dairy cattle. Genet. Mol. Res., 11(3): 2909-2916.
https://doi.org/10.4238/2012.May.18.12
PMid:22653646 |
|
52. Liu, Y.X., Xu, C.H., Gao, T.Y. and Sun, Y. (2012)
Polymorphisms of the ATP1A1 gene associated with mastitis
in dairy cattle. Genet. Mol. Res., 11(1): 651-660.
https://doi.org/10.4238/2012.March.16.3
PMid:22535401 |
|
53. Wang, H.L., Li, Z.X., Wang, L.J., He, H., Yang, J.,
Chen, L., Niu, F.B., Liu, Y., Guo, J.Z. and Liu, X.L.
(2013) Polymorphism in PGLYRP-1 gene by PCR-RFLP and its
association with somatic cell score in Chinese Holstein.
Res. Vet. Sci., 95(2): 508-514.
https://doi.org/10.1016/j.rvsc.2013.06.005
PMid:23820447 |
|
54. Selvan, A.S., Gupta, I.D., Verma, A., Chaudhari, M.V.
and Kumar, V. (2014) Cluster of differentiation 14 gene
polymorphism and its association with incidence of
clinical mastitis in Karan fries cattle. Vet. World, 7(5):
134-138.
https://doi.org/10.14202/vetworld.2014.1037-1040 |
|
55. Gupta, J.P., Bhushan, B., Panigrahi, M., Ranjan, S.,
Asaf, V.N.M., Kumar, A., Sulabh, S., Kumar, A., Kumar, P.
and Sharma, D. (2015) Study on genetic variation of short
tandem repeats (STR) markers and their association with
somatic cell scores (SCS) in crossbred cows. Indian J.
Anim. Res., 49(5): 595-598.
https://doi.org/10.18805/ijar.6709 |
|
56. Asaf, M.V.N., Bhushan, B., Panigrahi, M., Dewangan,
P., Kumar, A., Kumar, P. and Gaur, G.K. (2014) Association
study of genetic variants at single nucleotide
polymorphism rs109231409 of mannose-binding lectins 1 gene
with mastitis susceptibility in Vrindavani crossbred
cattle. Vet. World, 7(10): 807-810.
https://doi.org/10.14202/vetworld.2014.807-810 |
|
57. Zhao, Z.L., Wang, C.F., Li, Q.L., Ju, Z.H., Huang, J.M.,
Li, J.B., Zhong, J.F. and Zhang, J.B. (2012) Novel SNPs of
the mannan-binding lectin 2 gene and their association
with production traits in Chinese Holsteins. Genet. Mol.
Res., 11(4): 3744-3754.
https://doi.org/10.4238/2012.October.15.6
PMid:23096694 |
|
58. Guo, H.J., Li, G.Z., Yang, C. and Xing, M.C. (2003)
Study on genetic variation of 4 microsatellite DNA markers
and their relationship with somatic cell counts in cow
milk. Asian-Australas J. Anim. Sci., 16(10): 1535-1539.
https://doi.org/10.5713/ajas.2003.1535 |
|
59. Chu, M.X., Zhou, G.L., Jin, H.G., Shi, W.H., Cao, F.C.,
Fang, L., Ye, S.C. and Zhu, Y. (2005) Study on
relationships between seven microsatellite loci and
somatic cell score in Beijing Holstein cows. J. Genet.
Genomics, 32(5): 471-475. |
|
60. Ranjan, S. (2014) Genetic Polymorphism and Expression
Profiling of Candidate Genes Associated with Mastitis in
Crossbred Cattle. Ph.D. Thesis. IVRI (Deemed University),
Bareilly, UP, India. |
|
61. Gupta, J.P. (2015) Microsatellite Analysis and
Expression Profiling of Candidate Genes Associated with
Mastitis in Crossbred Cattle. Ph.D. Thesis. IVRI (Deemed
University), Bareilly, UP, India. |
|
62. Cheng, Y., Huang, C. and Tsai, H.J. (2015)
Relationship of bovine SLC11A1 (formerly NRAMP1)
polymorphisms to the risk of bovine tuberculosis in
Holstein cattle. J. Vet. Sci. Technol., 6: 247. |
|
63. Baqir, M., Bhushan, S., Kumar, A., Sonawane, A.,
Singh, R., Chauhan, A., Yadav, R., Prakash, O., Renjith,
R., Baladhare, A. and Sharma, D. (2016) Association of
polymorphisms in SLC11A1 gene with bovine tuberculosis
trait among Indian cattle. J. Appl. Anim. Res., 44(1):
380.
https://doi.org/10.1080/09712119.2015.1091333 |
|
64. Wang, Y., Wang, S., Liu, T., Tu, W., Li, W. and Dong,
G. (2015) CARD15 gene polymorphisms are associated with
tuberculosis susceptibility in Chinese Holstein cows. PLoS
One, 10(8): 1-10.
https://doi.org/10.1371/journal.pone.0135085 |
|
65. Qin, B., Liu, T., Xu, C., Dong, G., Wang, S., Tu, W.,
Shi, X. and Zhang, Y. (2015) Correlation study of CARD15
gene style polymorphism and susceptibility of tuberculosis
in dairy cows. China Anim. Husb. Vet. Med., 42(6):
1553-1558. |
|
66. Cheng, Y., Huang, C. and Tsai, H.J. (2016)
Relationship of bovine NOS2 gene polymorphisms to the risk
of bovine tuberculosis in Holstein cattle. J. Vet. Med.
Sci., 78(2): 281-286.
https://doi.org/10.1292/jvms.15-0295
PMid:26468216 PMCid:PMC4785118 |
|
67. Sun, L., Yapan, S., Hasan, R., Yang, H., Guohua, H.,
Guohua, A. and Yang, A. (2012) Polymorphisms in toll-like
receptor 1 and 9 genes and their association with
tuberculosis susceptibility in Chinese Holstein cattle.
Vet. Immunol. Immunopathol., 147(3): 195-221.
https://doi.org/10.1016/j.vetimm.2012.04.016
PMid:22572235 |
|
68. Alfano, F., Peletto, S., Maria, G.L., Borriello, G.,
Urciuolo, G., Desiato, R., Tarantino, M., Barone, A.,
Pasquali, P., Acutis, P.L., Maria, G.M. and Galiero, G.
(2014) Identification of single nucleotide polymorphisms
in toll-like receptor candidate genes associated with
tuberculosis infection in water buffalo (Bubalus bubalis).
BMC Genet., 15(2): 1-8.
https://doi.org/10.1186/s12863-014-0139-y |
|
69. Zanotti, M., Strillacci, M.P., Polli, M., Archetti,
I.L. and Longeri, M. (2002) NRAMP1 Gene Effect on Bovine
Tuberculosis by Microsatellite Markers Analysis. Book
Proceedings of the 7th World Congress on Genetics Applied
to Livestock Production, Montpellier, France. p1052.
PMCid:PMC1302363 |
|
70. Kadarmideen, H.N., Ali, A.A., Thomson, P.C., Muller,
B. and Zinsstag, J. (2011) Polymorphisms of the SLC11A1
gene and resistance to bovine tuberculosis in African Zebu
cattle. Anim. Genet., 42(6): 656-658.
https://doi.org/10.1111/j.1365-2052.2011.02203.x
PMid:22035008 |
|
71. Ali, A.A., Peter, C., Thomson, H. and Kadarmideen, N.
(2013) Association between microsatellite markers and
bovine tuberculosis in Chadian Zebu cattle. Open J. Anim.
Sci., 3(1): 27-35.
https://doi.org/10.4236/ojas.2013.31004 |
|
72. Ruiz, O., Garrido, J.M., Iriondo, M., Manzano, C.,
Molina, E., Montes, I., Vazquez, P., Koets, A.P., Rutten,
V.P., Juste, R.A. and Estonba, A. (2010) SP110 as a novel
susceptibility gene for Mycobacterium avium subspecies
Paratuberculosis infection in cattle. J. Dairy Sci.,
93(12): 5950-5958.
https://doi.org/10.3168/jds.2010-3340
PMid:21094769 |
|
73. Pinedo, P.J., Buergelt, C.D., Donovan, G.A., Melendez,
P., Morel, L., Wu, R., Langaee, T.Y. and Rae, D.O. (2009)
Association between CARD15/NOD2 gene polymorphisms and
Paratuberculosis infection in cattle. Vet. Microbiol.,
134(9): 346-352.
https://doi.org/10.1016/j.vetmic.2008.09.052
PMid:18926647 |
|
74. Ruiz, O., Manzano, C., Iriondo, M., Garrido, J.M.,
Molina, E., Vazquez, P., Just, R.A. and Estonba, A. (2011)
Genetic variation of toll-like receptor genes and
infection by Mycobacterium avium ssp. Paratuberculosis in
Holstein-Friesian cattle. J. Dairy Sci., 94(9): 3635-3641.
https://doi.org/10.3168/jds.2010-3788
PMid:21700053 |
|
75. Koets, A., Santema, W., Mertens, H., Oostenrijk, D.,
Keestra, M., Overdijk, M., Labouriau, R., Franken, P.,
Frijters, A., Nielen, M. and Rutten, V. (2010)
Susceptibility to Paratuberculosis infection in cattle is
associated with single nucleotide polymorphisms in
toll-like receptor 2 which modulate immune responses
against Mycobacterium avium subspecies Paratuberculosis.
Prev. Vet. Med., 93(4): 305-315.
https://doi.org/10.1016/j.prevetmed.2009.11.008
PMid:20005587 |
|
76. Kumar, S. (2015) SNP in Candidate Genes and Their
Association with Occurrence of PT in Cattle. M.V.Sc.
Thesis. IVRI (Deemed University), Bareilly, UP, India. |
|
77. Pinedo, P.J., Buergelt, C.D., Donovan, G.A., Melendez,
P., Morel, L., Wu, R., Langaee, T.Y. and Rae, D.O. (2009)
Candidate gene polymorphisms (BoIFNG, TLR4, SLC11A1) as
risk factors for paratuberculosis infection in cattle.
Prev. Vet. Med., 91: 189-196.
https://doi.org/10.1016/j.prevetmed.2009.05.020
PMid:19525022 |
|
78. Singh, R., Kumar, S., Deb, R., Sengar, G., Singh, U.,
Chakraborti, S., Singh, R., Alex, R. and Sharma, S. (2014)
Development of a tetra-primer ARMS PCR-based assay for
detection of a novel single-nucleotide polymorphism in the
5 untranslated region of the bovine ITGB6 receptor gene
associated with foot-and-mouth disease susceptibility in
cattle. Arch. Virol., 159: 3385-3389.
https://doi.org/10.1007/s00705-014-2194-0
PMid:25078391 |
|
79. Gowane, G.R., Sharma, A.K., Sankar, M., Narayanan, K.,
Das, B., Subramaniam, S. and Pattnaik, B. (2013)
Association of BoLA DRB3 alleles with variability in
immune response among the crossbred cattle vaccinated for
foot-and-mouth disease (FMD). Res. Vet. Sci., 95: 156-163.
https://doi.org/10.1016/j.rvsc.2013.03.001
PMid:23541924 |
|
80. Lei, W., Liang, Q., Wang, C., Jing, L., Wu, X. and He,
H. (2012) BoLA-DRB3 gene polymorphism and FMD resistance
or susceptibility in Wanbei cattle. Mol. Biol. Rep., 39:
9203-9209.
https://doi.org/10.1007/s11033-012-1793-7
PMid:22744423 PMCid:PMC3404275 |
|
81. Chinsangaram, J., Moraes, M.P., Koster, M. and Grubman,
M.J. (2003) Novel viral disease control strategy:
Adenovirus expressing alpha interferon rapidly protects
swine from foot-and-mouth disease. J. Virol., 77(2):
1621-1625.
https://doi.org/10.1128/JVI.77.2.1621-1625.2003
PMCid:PMC140819 |
|
82. Maryam, J., Babar, M.E., Nadeem, A. and Hussain, T.
(2012) Genetic variants in interferon gamma (IFN-c) gene
are associated with resistance against ticks in Bos taurus
and Bosindicus. Mol. Biol. Rep., 9: 4565-4570.
https://doi.org/10.1007/s11033-011-1246-8
PMid:21960011 |
|
83. Martinez, M.L., Machado, M.A., Nascimento, C.S.,
Silva, M.V.G., Teodoro, R.L., Furlong, J., Prata, M.C.A.,
Campos, A.L., Guimaraes, M.F.M., Azevedo, A.L.S., Pires,
M.F.A. and Verneque, R.S. (2006) Association of
BoLA-DRB3.2 alleles with tick (Boophilus microplus)
resistance in cattle. Genet. Mol. Res., 5(3): 513-524.
PMid:17117367 |
|
84. Rodriguez, A.R., Morales, A.R., Balladares, S.,
Aguilar, F.H., Vazquez, G.Z. and Gorodezky, C. (2005)
Analysis of BoLA Class II microsatellites in cattle
infested with Boophilus microplus ticks: Class II is
probably associated with susceptibility. Vet. Parasitol.,
127(5): 313-321.
https://doi.org/10.1016/j.vetpar.2004.10.007
PMid:15710532 |
|
85. Dewangan, P., Panigrahi, M., Kumar, A., Saravanan,
B.C., Ghosh, S., Asaf, V.N., Parida, S., Gaur, G.K.,
Sharma, D. and Bhushan, B. (2015) The mRNA expression of
immune-related genes in crossbred and Tharparkar cattle in
response to in vitro infection with Theileria annulata.
Mol. Biol. Rep., 42(8): 1247-1255.
https://doi.org/10.1007/s11033-015-3865-y
PMid:25697418 |
|
86. Kumar, A., Gaura, G., Gandham, R., Panigrahi, M.,
Ghosh, S., Saravanan, B.C., Bhushan, B., Tiwari, A.,
Sulabh, S., Priya, B., Asaf, V.N.M., Gupta, J.P., Wani,
S.A., Sahu, A.R. and Sahoo, A.P. (2017) Global gene
expression profile of peripheral blood mononuclear cells
challenged with Theileria annulata in crossbred and
indigenous cattle. Infect. Genet. Evol., 47: 9-18.
https://doi.org/10.1016/j.meegid.2016.11.009
PMid:27840256 |
|
87. Schaub, M.A., Boyle, A.P., Kundaje, A., Batzoglou, S.
and Snyder, M. (2012) Linking disease associations with
regulatory information in the human genome. Genome Res.,
22(7): 1748-1759.
https://doi.org/10.1101/gr.136127.111
PMid:22955986 PMCid:PMC3431491 |
|
|