Open Access
Research
(Published
online: 13-01-2017)
8.
Transcriptomic comparison of primary bovine
horn core carcinoma culture and parental tissue at early stage -
Sharadindu Shil,
R. S. Joshi,
C. G. Joshi, A. K. Patel, Ravi K. Shah, Namrata Patel, Subhash J.
Jakhesara, Sumana Kundu, Bhaskar Reddy, P. G. Koringa
and D. N. Rank
Veterinary World, 10(1): 38-55
doi:
10.14202/vetworld.2017.38-55
Sharadindu Shil :
Veterinary
Officer (WBAH & VS), West Bengal Animal Resources Development
Department, Bankura - 772 152 , West Bengal, India;
Department of
Animal Genetics & Breeding, College of Veterinary Sciences and
Animal Husbandry, Anand Agricultural University, Anand, Gujarat,
India.
R. S. Joshi :
Department of
Animal Genetics & Breeding, College of Veterinary Sciences and
Animal Husbandry, Anand Agricultural University, Anand, Gujarat,
India.
C. G. Joshi :
Department of
Animal Biotechnology, College of Veterinary Sciences and Animal
Husbandry, Anand Agricultural University, Anand, Gujarat, India.
A. K. Patel :
Hester Biosciences
Limited, Ahmedabad, Gujarat, India.
Ravi K. Shah :
Department of
Animal Biotechnology, College of Veterinary Sciences and Animal
Husbandry, Anand Agricultural University, Anand, Gujarat, India.
Namrata Patel :
Department of
Animal Biotechnology, College of Veterinary Sciences and Animal
Husbandry, Anand Agricultural University, Anand, Gujarat, India.
Subhash J.
Jakhesara :
Department of
Animal Biotechnology, College of Veterinary Sciences and Animal
Husbandry, Anand Agricultural University, Anand, Gujarat, India.
Sumana Kundu :
Veterinary Officer,
MVC Sarenga, Government of West Bengal, Bankura, West Bengal,
India.
Bhaskar Reddy :
Department of
Animal Biotechnology, College of Veterinary Sciences and Animal
Husbandry, Anand Agricultural University, Anand, Gujarat, India.
P. G. Koringa :
Department of
Animal Biotechnology, College of Veterinary Sciences and Animal
Husbandry, Anand Agricultural University, Anand, Gujarat, India.
D. N. Rank :
Department of
Animal Genetics & Breeding, College of Veterinary Sciences and
Animal Husbandry, Anand Agricultural University, Anand, Gujarat,
India.
Received: 19-09-2016, Accepted: 29-11-2016, Published online:
13-01-2017
Corresponding author:
D. N. Rank,
e-mail: dnrank@gmail.com
Citation:
Shil S, Joshi RS, Joshi CG, Patel AK, Shah RK, Patel N, Jakhesara
SJ, Kundu S, Reddy B, Koringa PG, Rank DN (2017) Transcriptomic
comparison of primary bovine horn core carcinoma culture and
parental tissue at early stage, Veterinary World, 10(1):
38-55.
Abstract
Aim:
Squamous cell
carcinoma or SCC of horn in bovines (bovine horn core carcinoma)
frequently observed in Bos indicus affecting almost 1% of
cattle population. Freshly isolated primary epithelial cells may
be closely related to the malignant epithelial cells of the tumor.
Comparison of gene expression in between horn’s SCC tissue and its
early passage primary culture using next generation sequencing was
the aim of this study.
Materials and
Methods:
Whole
transcriptome sequencing of horn’s SCC tissue and its early
passage cells using Ion Torrent PGM were done. Comparative
expression and analysis of different genes and pathways related to
cancer and biological processes associated with malignancy,
proliferating capacity, differentiation, apoptosis, senescence,
adhesion, cohesion, migration, invasion, angiogenesis, and
metabolic pathways were identified.
Results:
Up-regulated
genes in SCC of horn’s early passage cells were involved in
transporter activity, catalytic activity, nucleic acid binding
transcription factor activity, biogenesis, cellular processes,
biological regulation and localization and the down-regulated
genes mainly were involved in focal adhesion, extracellular matrix
receptor interaction and spliceosome activity.
Conclusion:
The
experiment revealed similar transcriptomic nature of horn’s SCC
tissue and its early passage cells.
Keywords:
cummerbund, gene ontology, primary culture, RNA-sequencing,
squamous cell carcinoma of horn, transcriptome profiling.
References
1. Yang, D.S. (2014) Novel prediction of anticancer drug
chemosensitivity in cancer cell lines: Evidence of moderation
by microRNA expressions. Conference Proceedings: Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society IEEE Engineering in Medicine and Biology
Society Annual Conference, 2014. p4780-4786.
https://doi.org/10.1109/embc.2014.6944693 |
|
2. Wei, W., Liu, Z., Chen, X. and Bi, F. (2014)
Chemosensitivity of resistant colon cancer cell lines to
lobaplatin, heptaplatin and dicycloplatin. Int. J. Clin.
Pharmacol. Ther., 52(8): 702-707.
https://doi.org/10.5414/CP202023
PMid:24986092 |
|
3. De la Cueva, A., Ramirez de Molina, A., Alvarez-Ayerza, N.,
Ramos, M.A., Cebrian, A., Del Pulgar, T.G. and Lacal, J.C.
(2013) Combined 5-FU and ChoKalpha inhibitors as a new
alternative therapy of colorectal cancer: Evidence in human
tumor-derived cell lines and mouse xenografts. PLoS One, 8(6):
e64961.
https://doi.org/10.1371/journal.pone.0064961
PMid:23762272 PMCid:PMC3677921 |
|
4. Giuffrida, D. and Rogers, I.M. (2010) Targeting cancer stem
cell lines as a new treatment of human cancer. Rec. Patents
Anti Cancer Drug Discov., 5(3): 205-218.
https://doi.org/10.2174/157489210791760535 |
|
5. Supino, R., Binaschi, M., Capranico, G., Gambetta, R.A.,
Prosperi, E., Sala, E. and Zunino, F. (1993) A study of
cross-resistance pattern and expression of molecular markers
of multidrug resistance in a human small-cell lung-cancer cell
line selected with doxorubicin. Int. J. Cancer, 54(2):
309-314.
https://doi.org/10.1002/ijc.2910540224 |
|
6. Lefevre, D., Riou, J.F., Ahomadegbe, J.C., Zhou, D.Y.,
Benard, J. and Riou, G. (1991) Study of molecular markers of
resistance to m-AMSA in a human breast cancer cell line.
Decrease of topoisomerase II and increase of both
topoisomerase I and acidic glutathione S transferase. Biochem.
Pharmacol., 41(12): 1967-1979.
https://doi.org/10.1016/0006-2952(91)90138-u |
|
7. Cifola, I., Bianchi, C., Mangano, E., Bombelli, S.,
Frascati, F., Fasoli, E., Ferrero, S., Di Stifano, V., Zipeto,
M.A., Magni, F., Signorini, S., Battaglia, C. and Perego, R.A.
(2011) Renal cell carcinoma primary cultures maintain genomic
and phenotypic profile of parental tumor tissues. BMC Cancer,
11(1): 244.
https://doi.org/10.1186/1471-2407-11-244 |
|
8. Craven, R.A., Stanley, A.J., Hanrahan, S., Dods, J., Unwin,
R., Totty, N., Harnden, P., Eardley, I., Selby, P.J. and
Banks, R.E. (2006) Proteomic analysis of primary cell lines
identifies protein changes present in renal cell carcinoma.
Proteomics, 6(9): 2853-2864.
https://doi.org/10.1002/pmic.200500549
PMid:16596713 |
|
9. Perego, R.A., Bianchi, C., Corizzato, M., Eroini, B.,
Torsello, B., Valsecchi, C., Di Fonzo, A., Cordani, N., Favini,
P., Ferrero, S., Pitto, M., Sarto, C., Magni, F., Rocco, F.
and Mocarelli, P. (2005) Primary cell cultures arising from
normal kidney and renal cell carcinoma retain the proteomic
profile of corresponding tissues. J. Proteome Res., 4(5):
1503-1510.
https://doi.org/10.1021/pr050002o
PMid:16212400 |
|
10. Bianchi, C., Bombelli, S., Raimondo, F., Torsello, B.,
Angeloni, V., Ferrero, S., Di Stefano, V., Chinello, C.,
Cifola, I., Invernizzi, L., Brambilla, P., Magni, F., Pitto,
M., Zanetti, G., Mocarelli, P. and Perego, R.A. (2010) Primary
cell cultures from human renal cortex and renal-cell carcinoma
evidence a differential expression of two spliced isoforms of
Annexin A3. Am. J. Pathol., 176(4): 1660-1670.
https://doi.org/10.2353/ajpath.2010.090402
PMid:20167856 PMCid:PMC2843458 |
|
11. Twine, N.A., Janitz, K., Wilkins, M.R. and Janitz, M.
(2011) Whole transcriptome sequencing reveals gene expression
and splicing differences in brain regions affected by
Alzheimer's disease. PLoS One, 6(1): e16266.
https://doi.org/10.1371/journal.pone.0016266 |
|
12. Naik, S.N., Balakrishna, C.R. and Randelia, H.P. (1969)
Epidemiology of horn cancer in Indian zebu cattle: Breed
incidences. Br. Vet. J., 125: 222-230. |
|
13. Joshi, B.P., Soni, P.B., Fefar, D.T., Ghodasara, D.J. and
Prajapati, K.S. (2009) Epidemiological and pathological
aspects of horn cancer in cattle of Gujarat. Indian J. Field
Vet., 5: 15-18. |
|
14. Burggraaf, H. (1935) Kanker aan de basis van de hoorns
bijzebus. T. Diergeneesk, 62: 1121-1136. |
|
15. Rezende, A.M.L. and Naves, P.T. (1975) Horn core cancer in
a zebu cow, imported to Brazil. Pesqui. Agropecu. Bras. Ser.
Vet., 10: 41-44. |
|
16. Zubaidy, A.J. (1976) Horn cancer in cattle in Iraq. Vet.
Pathol., 13: 435-454. |
|
17. Kulkarni, H.V. (1953) Carcinoma of horn in bovines of Old
Baroda state. Indian Vet. J., 29: 415-421. |
|
18. Damodaran, S., Sundararaj, A. and Ramakrishnan, R. (1979)
Horn cancer in bulls. Indian Vet. J., 56: 248-249.
PMid:478617 |
|
19. Gupta, R.K., Sadana, J.R., Kuchroo, V.K. and Kalra, D.S.
(1980) Horn cancer in an intact bull. Vet. Rec., 107: 312.
https://doi.org/10.1136/vr.107.13.312
PMid:7210431 |
|
20. Chattopadhyay, S.K., Jandrotia, V.S. and Ramkumar Iyer,
P.K.R. (1982) Horn cancer in sheep. Indian Vet. J., 59:
319-320. |
|
21. Luna, L.G., editor. (1968) Pathology AFIo. Manual of
Histologic Staining Methods; of the Armed Forces Institute of
Pathology. Blakiston Division, McGraw-Hill, New York. |
|
22. Freshney, R.I. (2006) Basic principles of cell culture.
Culture of Cells for Tissue Engineering. John Wiley & Sons,
Inc., Hobokan, New Jersey. p3-21. |
|
23. Roth, V. (2006) Available from: http://www.doubling-time.com/compute.php
. Accessed on 18/12/2016. |
|
24. Koringa, P.G., Jakhesara, S.J., Bhatt, V.D., Meshram, C.P.,
Patel, A.K., Fefar, D.T. and Joshi, C.G. (2013) Comprehensive
transcriptome profiling of squamous cell carcinoma of horn in
Bos indicus. Vet. Comp. Oncol. DOI: 10.1111/vco.12079.
https://doi.org/10.1111/vco.12079 |
|
25. Wu, T.D. and Watanabe, C.K. (2005) GMAP: A genomic mapping
and alignment program for mRNA and EST sequences.
Bioinformatics, 21(9): 1859-1875.
https://doi.org/10.1093/bioinformatics/bti310
PMid:15728110 |
|
26. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A.,
Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J. and
Pachter, L. (2010) Transcript assembly and quantification by
RNA-Seq reveals unannotated transcripts and isoform switching
during cell differentiation. Nat. Biotechnol., 28(5): 511-515.
https://doi.org/10.1038/nbt.1621
PMid:20436464 PMCid:PMC3146043 |
|
27. Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2008)
Systematic and integrative analysis of large gene lists using
DAVID bioinformatics resources. Nat. Prot., 4(1): 44-57.
https://doi.org/10.1038/nprot.2008.211
PMid:19131956 |
|
28. Thomas, P.D., Kejariwal, A., Guo, N., Mi, H., Campbell,
M.J., Muruganujan, A. and Ulitsky, B.L. (2006) Applications
for protein sequence–function evolution data: mRNA/protein
expression analysis and coding SNP scoring tools. Nuc. Acids
Res., 34: W645-W650.
https://doi.org/10.1093/nar/gkl229 |
|
29. Gao, J., Wu, H., Wang, L., Zhang, H., Duan, H., Lu, J. and
Liang, Z. (2016) Validation of targeted next-generation
sequencing for RAS mutation detection in FFPE colorectal
cancer tissues: comparison with Sanger sequencing and
ARMS-Scorpion real-time PCR. BMJ Open, 6(1): e009532.
https://doi.org/10.1136/bmjopen-2015-009532
PMid:26747035 PMCid:PMC4716245 |
|
30. Koringa, P.G., Jakhesara, S.J., Bhatt, V.D., Meshram, C.P.,
Patel, A.K., Fefar, D.T. and Joshi, C.G. (2016) Comprehensive
transcriptome profiling of squamous cell carcinoma of horn in
Bos indicus. Vet. Comp. Oncol., 14(2): 122-136.
https://doi.org/10.1111/vco.12079
PMid:24314272 |
|
31. Król, M., Polańska, J., Pawłowski, K.M., Turowski, P.,
Skierski, J., Majewska, A., Ugorski, M., Morty, R.E. and Motyl,
T. (2010) Transcriptomic signature of cell lines isolated from
canine mammary adenocarcinoma metastases to lungs. J. Appl.
Genet., 51(1): 37-50.
https://doi.org/10.1007/BF03195709
PMid:20145299 |
|
32. Pal, D., Wu, D., Haruta, A., Matsumura, F. and Wei, Q.
(2010) Role of a novel coiled-coil domain-containing protein
CCDC69 in regulating central spindle assembly. Cell Cycle,
9(20): 4117-4129.
https://doi.org/10.4161/cc.9.20.13387
PMid:20962590 PMCid:PMC3055196 |
|
33. Sorrells, S., Carbonneau, S., Harrington, E., Chen, A.T.,
Hast, B., Milash, B., Pyati, U., Major, M.B., Zhou, Y., Zon,
L.I., Stewart, R.A., Look, A.T. and Jette, C. (2012) Ccdc94
protects cells from ionizing radiation by inhibiting the
expression of p53. PLoS Genet., 8(8): e1002922.
https://doi.org/10.1371/journal.pgen.1002922 |
|
34. Lu, Z., Zhou, L., Killela, P., Rasheed, A.B., Di, C., Poe,
W.E., McLendon, R.E., Bigner, D.D., Nicchitta, C. and Yan, H.
(2009) Glioblastoma proto-oncogene SEC61γ is required for
tumor cell survival and response to endoplasmic reticulum
stress. Cancer Res., 69(23): 9105-9111.
https://doi.org/10.1158/0008-5472.CAN-09-2775
PMid:19920201 PMCid:PMC2789175 |
|
35. Wallgard, E., Nitzsche, A., Larsson, J., Guo, X.,
Dieterich, L.C., Dimberg, A., Olofsson, T., Pontén, F.C.,
Mäkinen, T., Kalén, M. and Hellström, M. (2012) Paladin
(X99384) is expressed in the vasculature and shifts from
endothelial to vascular smooth muscle cells during mouse
development. Dev. Dyn., 241(4): 770-786.
https://doi.org/10.1002/dvdy.23753
PMid:22354871 |
|
36. Wang, H., Ke, F. and Zheng, J. (2014) Hedgehog-glioma-associated
oncogene homolog-1 signaling in colon cancer cells and its
role in the celecoxib-mediated anti-cancer effect. Oncol. Lett.,
8(5): 2203-2208.
https://doi.org/10.3892/ol.2014.2439 |
|
37. Zhao, M., Tang, Q., Wu, W., Xia, Y., Chen, D. and Wang, X.
(2014) miR-20a contributes to endometriosis by regulating NTN4
expression. Mol. Biol. Rep., 41(9): 5793-5797.
https://doi.org/10.1007/s11033-014-3452-7
PMid:24972566 |
|
38. Wang, L., McDonnell, S.K., Hebbring, S.J., Cunningham, J.M.,
St. Sauver, J., Cerhan, J.R., Isaya, G.,. Schaid, D.J. and
Thibodeau, S.N. (2008) Polymorphisms in mitochondrial genes
and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev.,
17(12): 3558-3566.
https://doi.org/10.1158/1055-9965.EPI-08-0434
PMid:19064571 PMCid:PMC2750891 |
|
39. Zeller, C., Dai, W., Steele, N.L., Siddiq, A., Walley, A.J.,
Wilhelm-Benartzi, C.S.M., Rizzo, S., Van Der Zee, A., Plumb,
J.A. and Brown, R. (2012) Candidate DNA methylation drivers of
acquired cisplatin resistance in ovarian cancer identified by
methylome and expression profiling. Oncogene, 31(42):
4567-4576.
https://doi.org/10.1038/onc.2011.611
PMid:22249249 |
|
40. Brocato, J. and Costa, M. (2015) SATB1 and 2 in colorectal
cancer. Carcinogenesis, 36(2): 186-191.
https://doi.org/10.1093/carcin/bgu322
PMid:25543122 PMCid:PMC4400443 |
|
41. Xiao, M., Chen, L., Wu, X. and Wen, F. (2014) The
association between the rs6495309 polymorphism in CHRNA3 gene
and lung cancer risk in Chinese: A meta-analysis. Sci. Rep.,
4: 6372.
https://doi.org/10.1038/srep06372 |
|
42. Ewens, K.G., Kanetsky, P.A., Richards-Yutz, J.,
Purrazzella, J., Shields, C.L., Ganguly, T. and Ganguly, A.
(2014) Chromosome 3 status combined with BAP1 and EIF1AX
mutation profiles are associated with metastasis in uveal
melanoma gene mutations associated with metastasis in UM.
Invest. Ophthalmol. Visual Sci., 55(8): 5160-5167.
https://doi.org/10.1167/iovs.14-14550
PMid:24970262 |
|
43. Chandran, U.R., Ma, C., Dhir, R., Bisceglia, M., Lyons-Weiler,
M., Liang, W., Michalopoulos, G., Becich, M. and Monzon, F.A.
(2007) Gene expression profiles of prostate cancer reveal
involvement of multiple molecular pathways in the metastatic
process. BMC Cancer, 7(1): 1.
https://doi.org/10.1186/1471-2407-7-64
PMid:17430594 PMCid:PMC1865555 |
|
44. Pang, J., Liu, W.P., Liu, X.P., Li, L.Y., Fang, Y.Q., Sun,
Q.P., Liu, S.J., Li, M.T., Su, Z.L. and Gao, X. (2009)
Profiling protein markers associated with lymph node
metastasis in prostate cancer by DIGE based proteomics
analysis. J. Proteome Res., 9(1): 216-226.
https://doi.org/10.1021/pr900953s
PMid:19894759 |
|
45. Schönthal, A.H. (2001) Role of serine/threonine protein
phosphatase 2A in cancer. Cancer Lett., 170(1): 1-13.
https://doi.org/10.1016/S0304-3835(01)00561-4 |
|
46. Bartek, J. and Hodny, Z. (2010) SUMO boosts the DNA damage
response barrier against cancer. Cancer Cell, 17(1): 9-11.
https://doi.org/10.1016/j.ccr.2009.12.030
PMid:20129245 |
|
47. Wei, J., Costa, C., Ding, Y., Zou, Z., Yu, L., Sanchez,
J.J., Qian, X., Chen, H., Gimenez-Capitan, A., Meng, F. and
Moran, T. (2011) mRNA expression of BRCA1, PIAS1, and PIAS4
and survival after second-line docetaxel in advanced gastric
cancer. J. Natl. Cancer Inst., 103(20): 1552-1556.
https://doi.org/10.1093/jnci/djr326
PMid:21862729 |
|
48. Jovov, B., Araujo-Perez, F., Sigel, C.S., Stratford, J.K.,
McCoy, A.N., Yeh, J.J. and Keku, T. (2012) Differential gene
expression between African American and European American
colorectal cancer patients. PLoS One, 7(1): e30168.
https://doi.org/10.1371/journal.pone.0030168 |
|
49. Possemato, R., Marks, K.M., Shaul, Y.D., Pacold, M.E.,
Kim, D., Birsoy, K., Sethumadhavan, S., Woo, H.K., Jang, H.G.,
Jha, A.K. and Chen, W.W. (2011) Functional genomics reveal
that the serine synthesis pathway is essential in breast
cancer. Nature, 476(7360): 346-350.
https://doi.org/10.1038/nature10350
PMid:21760589 PMCid:PMC3353325 |
|
50. Cadenas, C., Franckenstein, D., Schmidt, M., Gehrmann, M.,
Hermes, M., Geppert, B., Schormann, W., Maccoux, L.J., Schug,
M., Schumann, A. and Wilhelm, C. (2010) Role of thioredoxin
reductase 1 and thioredoxin interacting protein in prognosis
of breast cancer. Breast Cancer Res., 12(3): 1.
https://doi.org/10.1186/bcr2599
PMid:20584310 PMCid:PMC2917039 |
|
51. Arner, E.S. and Holmgren, A. (2006) The thioredoxin system
in cancer. Semin. Cancer Biol., 16(6): 420-426.
https://doi.org/10.1016/j.semcancer.2006.10.009
PMid:17092741 |
|
52. Sotgia, F., Menezes, D.W., Outschoorn, U.E.M., Salem, A.F.,
Tsirigos, A., Lamb, R., Sneddon, S., Hulit, J., Howell, A. and
Lisanti, M.P. (2012) Mitochondria "fuel" breast cancer
metabolism: fifteen markers of mitochondrial biogenesis label
epithelial cancer cells, but are excluded from adjacent
stromal cells. Cell Cycle, 11(23): 4390-4401.
https://doi.org/10.4161/cc.22777
PMid:23172368 PMCid:PMC3552922 |
|
53. Budinska, E., Popovici, V., Tejpar, S., D'Ario, G.,
Lapique, N., Sikora, K.O., Di Narzo, A.F., Yan, P., Hodgson,
J.G., Weinrich, S. and Bosman, F. (2013) Gene expression
patterns unveil a new level of molecular heterogeneity in
colorectal cancer. J. Pathol., 231(1): 63-76.
https://doi.org/10.1002/path.4212
PMid:23836465 PMCid:PMC3840702 |
|
54. Christenson, L.K., Gunewardena, S., Hong, X., Spitschak,
M., Baufeld, A. and Vanselow, J. (2013) Research resource:
Preovulatory LH surge effects on follicular theca and
granulosa transcriptomes. Mol. Endocrinol., 27(7): 1153-1171.
https://doi.org/10.1210/me.2013-1093
PMid:23716604 PMCid:PMC3706842 |
|
55. Abeele, F.V., Lemonnier, L., Thébault, S., Lepage, G.,
Parys, J.B., Shuba, Y., Skryma, R. and Prevarskaya, N. (2004)
Two types of store-operated Ca2+ channels with different
activation modes and molecular origin in LNCaP human prostate
cancer epithelial cells. J. Biol. Chem., 279(29): 30326-30337.
https://doi.org/10.1074/jbc.M400106200
PMid:15138280
|
56. Zhang, Q., He, J., Lu, W., Yin, W., Yang, H., Xu, X.
and Wang, D. (2010) Expression of transient receptor
potential canonical channel proteins in human non-small
cell lung cancer. Zhongguo Fei Ai Za Zhi, 13(6): 612-616.
PMid:20681449 |
|
57. Kashiwagi, E., Shiota, M., Yokomizo, A., Itsumi, M.,
Inokuchi, J., Uchiumi, T. and Naito, S. (2012)
Downregulation of phosphodiesterase 4B (PDE4B) activates
protein kinase A and contributes to the progression of
prostate cancer. Prostate, 72(7): 741-751.
https://doi.org/10.1002/pros.21478
PMid:22529021 |
|
58. Mareddy, J., Nallapati, S.B., Anireddy, J., Devi, Y.P.,
Mangamoori, L.N., Kapavarapu, R. and Pal, S. (2013)
Synthesis and biological evaluation of nimesulide based
new class of triazole derivatives as potential PDE4B
inhibitors against cancer cells. Bioorgan. Med. Chem. Lett.,
23(24): 6721-6727.
https://doi.org/10.1016/j.bmcl.2013.10.035
PMid:24215890 |
|
59. Valdora, F., Freier, F., Garzia, L., Ramaswamy, V.,
Seyler, C., Hielscher, T., Brady, N., Northcott, P.A.,
Kool, M., Jones, D.T. and Witt, H. (2013) KCNJ2
constitutes a marker and therapeutic target of high-risk
medulloblastomas. Cancer Res., 73 8 Suppl: 5050.
https://doi.org/10.1158/1538-7445.AM2013-5050 |
|
60. Kim, H.S., Kim, D.H., Kim, J.Y., Jeoung, N.H., Lee,
I.K., Bong, J.G. and Jung, E.D. (2010) Microarray analysis
of papillary thyroid cancers in Korean. Korean J. Intern.
Med., 25(4): 399-407.
https://doi.org/10.3904/kjim.2010.25.4.399
PMid:21179278 PMCid:PMC2997969 |
|
61. Li, Y.L. (2013) Silencing of KCNJ2, a potassium influx
channel, increases cisplatin-induced cell death in oral
cancer. Cancer Res., 73 8 Suppl: 2119.
https://doi.org/10.1158/1538-7445.AM2013-2119 |
|
62. Kovacevic, Z. and Richardson, D.R. (2006) The
metastasis suppressor, Ndrg-1: A new ally in the fight
against cancer. Carcinogenesis, 27(12): 2355-2366.
https://doi.org/10.1093/carcin/bgl146
PMid:16920733 |
|
63. Ghalayini, M.K., Dong, Q., Richardson, D.R. and
Assinder, S.J. (2013) Proteolytic cleavage and truncation
of NDRG1 in human prostate cancer cells, but not normal
prostate epithelial cells. Biosci. Rep., 33(3): e00042.
https://doi.org/10.1042/bsr20130042 |
|
64. Yamakawa, N., Kaneda, K., Saito, Y., Ichihara, E. and
Morishita, K. (2012) The increased expression of integrin
α6 (ITGA6) enhances drug resistance in EVI1 high leukemia.
PLoS One, 7(1): e30706.
https://doi.org/10.1371/journal.pone.0030706
PMid:22295105 PMCid:PMC3266272 |
|
65. Cheng, I., Plummer, S.J., Neslund-Dudas, C., Klein,
E.A., Casey, G., Rybicki, B.A. and Witte, J.S. (2010)
Prostate cancer susceptibility variants confer increased
risk of disease progression. Cancer Epidemiol. Biomarkers
Prev., 19(9): 2124-2132.
https://doi.org/10.1158/1055-9965.EPI-10-0268
PMid:20651075 PMCid:PMC2950095 |
|
66. Dusek, R.L., Bascom, J.L., Vogel, H., Baron, S.,
Borowsky, A.D., Bissell, M.J. and Attardi, L.D. (2012)
Deficiency of the p53/p63 target Perp alters mammary gland
homeostasis and promotes cancer. Breast Cancer Res.,
14(2): 1.
https://doi.org/10.1186/bcr3171
PMid:22515648 PMCid:PMC3446400 |
|
67. Beaudry, V.G., Jiang, D., Dusek, R.L., Park, E.J.,
Knezevich, S., Ridd, K., Vogel, H., Bastian, B.C. and
Attardi, L.D. (2010) Loss of the p53/p63 regulated
desmosomal protein Perp promotes tumorigenesis. PLoS
Genet., 6(10): e1001168.
https://doi.org/10.1371/journal.pgen.1001168 |
|
68. Ji, P., Diederichs, S., Wang, W., Böing, S., Metzger,
R., Schneider, P.M., Tidow, N., Brandt, B., Buerger, H.,
Bulk, E. and Thomas, M. (2003) MALAT-1, a novel noncoding
RNA, and thymosin β4 predict metastasis and survival in
early-stage non-small cell lung cancer. Oncogene, 22(39):
8031-8041.
https://doi.org/10.1038/sj.onc.1206928
PMid:12970751 |
|
69. Lomnytska, M.I., Becker, S., Gemoll, T., Lundgren, C.,
Habermann, J., Olsson, A., Bodin, I., Engström, U.,
Hellman, U., Hellman, K. and Hellström, A.C. (2012) Impact
of genomic stability on protein expression in endometrioid
endometrial cancer. Br. J. Cancer, 106(7): 1297-1305.
https://doi.org/10.1038/bjc.2012.67
PMid:22415234 PMCid:PMC3314786 |
|
70. Pang, H., Rowan, B.G., Al-Dhaheri, M. and Faber, L.E.
(2004) Epidermal growth factor suppresses induction by
progestin of the adhesion protein desmoplakin in T47D
breast cancer cells. Breast Cancer Res., 6(3): 1.
https://doi.org/10.1186/bcr780
PMid:15084247 PMCid:PMC400677 |
|
71. Morgan, E., Kannan-Thulasiraman, P. and Noy, N. (2010)
Involvement of fatty acid binding protein 5 and PPAR/in
prostate cancer cell growth. PPAR Res., 2010: Article ID:
234629, 9. |
|
72. Levi, L., Lobo, G., Doud, M.K., Von Lintig, J.,
Seachrist, D., Tochtrop, G.P. and Noy, N. (2013) Genetic
ablation of the fatty acid-binding protein FABP5
suppresses HER2-induced mammary tumorigenesis. Cancer
Res., 73(15): 4770-4780.
https://doi.org/10.1158/0008-5472.CAN-13-0384
PMid:23722546 PMCid:PMC4082958 |
|
73. Takakura, S., Kohno, T., Manda, R., Okamoto, A.,
Tanaka, T. and Yokota, J. (2001) Genetic alterations and
expression of the protein phosphatase 1 genes in human
cancers. Int. J. Oncol., 18(4): 817-824.
https://doi.org/10.3892/ijo.18.4.817 |
|
74. Velusamy, T., Palanisamy, N., Kalyana-Sundaram, S.,
Sahasrabuddhe, A.A., Maher, C.A., Robinson, D.R., Bahler,
D.W., Cornell, T.T., Wilson, T.E., Lim, M.S. and
Chinnaiyan, A.M. (2013) Recurrent reciprocal RNA chimera
involving YPEL5 and PPP1CB in chronic lymphocytic
leukemia. Proc. Natl. Acad. Sci., 110(8): 3035-3040.
https://doi.org/10.1073/pnas.1214326110
PMid:23382248 PMCid:PMC3581970 |
|
75. Abba, M.C., Drake, J.A., Hawkins, K.A., Hu, Y., Sun,
H., Notcovich, C., Gaddis, S., Sahin, A., Baggerly, K. and
Aldaz, C.M. (2004) Transcriptomic changes in human breast
cancer progression as determined by serial analysis of
gene expression. Breast Cancer Res., 6(5): 1.
https://doi.org/10.1186/bcr899
PMid:15318932 PMCid:PMC549167 |
|
76. Honma, K., Iwao-Koizumi, K., Takeshita, F., Yamamoto,
Y., Yoshida, T., Nishio, K., Nagahara, S., Kato, K. and
Ochiya, T. (2008) RPN2 gene confers docetaxel resistance
in breast cancer. Nat. Med., 14(9): 939-948.
https://doi.org/10.1038/nm.1858
PMid:18724378 |
|
77. Arrigo, A.P., Simon, S., Gibert, B., Remy, C.K., Nivon,
M., Czekalla, A., Guillet, D., Moulin, M., Diaz-Latoud, C.
and Vicart, P. (2007) Hsp27 (HspB1) and αB‐crystallin
(HspB5) as therapeutic targets. FEBS Lett., 581(19):
3665-3674.
https://doi.org/10.1016/j.febslet.2007.04.033
PMid:17467701 |
|
78. Heinrich, J.C., Tuukkanen, A., Schroeder, M., Fahrig,
T. and Fahrig, R. (2011) RP101 (brivudine) binds to heat
shock protein HSP27 (HSPB1) and enhances survival in
animals and pancreatic cancer patients. J. Cancer Res.
Clin. Oncol., 137(9): 1349-1361.
https://doi.org/10.1007/s00432-011-1005-1
PMid:21833720 |
|
79. Fan, J., Zhang, Y.Q., Li, P., Tong, C., Tan, L. and
Zhu, Y.S. (2004) Interaction between plasminogen activator
inhibitor type-2 and pre-mRNA processing factor 8. Acta
Biochim. Biophys. Sin., 36(9): 623-628.
https://doi.org/10.1093/abbs/36.9.623 |
|
80. Kozaric, A.K., Przychodzen, B., Singh, J., Konarska,
M.M., Clemente, M.J., Otrock, Z.K., Nakashima, M., Hsi,
E.D., Yoshida, K., Shiraishi, Y. and Chiba, K. (2015)
PRPF8 defects cause missplicing in myeloid malignancies.
Leukemia, 29(1): 126-136.
https://doi.org/10.1038/leu.2014.144
PMid:24781015 PMCid:PMC4214909 |
|
81. Chang, Y.C., Jan, Y.H., Chan, Y.C., Yang, Y.F., Su,
C.Y., Lai, T.C., Liu, Y.P. and Hsiao, M. (2013)
Identification of ALDOA as a new Lung adeonocarcinoma
predict gene involve cancer metabolism and tumor
metastasis. FASEB J., 27(1_MeetingAbstracts): 58-61. |
|
82. Migneco, G., Menezes, D.W., Chiavarina, B., Cros, R.C.,
Pavlides, S., Pestell, R.G., Fatatis, A., Flomenberg, N.,
Tsirigos, A., Howell, A. and Martinez-Outschoorn, U.E.
(2010) Glycolytic cancer associated fibroblasts promote
breast cancer tumor growth, without a measurable increase
in angiogenesis: Evidence for stromal-epithelial metabolic
coupling. Cell Cycle, 9(12): 2412-2422.
https://doi.org/10.4161/cc.9.12.11989
PMid:20562527 |
|
83. Li, K.K.W., Pang, J.C.S., Ching, A.K.K., Wong, C.K.,
Kong, X., Wang, Y., Zhou, L., Chen, Z. and Ng, H.K. (2009)
miR-124 is frequently down-regulated in medulloblastoma
and is a negative regulator of SLC16A1. Hum. Pathol.,
40(9): 1234-1243.
https://doi.org/10.1016/j.humpath.2009.02.003
PMid:19427019 |
|
84. Tripathi, A.K., Koringa, P.G., Jakhesara, S.J., Ahir,
V.B., Ramani, U.V., Bhatt, V.D., Sajnani, M.R., Patel,
D.A., Joshi, A.J., Shanmuga, S.J. and Rank, D.N. (2012) A
preliminary sketch of horn cancer transcriptome in Indian
zebu cattle. Gene, 493(1): 124-131.
https://doi.org/10.1016/j.gene.2011.11.007
PMid:22134011 |
|
85. Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E.,
Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester,
K., Hober, S. and Wernerus, H. (2010) Towards a
knowledge-based human protein atlas. Nat. Biotechnol.,
28(12): 1248-1250.
https://doi.org/10.1038/nbt1210-1248
PMid:21139605 |
|
86. Das, S., Samant, R.S. and Shevde, L.A. (2011) Hedgehog
signaling induced by breast cancer cells promotes
osteoclastogenesis and osteolysis. J. Biol. Chem.,
286(11): 9612-9622.
https://doi.org/10.1074/jbc.M110.174920
PMid:21169638 PMCid:PMC3058990 |
|
87. Ferraro, A., Schepis, F., Leone, V., Federico, A.,
Borbone, E., Pallante, P., Berlingieri, M.T., Chiappetta,
G., Monaco, M., Palmieri, D. and Chiariotti, L. (2013)
Tumor suppressor role of the CL2/DRO1/CCDC80 gene in
thyroid carcinogenesis. J. Clin. Endocrinol. Metab.,
98(7): 2834-2843.
https://doi.org/10.1210/jc.2012-2926
PMid:23666966 |
|
88. Hjerpe, E., Brage, S.E., Carlson, J., Stolt, M.F.,
Schedvins, K., Johansson, H., Shoshan, M. and Lundqvist,
E.A. (2013) Metabolic markers GAPDH, PKM2, ATP5B and BEC-index
in advanced serous ovarian cancer. BMC Clin. Pathol.,
13(1): 1.
https://doi.org/10.1186/1472-6890-13-30
PMid:24252137 PMCid:PMC3874631 |
|
89. Li, X., Roslan, S., Johnstone, C.N., Wright, J.A.,
Bracken, C.P., Anderson, M., Bert, A.G., Selth, L.A.,
Anderson, R.L., Goodall, G.J. and Gregory, P.A. (2014)
MiR-200 can repress breast cancer metastasis through
ZEB1-independent but moesin-dependent pathways. Oncogene,
33(31): 4077-4088.
https://doi.org/10.1038/onc.2013.370
PMid:24037528 |
|
90. Singhi, A.D., Mathews, A.C., Jenkins, R.B., Lan, F.,
Fink, S.R., Nassar, H., Vang, R., Fetting, J.H., Hicks,
J., Sukumar, S. and De Marzo, A.M. (2012) MYC gene
amplification is often acquired in lethal distant breast
cancer metastases of unamplified primary tumors. Modern
Pathol., 25(3): 378-387.
https://doi.org/10.1038/modpathol.2011.171
PMid:22056952 PMCid:PMC3276715 |
|
91. Rokavec, M., Öner, M.G., Li, H., Jackstadt, R., Jiang,
L., Lodygin, D., Kaller, M., Horst, D., Ziegler, P.K.,
Schwitalla, S. and Slotta-Huspenina, J. (2014)
IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated
colorectal cancer invasion and metastasis. J. Clin.
Invest., 124(4): 1853-1867.
https://doi.org/10.1172/JCI73531
PMid:24642471 PMCid:PMC3973098 |
|
92. Tell, R.W. and Horvath, C.M. (2014) Bioinformatic
analysis reveals a pattern of STAT3-associated gene
expression specific to basal-like breast cancers in human
tumors. Proc. Natl. Acad. Sci., 111(35): 12787-12792.
https://doi.org/10.1073/pnas.1404881111
PMid:25139989 PMCid:PMC4156751 |
|
93. Kumar, V.P., Sehgal, P., Thota, B., Patil, S., Santosh,
V. and Kondaiah, P. (2014) Insulin like growth factor
binding protein 4 promotes GBM progression and regulates
key factors involved in EMT and invasion. J. Neuro Oncol.,
116(3): 455-464.
https://doi.org/10.1007/s11060-013-1324-y
PMid:24395346 |
|
94. Ueno, K., Hirata, H., Majid, S., Tabatabai, Z.L.,
Hinoda, Y. and Dahiya, R. (2011) IGFBP‐4 activates the Wnt/beta‐catenin
signaling pathway and induces M‐CAM expression in human
renal cell carcinoma. Int. J. Cancer, 129(10): 2360-2369.
https://doi.org/10.1002/ijc.25899
PMid:21207373 |
|
95. Wen, D., Geng, J., Li, W., Guo, C. and Zheng, J.
(2014) A computational bioinformatics analysis of gene
expression identifies candidate agents for prostate
cancer. Andrologia, 46(6): 625-632.
https://doi.org/10.1111/and.12127
PMid:23790256 |
|
96. Sorrells, S., Carbonneau, S., Harrington, E., Chen,
A.T., Hast, B., Milash, B., Pyati, U., Major, M.B., Zhou,
Y., Zon, L.I. and Stewart, R.A. (2012) Ccdc94 protects
cells from ionizing radiation by inhibiting the expression
of p53. PLoS Genet., 8(8): e1002922.
https://doi.org/10.1371/journal.pgen.1002922 |
|
97. Goicoechea, S.M., Bednarski, B., Garcia-Mata, R.,
Prentice-Dunn, H., Kim, H.J. and Otey, C.A. (2009)
Palladin contributes to invasive motility in human breast
cancer cells. Oncogene, 28(4): 587-598.
https://doi.org/10.1038/onc.2008.408
PMid:18978809 PMCid:PMC2633435 |
|
98. Bhattacharya, R., Kwon, J., Ali, B., Wang, E., Patra,
S., Shridhar, V. and Mukherjee, P. (2008) Role of hedgehog
signaling in ovarian cancer. Clin. Cancer Res., 14(23):
7659-7666.
https://doi.org/10.1158/1078-0432.CCR-08-1414
PMid:19047091 |
|
99. Mourtada, J.S., Yang, D., Tworowska, I., Larson, R.,
Smith, D., Tsao, N., Opdenaker, L., Mourtada, F. and
Woodward, W. (2012) Detection of canonical hedgehog
signaling in breast cancer by 131-iodine-labeled
derivatives of the sonic hedgehog protein. BioMed Res.
Int., 11: 257-258. |
|
100. Kang, H.C., Wakabayashi, Y., Jen, K.Y., Mao, J.H.,
Zoumpourlis, V., Del Rosario, R. and Balmain, A. (2013)
Ptch1 overexpression drives skin carcinogenesis and
developmental defects in K14Ptch FVB mice. J. Invest.
Dermatol., 133(5): 1311-1320.
https://doi.org/10.1038/jid.2012.419
PMid:23223138 PMCid:PMC3610826 |
|
101. Zhang, J., Zheng, F., Yu, G., Yin, Y. and Lu, Q.
(2013) miR-196a targets netrin 4 and regulates cell
proliferation and migration of cervical cancer cells.
Biochem. Biophys. Res. Commun., 440(4): 582-588.
https://doi.org/10.1016/j.bbrc.2013.09.142
PMid:24120501 |
|
102. Wan, F., Cheng, C., Wang, Z., Xiao, X., Zeng, H.,
Xing, S., Chen, X., Wang, J., Li, S., Zhang, Y. and Xiang,
W. (2015) SATB1 overexpression regulates the development
and progression in bladder cancer through EMT. PLoS One,
10(2): e0117518.
https://doi.org/10.1371/journal.pone.0117518 |
|
103. Wang, Z., Hou, J., Lu, L., Qi, Z., Sun, J., Gao, W.,
Meng, J., Wang, Y., Sun, H., Gu, H. and Xin, Y. (2013)
Small ribosomal protein subunit S7 suppresses ovarian
tumorigenesis through regulation of the PI3K/AKT and MAPK
pathways. PLoS One, 8(11): e79117.
https://doi.org/10.1371/journal.pone.0079117 |
|
104. Yu, C., Luo, C., Qu, B., Khudhair, N., Gu, X., Zang,
Y., Wang, C., Zhang, N., Li, Q. and Gao, X. (2014)
Molecular network including eIF1AX, RPS7, and 14-3-3γ
regulates protein translation and cell proliferation in
bovine mammary epithelial cells. Arch. Biochem. Biophys.,
564: 142-155.
https://doi.org/10.1016/j.abb.2014.09.014
PMid:25281768 |
|
105. Bachelor, M.A., Lu, Y. and Owens, D.M. (2011)
L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous
squamous cell carcinoma proliferation independent of
L-serine biosynthesis. J. Dermatol. Sci., 63(3): 164-172.
https://doi.org/10.1016/j.jdermsci.2011.06.001
PMid:21726982 PMCid:PMC3152677 |
|
106. Cheng, Y., Liu, W., Kim, S.T., Sun, J., Lu, L., Sun,
J., Zheng, S.L., Isaacs, W.B. and Xu, J. (2011) Evaluation
of PPP2R2A as a prostate cancer susceptibility gene: A
comprehensive germline and somatic study. Cancer Genet.,
204(7): 375-381.
https://doi.org/10.1016/j.cancergen.2011.05.002
PMid:21872824 PMCid:PMC3722858 |
|
107. Liu, X., Liu, Q., Fan, Y., Wang, S., Liu, X., Zhu,
L., Liu, M. and Tang, H. (2014) Downregulation of PPP2R5E
expression by miR‐23a suppresses apoptosis to facilitate
the growth of gastric cancer cells. FEBS Lett., 588(17):
3160-3169.
https://doi.org/10.1016/j.febslet.2014.05.068
PMid:24997345 |
|
108. Erickson, J.W. and Cerione, R.A. (2010) Glutaminase:
A hot spot for regulation of cancer cell metabolism?
Oncotarget, 1(8): 734-740.
https://doi.org/10.18632/oncotarget.208
PMid:21234284 PMCid:PMC3018840 |
|
109. Nilsson, J.A. and Cleveland, J.L. (2003) Myc pathways
provoking cell suicide and cancer. Oncogene, 22(56):
9007-9021.
https://doi.org/10.1038/sj.onc.1207261
PMid:14663479 |
|
110. Lu, Y., Yi, Y., Liu, P., Wen, W., James, M., Wang, D.
and You, M. (2007) Common human cancer genes discovered by
integrated gene-expression analysis. PLoS One, 2(11):
e1149.
https://doi.org/10.1371/journal.pone.0001149 |
|
111. Anderson, D.D., Woeller, C.F. and Stover, P.J. (2007)
Small ubiquitin-like modifier-1 (SUMO-1) modification of
thymidylate synthase and dihydrofolate reductase. Clin.
Chem. Lab. Med., 45(12): 1760-1763.
https://doi.org/10.1515/cclm.2007.355 |
|
112. Woeller, C.F., Anderson, D.D., Szebenyi, D.M. and
Stover, P.J. (2007) Evidence for small ubiquitin-like
modifier-dependent nuclear import of the thymidylate
biosynthesis pathway. J. Biol. Chem., 282(24):
17623-17631.
https://doi.org/10.1074/jbc.M702526200
PMid:17446168 |
|
113. Fernández-Chacón, R. and Südhof, T.C. (2000) Novel
SCAMPs lacking NPF repeats: ubiquitous and synaptic
vesicle-specific forms implicate SCAMPs in multiple
membrane-trafficking functions. J. Neurosci., 20(21):
7941-7950.
PMid:11050114 |
|
114. Vogelstein, B. and Kinzler, K.W. (2004) Cancer genes
and the pathways they control. Nat. Med., 10(8): 789-799.
https://doi.org/10.1038/nm1087
PMid:15286780 |
|
115. Dawany, N.B., Dampier, W.N. and Tozeren, A. (2011)
Large‐scale integration of microarray data reveals genes
and pathways common to multiple cancer types. Int. J.
Cancer, 128(12): 2881-2891.
https://doi.org/10.1002/ijc.25854
PMid:21165954 |
|
|