Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 13-01-2017)

8. Transcriptomic comparison of primary bovine horn core carcinoma culture and parental tissue at early stage - Sharadindu Shil, R. S. Joshi, C. G. Joshi, A. K. Patel, Ravi K. Shah, Namrata Patel, Subhash J. Jakhesara, Sumana Kundu, Bhaskar Reddy, P. G. Koringa and D. N. Rank

Veterinary World, 10(1): 38-55

 

 

   doi: 10.14202/vetworld.2017.38-55

 

Sharadindu Shil: Veterinary Officer (WBAH & VS), West Bengal Animal Resources Development Department, Bankura - 772 152 , West Bengal, India; Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.

R. S. Joshi: Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.

C. G. Joshi: Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.

A. K. Patel: Hester Biosciences Limited, Ahmedabad, Gujarat, India.

Ravi K. Shah: Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.

Namrata Patel: Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.

Subhash J. Jakhesara: Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.

Sumana Kundu: Veterinary Officer, MVC Sarenga, Government of West Bengal, Bankura, West Bengal, India.

Bhaskar Reddy: Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.

P. G. Koringa: Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.

D. N. Rank: Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India.

 

Received: 19-09-2016, Accepted: 29-11-2016, Published online: 13-01-2017

 

Corresponding author: D. N. Rank, e-mail: dnrank@gmail.com


Citation: Shil S, Joshi RS, Joshi CG, Patel AK, Shah RK, Patel N, Jakhesara SJ, Kundu S, Reddy B, Koringa PG, Rank DN (2017) Transcriptomic comparison of primary bovine horn core carcinoma culture and parental tissue at early stage, Veterinary World, 10(1): 38-55.



Aim: Squamous cell carcinoma or SCC of horn in bovines (bovine horn core carcinoma) frequently observed in Bos indicus affecting almost 1% of cattle population. Freshly isolated primary epithelial cells may be closely related to the malignant epithelial cells of the tumor. Comparison of gene expression in between horn’s SCC tissue and its early passage primary culture using next generation sequencing was the aim of this study.

Materials and Methods: Whole transcriptome sequencing of horn’s SCC tissue and its early passage cells using Ion Torrent PGM were done. Comparative expression and analysis of different genes and pathways related to cancer and biological processes associated with malignancy, proliferating capacity, differentiation, apoptosis, senescence, adhesion, cohesion, migration, invasion, angiogenesis, and metabolic pathways were identified.

Results: Up-regulated genes in SCC of horn’s early passage cells were involved in transporter activity, catalytic activity, nucleic acid binding transcription factor activity, biogenesis, cellular processes, biological regulation and localization and the down-regulated genes mainly were involved in focal adhesion, extracellular matrix receptor interaction and spliceosome activity.

Conclusion: The experiment revealed similar transcriptomic nature of horn’s SCC tissue and its early passage cells.

Keywords: cummerbund, gene ontology, primary culture, RNA-sequencing, squamous cell carcinoma of horn, transcriptome profiling.



1. Yang, D.S. (2014) Novel prediction of anticancer drug chemosensitivity in cancer cell lines: Evidence of moderation by microRNA expressions. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference, 2014. p4780-4786.
https://doi.org/10.1109/embc.2014.6944693
 
2. Wei, W., Liu, Z., Chen, X. and Bi, F. (2014) Chemosensitivity of resistant colon cancer cell lines to lobaplatin, heptaplatin and dicycloplatin. Int. J. Clin. Pharmacol. Ther., 52(8): 702-707.
https://doi.org/10.5414/CP202023
PMid:24986092
 
3. De la Cueva, A., Ramirez de Molina, A., Alvarez-Ayerza, N., Ramos, M.A., Cebrian, A., Del Pulgar, T.G. and Lacal, J.C. (2013) Combined 5-FU and ChoKalpha inhibitors as a new alternative therapy of colorectal cancer: Evidence in human tumor-derived cell lines and mouse xenografts. PLoS One, 8(6): e64961.
https://doi.org/10.1371/journal.pone.0064961
PMid:23762272 PMCid:PMC3677921
 
4. Giuffrida, D. and Rogers, I.M. (2010) Targeting cancer stem cell lines as a new treatment of human cancer. Rec. Patents Anti Cancer Drug Discov., 5(3): 205-218.
https://doi.org/10.2174/157489210791760535
 
5. Supino, R., Binaschi, M., Capranico, G., Gambetta, R.A., Prosperi, E., Sala, E. and Zunino, F. (1993) A study of cross-resistance pattern and expression of molecular markers of multidrug resistance in a human small-cell lung-cancer cell line selected with doxorubicin. Int. J. Cancer, 54(2): 309-314.
https://doi.org/10.1002/ijc.2910540224
 
6. Lefevre, D., Riou, J.F., Ahomadegbe, J.C., Zhou, D.Y., Benard, J. and Riou, G. (1991) Study of molecular markers of resistance to m-AMSA in a human breast cancer cell line. Decrease of topoisomerase II and increase of both topoisomerase I and acidic glutathione S transferase. Biochem. Pharmacol., 41(12): 1967-1979.
https://doi.org/10.1016/0006-2952(91)90138-u
 
7. Cifola, I., Bianchi, C., Mangano, E., Bombelli, S., Frascati, F., Fasoli, E., Ferrero, S., Di Stifano, V., Zipeto, M.A., Magni, F., Signorini, S., Battaglia, C. and Perego, R.A. (2011) Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues. BMC Cancer, 11(1): 244.
https://doi.org/10.1186/1471-2407-11-244
 
8. Craven, R.A., Stanley, A.J., Hanrahan, S., Dods, J., Unwin, R., Totty, N., Harnden, P., Eardley, I., Selby, P.J. and Banks, R.E. (2006) Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics, 6(9): 2853-2864.
https://doi.org/10.1002/pmic.200500549
PMid:16596713
 
9. Perego, R.A., Bianchi, C., Corizzato, M., Eroini, B., Torsello, B., Valsecchi, C., Di Fonzo, A., Cordani, N., Favini, P., Ferrero, S., Pitto, M., Sarto, C., Magni, F., Rocco, F. and Mocarelli, P. (2005) Primary cell cultures arising from normal kidney and renal cell carcinoma retain the proteomic profile of corresponding tissues. J. Proteome Res., 4(5): 1503-1510.
https://doi.org/10.1021/pr050002o
PMid:16212400
 
10. Bianchi, C., Bombelli, S., Raimondo, F., Torsello, B., Angeloni, V., Ferrero, S., Di Stefano, V., Chinello, C., Cifola, I., Invernizzi, L., Brambilla, P., Magni, F., Pitto, M., Zanetti, G., Mocarelli, P. and Perego, R.A. (2010) Primary cell cultures from human renal cortex and renal-cell carcinoma evidence a differential expression of two spliced isoforms of Annexin A3. Am. J. Pathol., 176(4): 1660-1670.
https://doi.org/10.2353/ajpath.2010.090402
PMid:20167856 PMCid:PMC2843458
 
11. Twine, N.A., Janitz, K., Wilkins, M.R. and Janitz, M. (2011) Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer's disease. PLoS One, 6(1): e16266.
https://doi.org/10.1371/journal.pone.0016266
 
12. Naik, S.N., Balakrishna, C.R. and Randelia, H.P. (1969) Epidemiology of horn cancer in Indian zebu cattle: Breed incidences. Br. Vet. J., 125: 222-230.
 
13. Joshi, B.P., Soni, P.B., Fefar, D.T., Ghodasara, D.J. and Prajapati, K.S. (2009) Epidemiological and pathological aspects of horn cancer in cattle of Gujarat. Indian J. Field Vet., 5: 15-18.
 
14. Burggraaf, H. (1935) Kanker aan de basis van de hoorns bijzebus. T. Diergeneesk, 62: 1121-1136.
 
15. Rezende, A.M.L. and Naves, P.T. (1975) Horn core cancer in a zebu cow, imported to Brazil. Pesqui. Agropecu. Bras. Ser. Vet., 10: 41-44.
 
16. Zubaidy, A.J. (1976) Horn cancer in cattle in Iraq. Vet. Pathol., 13: 435-454.
 
17. Kulkarni, H.V. (1953) Carcinoma of horn in bovines of Old Baroda state. Indian Vet. J., 29: 415-421.
 
18. Damodaran, S., Sundararaj, A. and Ramakrishnan, R. (1979) Horn cancer in bulls. Indian Vet. J., 56: 248-249.
PMid:478617
 
19. Gupta, R.K., Sadana, J.R., Kuchroo, V.K. and Kalra, D.S. (1980) Horn cancer in an intact bull. Vet. Rec., 107: 312.
https://doi.org/10.1136/vr.107.13.312
PMid:7210431
 
20. Chattopadhyay, S.K., Jandrotia, V.S. and Ramkumar Iyer, P.K.R. (1982) Horn cancer in sheep. Indian Vet. J., 59: 319-320.
 
21. Luna, L.G., editor. (1968) Pathology AFIo. Manual of Histologic Staining Methods; of the Armed Forces Institute of Pathology. Blakiston Division, McGraw-Hill, New York.
 
22. Freshney, R.I. (2006) Basic principles of cell culture. Culture of Cells for Tissue Engineering. John Wiley & Sons, Inc., Hobokan, New Jersey. p3-21.
 
23. Roth, V. (2006) Available from: http://www.doubling-time.com/compute.php . Accessed on 18/12/2016.
 
24. Koringa, P.G., Jakhesara, S.J., Bhatt, V.D., Meshram, C.P., Patel, A.K., Fefar, D.T. and Joshi, C.G. (2013) Comprehensive transcriptome profiling of squamous cell carcinoma of horn in Bos indicus. Vet. Comp. Oncol. DOI: 10.1111/vco.12079.
https://doi.org/10.1111/vco.12079
 
25. Wu, T.D. and Watanabe, C.K. (2005) GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21(9): 1859-1875.
https://doi.org/10.1093/bioinformatics/bti310
PMid:15728110
 
26. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28(5): 511-515.
https://doi.org/10.1038/nbt.1621
PMid:20436464 PMCid:PMC3146043
 
27. Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Prot., 4(1): 44-57.
https://doi.org/10.1038/nprot.2008.211
PMid:19131956
 
28. Thomas, P.D., Kejariwal, A., Guo, N., Mi, H., Campbell, M.J., Muruganujan, A. and Ulitsky, B.L. (2006) Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nuc. Acids Res., 34: W645-W650.
https://doi.org/10.1093/nar/gkl229
 
29. Gao, J., Wu, H., Wang, L., Zhang, H., Duan, H., Lu, J. and Liang, Z. (2016) Validation of targeted next-generation sequencing for RAS mutation detection in FFPE colorectal cancer tissues: comparison with Sanger sequencing and ARMS-Scorpion real-time PCR. BMJ Open, 6(1): e009532.
https://doi.org/10.1136/bmjopen-2015-009532
PMid:26747035 PMCid:PMC4716245
 
30. Koringa, P.G., Jakhesara, S.J., Bhatt, V.D., Meshram, C.P., Patel, A.K., Fefar, D.T. and Joshi, C.G. (2016) Comprehensive transcriptome profiling of squamous cell carcinoma of horn in Bos indicus. Vet. Comp. Oncol., 14(2): 122-136.
https://doi.org/10.1111/vco.12079
PMid:24314272
 
31. Król, M., Polańska, J., Pawłowski, K.M., Turowski, P., Skierski, J., Majewska, A., Ugorski, M., Morty, R.E. and Motyl, T. (2010) Transcriptomic signature of cell lines isolated from canine mammary adenocarcinoma metastases to lungs. J. Appl. Genet., 51(1): 37-50.
https://doi.org/10.1007/BF03195709
PMid:20145299
 
32. Pal, D., Wu, D., Haruta, A., Matsumura, F. and Wei, Q. (2010) Role of a novel coiled-coil domain-containing protein CCDC69 in regulating central spindle assembly. Cell Cycle, 9(20): 4117-4129.
https://doi.org/10.4161/cc.9.20.13387
PMid:20962590 PMCid:PMC3055196
 
33. Sorrells, S., Carbonneau, S., Harrington, E., Chen, A.T., Hast, B., Milash, B., Pyati, U., Major, M.B., Zhou, Y., Zon, L.I., Stewart, R.A., Look, A.T. and Jette, C. (2012) Ccdc94 protects cells from ionizing radiation by inhibiting the expression of p53. PLoS Genet., 8(8): e1002922.
https://doi.org/10.1371/journal.pgen.1002922
 
34. Lu, Z., Zhou, L., Killela, P., Rasheed, A.B., Di, C., Poe, W.E., McLendon, R.E., Bigner, D.D., Nicchitta, C. and Yan, H. (2009) Glioblastoma proto-oncogene SEC61γ is required for tumor cell survival and response to endoplasmic reticulum stress. Cancer Res., 69(23): 9105-9111.
https://doi.org/10.1158/0008-5472.CAN-09-2775
PMid:19920201 PMCid:PMC2789175
 
35. Wallgard, E., Nitzsche, A., Larsson, J., Guo, X., Dieterich, L.C., Dimberg, A., Olofsson, T., Pontén, F.C., Mäkinen, T., Kalén, M. and Hellström, M. (2012) Paladin (X99384) is expressed in the vasculature and shifts from endothelial to vascular smooth muscle cells during mouse development. Dev. Dyn., 241(4): 770-786.
https://doi.org/10.1002/dvdy.23753
PMid:22354871
 
36. Wang, H., Ke, F. and Zheng, J. (2014) Hedgehog-glioma-associated oncogene homolog-1 signaling in colon cancer cells and its role in the celecoxib-mediated anti-cancer effect. Oncol. Lett., 8(5): 2203-2208.
https://doi.org/10.3892/ol.2014.2439
 
37. Zhao, M., Tang, Q., Wu, W., Xia, Y., Chen, D. and Wang, X. (2014) miR-20a contributes to endometriosis by regulating NTN4 expression. Mol. Biol. Rep., 41(9): 5793-5797.
https://doi.org/10.1007/s11033-014-3452-7
PMid:24972566
 
38. Wang, L., McDonnell, S.K., Hebbring, S.J., Cunningham, J.M., St. Sauver, J., Cerhan, J.R., Isaya, G.,. Schaid, D.J. and Thibodeau, S.N. (2008) Polymorphisms in mitochondrial genes and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev., 17(12): 3558-3566.
https://doi.org/10.1158/1055-9965.EPI-08-0434
PMid:19064571 PMCid:PMC2750891
 
39. Zeller, C., Dai, W., Steele, N.L., Siddiq, A., Walley, A.J., Wilhelm-Benartzi, C.S.M., Rizzo, S., Van Der Zee, A., Plumb, J.A. and Brown, R. (2012) Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene, 31(42): 4567-4576.
https://doi.org/10.1038/onc.2011.611
PMid:22249249
 
40. Brocato, J. and Costa, M. (2015) SATB1 and 2 in colorectal cancer. Carcinogenesis, 36(2): 186-191.
https://doi.org/10.1093/carcin/bgu322
PMid:25543122 PMCid:PMC4400443
 
41. Xiao, M., Chen, L., Wu, X. and Wen, F. (2014) The association between the rs6495309 polymorphism in CHRNA3 gene and lung cancer risk in Chinese: A meta-analysis. Sci. Rep., 4: 6372.
https://doi.org/10.1038/srep06372
 
42. Ewens, K.G., Kanetsky, P.A., Richards-Yutz, J., Purrazzella, J., Shields, C.L., Ganguly, T. and Ganguly, A. (2014) Chromosome 3 status combined with BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma gene mutations associated with metastasis in UM. Invest. Ophthalmol. Visual Sci., 55(8): 5160-5167.
https://doi.org/10.1167/iovs.14-14550
PMid:24970262
 
43. Chandran, U.R., Ma, C., Dhir, R., Bisceglia, M., Lyons-Weiler, M., Liang, W., Michalopoulos, G., Becich, M. and Monzon, F.A. (2007) Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer, 7(1): 1.
https://doi.org/10.1186/1471-2407-7-64
PMid:17430594 PMCid:PMC1865555
 
44. Pang, J., Liu, W.P., Liu, X.P., Li, L.Y., Fang, Y.Q., Sun, Q.P., Liu, S.J., Li, M.T., Su, Z.L. and Gao, X. (2009) Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE based proteomics analysis. J. Proteome Res., 9(1): 216-226.
https://doi.org/10.1021/pr900953s
PMid:19894759
 
45. Schönthal, A.H. (2001) Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett., 170(1): 1-13.
https://doi.org/10.1016/S0304-3835(01)00561-4
 
46. Bartek, J. and Hodny, Z. (2010) SUMO boosts the DNA damage response barrier against cancer. Cancer Cell, 17(1): 9-11.
https://doi.org/10.1016/j.ccr.2009.12.030
PMid:20129245
 
47. Wei, J., Costa, C., Ding, Y., Zou, Z., Yu, L., Sanchez, J.J., Qian, X., Chen, H., Gimenez-Capitan, A., Meng, F. and Moran, T. (2011) mRNA expression of BRCA1, PIAS1, and PIAS4 and survival after second-line docetaxel in advanced gastric cancer. J. Natl. Cancer Inst., 103(20): 1552-1556.
https://doi.org/10.1093/jnci/djr326
PMid:21862729
 
48. Jovov, B., Araujo-Perez, F., Sigel, C.S., Stratford, J.K., McCoy, A.N., Yeh, J.J. and Keku, T. (2012) Differential gene expression between African American and European American colorectal cancer patients. PLoS One, 7(1): e30168.
https://doi.org/10.1371/journal.pone.0030168
 
49. Possemato, R., Marks, K.M., Shaul, Y.D., Pacold, M.E., Kim, D., Birsoy, K., Sethumadhavan, S., Woo, H.K., Jang, H.G., Jha, A.K. and Chen, W.W. (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature, 476(7360): 346-350.
https://doi.org/10.1038/nature10350
PMid:21760589 PMCid:PMC3353325
 
50. Cadenas, C., Franckenstein, D., Schmidt, M., Gehrmann, M., Hermes, M., Geppert, B., Schormann, W., Maccoux, L.J., Schug, M., Schumann, A. and Wilhelm, C. (2010) Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res., 12(3): 1.
https://doi.org/10.1186/bcr2599
PMid:20584310 PMCid:PMC2917039
 
51. Arner, E.S. and Holmgren, A. (2006) The thioredoxin system in cancer. Semin. Cancer Biol., 16(6): 420-426.
https://doi.org/10.1016/j.semcancer.2006.10.009
PMid:17092741
 
52. Sotgia, F., Menezes, D.W., Outschoorn, U.E.M., Salem, A.F., Tsirigos, A., Lamb, R., Sneddon, S., Hulit, J., Howell, A. and Lisanti, M.P. (2012) Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle, 11(23): 4390-4401.
https://doi.org/10.4161/cc.22777
PMid:23172368 PMCid:PMC3552922
 
53. Budinska, E., Popovici, V., Tejpar, S., D'Ario, G., Lapique, N., Sikora, K.O., Di Narzo, A.F., Yan, P., Hodgson, J.G., Weinrich, S. and Bosman, F. (2013) Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J. Pathol., 231(1): 63-76.
https://doi.org/10.1002/path.4212
PMid:23836465 PMCid:PMC3840702
 
54. Christenson, L.K., Gunewardena, S., Hong, X., Spitschak, M., Baufeld, A. and Vanselow, J. (2013) Research resource: Preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Mol. Endocrinol., 27(7): 1153-1171.
https://doi.org/10.1210/me.2013-1093
PMid:23716604 PMCid:PMC3706842
 
55. Abeele, F.V., Lemonnier, L., Thébault, S., Lepage, G., Parys, J.B., Shuba, Y., Skryma, R. and Prevarskaya, N. (2004) Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J. Biol. Chem., 279(29): 30326-30337.
https://doi.org/10.1074/jbc.M400106200
PMid:15138280
 
56. Zhang, Q., He, J., Lu, W., Yin, W., Yang, H., Xu, X. and Wang, D. (2010) Expression of transient receptor potential canonical channel proteins in human non-small cell lung cancer. Zhongguo Fei Ai Za Zhi, 13(6): 612-616.
PMid:20681449
 
57. Kashiwagi, E., Shiota, M., Yokomizo, A., Itsumi, M., Inokuchi, J., Uchiumi, T. and Naito, S. (2012) Downregulation of phosphodiesterase 4B (PDE4B) activates protein kinase A and contributes to the progression of prostate cancer. Prostate, 72(7): 741-751.
https://doi.org/10.1002/pros.21478
PMid:22529021
 
58. Mareddy, J., Nallapati, S.B., Anireddy, J., Devi, Y.P., Mangamoori, L.N., Kapavarapu, R. and Pal, S. (2013) Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells. Bioorgan. Med. Chem. Lett., 23(24): 6721-6727.
https://doi.org/10.1016/j.bmcl.2013.10.035
PMid:24215890
 
59. Valdora, F., Freier, F., Garzia, L., Ramaswamy, V., Seyler, C., Hielscher, T., Brady, N., Northcott, P.A., Kool, M., Jones, D.T. and Witt, H. (2013) KCNJ2 constitutes a marker and therapeutic target of high-risk medulloblastomas. Cancer Res., 73 8 Suppl: 5050.
https://doi.org/10.1158/1538-7445.AM2013-5050
 
60. Kim, H.S., Kim, D.H., Kim, J.Y., Jeoung, N.H., Lee, I.K., Bong, J.G. and Jung, E.D. (2010) Microarray analysis of papillary thyroid cancers in Korean. Korean J. Intern. Med., 25(4): 399-407.
https://doi.org/10.3904/kjim.2010.25.4.399
PMid:21179278 PMCid:PMC2997969
 
61. Li, Y.L. (2013) Silencing of KCNJ2, a potassium influx channel, increases cisplatin-induced cell death in oral cancer. Cancer Res., 73 8 Suppl: 2119.
https://doi.org/10.1158/1538-7445.AM2013-2119
 
62. Kovacevic, Z. and Richardson, D.R. (2006) The metastasis suppressor, Ndrg-1: A new ally in the fight against cancer. Carcinogenesis, 27(12): 2355-2366.
https://doi.org/10.1093/carcin/bgl146
PMid:16920733
 
63. Ghalayini, M.K., Dong, Q., Richardson, D.R. and Assinder, S.J. (2013) Proteolytic cleavage and truncation of NDRG1 in human prostate cancer cells, but not normal prostate epithelial cells. Biosci. Rep., 33(3): e00042.
https://doi.org/10.1042/bsr20130042
 
64. Yamakawa, N., Kaneda, K., Saito, Y., Ichihara, E. and Morishita, K. (2012) The increased expression of integrin α6 (ITGA6) enhances drug resistance in EVI1 high leukemia. PLoS One, 7(1): e30706.
https://doi.org/10.1371/journal.pone.0030706
PMid:22295105 PMCid:PMC3266272
 
65. Cheng, I., Plummer, S.J., Neslund-Dudas, C., Klein, E.A., Casey, G., Rybicki, B.A. and Witte, J.S. (2010) Prostate cancer susceptibility variants confer increased risk of disease progression. Cancer Epidemiol. Biomarkers Prev., 19(9): 2124-2132.
https://doi.org/10.1158/1055-9965.EPI-10-0268
PMid:20651075 PMCid:PMC2950095
 
66. Dusek, R.L., Bascom, J.L., Vogel, H., Baron, S., Borowsky, A.D., Bissell, M.J. and Attardi, L.D. (2012) Deficiency of the p53/p63 target Perp alters mammary gland homeostasis and promotes cancer. Breast Cancer Res., 14(2): 1.
https://doi.org/10.1186/bcr3171
PMid:22515648 PMCid:PMC3446400
 
67. Beaudry, V.G., Jiang, D., Dusek, R.L., Park, E.J., Knezevich, S., Ridd, K., Vogel, H., Bastian, B.C. and Attardi, L.D. (2010) Loss of the p53/p63 regulated desmosomal protein Perp promotes tumorigenesis. PLoS Genet., 6(10): e1001168.
https://doi.org/10.1371/journal.pgen.1001168
 
68. Ji, P., Diederichs, S., Wang, W., Böing, S., Metzger, R., Schneider, P.M., Tidow, N., Brandt, B., Buerger, H., Bulk, E. and Thomas, M. (2003) MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22(39): 8031-8041.
https://doi.org/10.1038/sj.onc.1206928
PMid:12970751
 
69. Lomnytska, M.I., Becker, S., Gemoll, T., Lundgren, C., Habermann, J., Olsson, A., Bodin, I., Engström, U., Hellman, U., Hellman, K. and Hellström, A.C. (2012) Impact of genomic stability on protein expression in endometrioid endometrial cancer. Br. J. Cancer, 106(7): 1297-1305.
https://doi.org/10.1038/bjc.2012.67
PMid:22415234 PMCid:PMC3314786
 
70. Pang, H., Rowan, B.G., Al-Dhaheri, M. and Faber, L.E. (2004) Epidermal growth factor suppresses induction by progestin of the adhesion protein desmoplakin in T47D breast cancer cells. Breast Cancer Res., 6(3): 1.
https://doi.org/10.1186/bcr780
PMid:15084247 PMCid:PMC400677
 
71. Morgan, E., Kannan-Thulasiraman, P. and Noy, N. (2010) Involvement of fatty acid binding protein 5 and PPAR/in prostate cancer cell growth. PPAR Res., 2010: Article ID: 234629, 9.
 
72. Levi, L., Lobo, G., Doud, M.K., Von Lintig, J., Seachrist, D., Tochtrop, G.P. and Noy, N. (2013) Genetic ablation of the fatty acid-binding protein FABP5 suppresses HER2-induced mammary tumorigenesis. Cancer Res., 73(15): 4770-4780.
https://doi.org/10.1158/0008-5472.CAN-13-0384
PMid:23722546 PMCid:PMC4082958
 
73. Takakura, S., Kohno, T., Manda, R., Okamoto, A., Tanaka, T. and Yokota, J. (2001) Genetic alterations and expression of the protein phosphatase 1 genes in human cancers. Int. J. Oncol., 18(4): 817-824.
https://doi.org/10.3892/ijo.18.4.817
 
74. Velusamy, T., Palanisamy, N., Kalyana-Sundaram, S., Sahasrabuddhe, A.A., Maher, C.A., Robinson, D.R., Bahler, D.W., Cornell, T.T., Wilson, T.E., Lim, M.S. and Chinnaiyan, A.M. (2013) Recurrent reciprocal RNA chimera involving YPEL5 and PPP1CB in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci., 110(8): 3035-3040.
https://doi.org/10.1073/pnas.1214326110
PMid:23382248 PMCid:PMC3581970
 
75. Abba, M.C., Drake, J.A., Hawkins, K.A., Hu, Y., Sun, H., Notcovich, C., Gaddis, S., Sahin, A., Baggerly, K. and Aldaz, C.M. (2004) Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res., 6(5): 1.
https://doi.org/10.1186/bcr899
PMid:15318932 PMCid:PMC549167
 
76. Honma, K., Iwao-Koizumi, K., Takeshita, F., Yamamoto, Y., Yoshida, T., Nishio, K., Nagahara, S., Kato, K. and Ochiya, T. (2008) RPN2 gene confers docetaxel resistance in breast cancer. Nat. Med., 14(9): 939-948.
https://doi.org/10.1038/nm.1858
PMid:18724378
 
77. Arrigo, A.P., Simon, S., Gibert, B., Remy, C.K., Nivon, M., Czekalla, A., Guillet, D., Moulin, M., Diaz-Latoud, C. and Vicart, P. (2007) Hsp27 (HspB1) and αB‐crystallin (HspB5) as therapeutic targets. FEBS Lett., 581(19): 3665-3674.
https://doi.org/10.1016/j.febslet.2007.04.033
PMid:17467701
 
78. Heinrich, J.C., Tuukkanen, A., Schroeder, M., Fahrig, T. and Fahrig, R. (2011) RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J. Cancer Res. Clin. Oncol., 137(9): 1349-1361.
https://doi.org/10.1007/s00432-011-1005-1
PMid:21833720
 
79. Fan, J., Zhang, Y.Q., Li, P., Tong, C., Tan, L. and Zhu, Y.S. (2004) Interaction between plasminogen activator inhibitor type-2 and pre-mRNA processing factor 8. Acta Biochim. Biophys. Sin., 36(9): 623-628.
https://doi.org/10.1093/abbs/36.9.623
 
80. Kozaric, A.K., Przychodzen, B., Singh, J., Konarska, M.M., Clemente, M.J., Otrock, Z.K., Nakashima, M., Hsi, E.D., Yoshida, K., Shiraishi, Y. and Chiba, K. (2015) PRPF8 defects cause missplicing in myeloid malignancies. Leukemia, 29(1): 126-136.
https://doi.org/10.1038/leu.2014.144
PMid:24781015 PMCid:PMC4214909
 
81. Chang, Y.C., Jan, Y.H., Chan, Y.C., Yang, Y.F., Su, C.Y., Lai, T.C., Liu, Y.P. and Hsiao, M. (2013) Identification of ALDOA as a new Lung adeonocarcinoma predict gene involve cancer metabolism and tumor metastasis. FASEB J., 27(1_MeetingAbstracts): 58-61.
 
82. Migneco, G., Menezes, D.W., Chiavarina, B., Cros, R.C., Pavlides, S., Pestell, R.G., Fatatis, A., Flomenberg, N., Tsirigos, A., Howell, A. and Martinez-Outschoorn, U.E. (2010) Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle, 9(12): 2412-2422.
https://doi.org/10.4161/cc.9.12.11989
PMid:20562527
 
83. Li, K.K.W., Pang, J.C.S., Ching, A.K.K., Wong, C.K., Kong, X., Wang, Y., Zhou, L., Chen, Z. and Ng, H.K. (2009) miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum. Pathol., 40(9): 1234-1243.
https://doi.org/10.1016/j.humpath.2009.02.003
PMid:19427019
 
84. Tripathi, A.K., Koringa, P.G., Jakhesara, S.J., Ahir, V.B., Ramani, U.V., Bhatt, V.D., Sajnani, M.R., Patel, D.A., Joshi, A.J., Shanmuga, S.J. and Rank, D.N. (2012) A preliminary sketch of horn cancer transcriptome in Indian zebu cattle. Gene, 493(1): 124-131.
https://doi.org/10.1016/j.gene.2011.11.007
PMid:22134011
 
85. Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester, K., Hober, S. and Wernerus, H. (2010) Towards a knowledge-based human protein atlas. Nat. Biotechnol., 28(12): 1248-1250.
https://doi.org/10.1038/nbt1210-1248
PMid:21139605
 
86. Das, S., Samant, R.S. and Shevde, L.A. (2011) Hedgehog signaling induced by breast cancer cells promotes osteoclastogenesis and osteolysis. J. Biol. Chem., 286(11): 9612-9622.
https://doi.org/10.1074/jbc.M110.174920
PMid:21169638 PMCid:PMC3058990
 
87. Ferraro, A., Schepis, F., Leone, V., Federico, A., Borbone, E., Pallante, P., Berlingieri, M.T., Chiappetta, G., Monaco, M., Palmieri, D. and Chiariotti, L. (2013) Tumor suppressor role of the CL2/DRO1/CCDC80 gene in thyroid carcinogenesis. J. Clin. Endocrinol. Metab., 98(7): 2834-2843.
https://doi.org/10.1210/jc.2012-2926
PMid:23666966
 
88. Hjerpe, E., Brage, S.E., Carlson, J., Stolt, M.F., Schedvins, K., Johansson, H., Shoshan, M. and Lundqvist, E.A. (2013) Metabolic markers GAPDH, PKM2, ATP5B and BEC-index in advanced serous ovarian cancer. BMC Clin. Pathol., 13(1): 1.
https://doi.org/10.1186/1472-6890-13-30
PMid:24252137 PMCid:PMC3874631
 
89. Li, X., Roslan, S., Johnstone, C.N., Wright, J.A., Bracken, C.P., Anderson, M., Bert, A.G., Selth, L.A., Anderson, R.L., Goodall, G.J. and Gregory, P.A. (2014) MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene, 33(31): 4077-4088.
https://doi.org/10.1038/onc.2013.370
PMid:24037528
 
90. Singhi, A.D., Mathews, A.C., Jenkins, R.B., Lan, F., Fink, S.R., Nassar, H., Vang, R., Fetting, J.H., Hicks, J., Sukumar, S. and De Marzo, A.M. (2012) MYC gene amplification is often acquired in lethal distant breast cancer metastases of unamplified primary tumors. Modern Pathol., 25(3): 378-387.
https://doi.org/10.1038/modpathol.2011.171
PMid:22056952 PMCid:PMC3276715
 
91. Rokavec, M., Öner, M.G., Li, H., Jackstadt, R., Jiang, L., Lodygin, D., Kaller, M., Horst, D., Ziegler, P.K., Schwitalla, S. and Slotta-Huspenina, J. (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Invest., 124(4): 1853-1867.
https://doi.org/10.1172/JCI73531
PMid:24642471 PMCid:PMC3973098
 
92. Tell, R.W. and Horvath, C.M. (2014) Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors. Proc. Natl. Acad. Sci., 111(35): 12787-12792.
https://doi.org/10.1073/pnas.1404881111
PMid:25139989 PMCid:PMC4156751
 
93. Kumar, V.P., Sehgal, P., Thota, B., Patil, S., Santosh, V. and Kondaiah, P. (2014) Insulin like growth factor binding protein 4 promotes GBM progression and regulates key factors involved in EMT and invasion. J. Neuro Oncol., 116(3): 455-464.
https://doi.org/10.1007/s11060-013-1324-y
PMid:24395346
 
94. Ueno, K., Hirata, H., Majid, S., Tabatabai, Z.L., Hinoda, Y. and Dahiya, R. (2011) IGFBP‐4 activates the Wnt/beta‐catenin signaling pathway and induces M‐CAM expression in human renal cell carcinoma. Int. J. Cancer, 129(10): 2360-2369.
https://doi.org/10.1002/ijc.25899
PMid:21207373
 
95. Wen, D., Geng, J., Li, W., Guo, C. and Zheng, J. (2014) A computational bioinformatics analysis of gene expression identifies candidate agents for prostate cancer. Andrologia, 46(6): 625-632.
https://doi.org/10.1111/and.12127
PMid:23790256
 
96. Sorrells, S., Carbonneau, S., Harrington, E., Chen, A.T., Hast, B., Milash, B., Pyati, U., Major, M.B., Zhou, Y., Zon, L.I. and Stewart, R.A. (2012) Ccdc94 protects cells from ionizing radiation by inhibiting the expression of p53. PLoS Genet., 8(8): e1002922.
https://doi.org/10.1371/journal.pgen.1002922
 
97. Goicoechea, S.M., Bednarski, B., Garcia-Mata, R., Prentice-Dunn, H., Kim, H.J. and Otey, C.A. (2009) Palladin contributes to invasive motility in human breast cancer cells. Oncogene, 28(4): 587-598.
https://doi.org/10.1038/onc.2008.408
PMid:18978809 PMCid:PMC2633435
 
98. Bhattacharya, R., Kwon, J., Ali, B., Wang, E., Patra, S., Shridhar, V. and Mukherjee, P. (2008) Role of hedgehog signaling in ovarian cancer. Clin. Cancer Res., 14(23): 7659-7666.
https://doi.org/10.1158/1078-0432.CCR-08-1414
PMid:19047091
 
99. Mourtada, J.S., Yang, D., Tworowska, I., Larson, R., Smith, D., Tsao, N., Opdenaker, L., Mourtada, F. and Woodward, W. (2012) Detection of canonical hedgehog signaling in breast cancer by 131-iodine-labeled derivatives of the sonic hedgehog protein. BioMed Res. Int., 11: 257-258.
 
100. Kang, H.C., Wakabayashi, Y., Jen, K.Y., Mao, J.H., Zoumpourlis, V., Del Rosario, R. and Balmain, A. (2013) Ptch1 overexpression drives skin carcinogenesis and developmental defects in K14Ptch FVB mice. J. Invest. Dermatol., 133(5): 1311-1320.
https://doi.org/10.1038/jid.2012.419
PMid:23223138 PMCid:PMC3610826
 
101. Zhang, J., Zheng, F., Yu, G., Yin, Y. and Lu, Q. (2013) miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells. Biochem. Biophys. Res. Commun., 440(4): 582-588.
https://doi.org/10.1016/j.bbrc.2013.09.142
PMid:24120501
 
102. Wan, F., Cheng, C., Wang, Z., Xiao, X., Zeng, H., Xing, S., Chen, X., Wang, J., Li, S., Zhang, Y. and Xiang, W. (2015) SATB1 overexpression regulates the development and progression in bladder cancer through EMT. PLoS One, 10(2): e0117518.
https://doi.org/10.1371/journal.pone.0117518
 
103. Wang, Z., Hou, J., Lu, L., Qi, Z., Sun, J., Gao, W., Meng, J., Wang, Y., Sun, H., Gu, H. and Xin, Y. (2013) Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS One, 8(11): e79117.
https://doi.org/10.1371/journal.pone.0079117
 
104. Yu, C., Luo, C., Qu, B., Khudhair, N., Gu, X., Zang, Y., Wang, C., Zhang, N., Li, Q. and Gao, X. (2014) Molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in bovine mammary epithelial cells. Arch. Biochem. Biophys., 564: 142-155.
https://doi.org/10.1016/j.abb.2014.09.014
PMid:25281768
 
105. Bachelor, M.A., Lu, Y. and Owens, D.M. (2011) L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis. J. Dermatol. Sci., 63(3): 164-172.
https://doi.org/10.1016/j.jdermsci.2011.06.001
PMid:21726982 PMCid:PMC3152677
 
106. Cheng, Y., Liu, W., Kim, S.T., Sun, J., Lu, L., Sun, J., Zheng, S.L., Isaacs, W.B. and Xu, J. (2011) Evaluation of PPP2R2A as a prostate cancer susceptibility gene: A comprehensive germline and somatic study. Cancer Genet., 204(7): 375-381.
https://doi.org/10.1016/j.cancergen.2011.05.002
PMid:21872824 PMCid:PMC3722858
 
107. Liu, X., Liu, Q., Fan, Y., Wang, S., Liu, X., Zhu, L., Liu, M. and Tang, H. (2014) Downregulation of PPP2R5E expression by miR‐23a suppresses apoptosis to facilitate the growth of gastric cancer cells. FEBS Lett., 588(17): 3160-3169.
https://doi.org/10.1016/j.febslet.2014.05.068
PMid:24997345
 
108. Erickson, J.W. and Cerione, R.A. (2010) Glutaminase: A hot spot for regulation of cancer cell metabolism? Oncotarget, 1(8): 734-740.
https://doi.org/10.18632/oncotarget.208
PMid:21234284 PMCid:PMC3018840
 
109. Nilsson, J.A. and Cleveland, J.L. (2003) Myc pathways provoking cell suicide and cancer. Oncogene, 22(56): 9007-9021.
https://doi.org/10.1038/sj.onc.1207261
PMid:14663479
 
110. Lu, Y., Yi, Y., Liu, P., Wen, W., James, M., Wang, D. and You, M. (2007) Common human cancer genes discovered by integrated gene-expression analysis. PLoS One, 2(11): e1149.
https://doi.org/10.1371/journal.pone.0001149
 
111. Anderson, D.D., Woeller, C.F. and Stover, P.J. (2007) Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase. Clin. Chem. Lab. Med., 45(12): 1760-1763.
https://doi.org/10.1515/cclm.2007.355
 
112. Woeller, C.F., Anderson, D.D., Szebenyi, D.M. and Stover, P.J. (2007) Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. J. Biol. Chem., 282(24): 17623-17631.
https://doi.org/10.1074/jbc.M702526200
PMid:17446168
 
113. Fernández-Chacón, R. and Südhof, T.C. (2000) Novel SCAMPs lacking NPF repeats: ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions. J. Neurosci., 20(21): 7941-7950.
PMid:11050114
 
114. Vogelstein, B. and Kinzler, K.W. (2004) Cancer genes and the pathways they control. Nat. Med., 10(8): 789-799.
https://doi.org/10.1038/nm1087
PMid:15286780
 
115. Dawany, N.B., Dampier, W.N. and Tozeren, A. (2011) Large‐scale integration of microarray data reveals genes and pathways common to multiple cancer types. Int. J. Cancer, 128(12): 2881-2891.
https://doi.org/10.1002/ijc.25854
PMid:21165954