Open Access
Research (Published online: 16-07-2018)
10. Effectiveness of platelet-rich fibrin matrix treated with silver nanoparticles in fracture healing in rabbit model
Serwa Ibrahim Salih, Nadia H. Al-Falahi, Ali H. Saliem and Ahmed N. Abedsalih
Veterinary World, 11(7): 944-952

Serwa Ibrahim Salih: Department of Surgery and Obstetrics, University of Baghdad, Baghdad, Iraq.
Nadia H. Al-Falahi: Department of Surgery and Obstetrics, University of Baghdad, Baghdad, Iraq.
Ali H. Saliem: Department of Physiology, Biochemistry and Pharmacology, University of Baghdad, Baghdad, Iraq.
Ahmed N. Abedsalih: Department of Physiology, Biochemistry and Pharmacology, University of Baghdad, Baghdad, Iraq.

doi: 10.14202/vetworld.2018.944-952

Share this article on [Facebook] [LinkedIn]

Article history: Received: 30-03-2018, Accepted: 04-06-2018, Published online: 16-07-2018

Corresponding author: Ali H. Saliem

E-mail: alisaliem977@gmail.com

Citation: Salih SI, Al-Falahi NH, Saliem AH, Abedsalih AN (2018) Effectiveness of platelet-rich fibrin matrix treated with silver nanoparticles in fracture healing in rabbit model, Veterinary World, 11(7): 944-952.
Abstract

Aim: The current study was conducted to evaluate the effect of platelet-rich fibrin matrix (PRFM) treated with silver nanoparticles (AgNPs) on enhancing the healing of the experimentally induced bone gap in a rabbit model.

Materials and Methods: Twenty healthy male local rabbits aged between 6 and 8 months, their weights between 1.5 and 2 kg were used in this study and divided randomly into four equal groups, under general anesthesia (1 cm), bone gap was induced in the tibia bone to create a critical bone defect and leave it without any treatment in the first group (control group). While in the second group the bone gap was filled with PRFM; in the third group, the gap was filled with 0.3 ml AgNPs; and in the fourth group, the gap was filled with PRFM treated with AgNPs.

Results: There was no infection at the operation site in all experimental animals, and the radiograph images showed periosteal and endosteal reaction; the gaps were bridged faster in the fourth group as compared with the other groups. The histological examination showed lamellar bone with haversian canal completely filled the fracture gap and contact with old bone in the fourth group as compared to other groups.

Conclusion: Using a combination of PRFM and single nucleotide polymorphisms together gave better acceleration in the bone healing process than using each one of them separately.

Keywords: bone gap, healing, platelet-rich fibrin matrix, silver nanoparticles.

References

1. Oda, T., Kinshita, K. and Ueda, M. (2009) Effect of cortical bone perforation on periosteal destruction. J. Maxillofac. Surg., 67(7): 1478-1485. [Crossref] [PubMed]

2. Jung, R.E., Glauser, R., Scharer, P., Hammerle, C.H., Sailer, H.F. and Weber, F.E. (2003) Effect of rh-BMP-2 on guided bone regeneration in humans. Clin. Oral Implants Res., 14: 556-568. [Crossref] [PubMed]

3. Nevins, M., Giannobile, W.V., McGuire, M.K., Kao, R.T., Mellonig, J.T. and Hinrichs, J. (2005) Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: Results of a large multicenter randomized controlled trial. J. Periodontol., 76: 2205-2215. [Crossref]

4. Dohan, D.M., Choukroun, J., Diss, A., Dohan, S.L., Dohan, A.J., Mouhyi, J. and Gogly, B. (2006). Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 101(3): e37-e44. [Crossref] [PubMed]

5. Carroll, R.J., Arnoczky, S.P., Graham, S. and O'Connell, S.M. (2005) Characterization of Autologous Growth Factors in Cascade Platelet Rich Fibrin Matrix (PRFM). Musculoskeletal Transplant Foundation, Edison, N.J.

6. O'Connell, S., Carroll, R. and Beavis A. (2006) Flow Cytometric Characterization of Cascade Platelet-Rich Fibrin Matrix (PRFM); The Impact of Exogenous Thrombin on Platelet Concentrates (PC). Musculoskeletal Transplant Foundation, Edison, N. J.

7. Visser, L.C., Arnoczky, S.P., Caballero, O. and Egerbacher, M. (2010) Platelet-rich fibrin constructs elute higher concentrations of TGF-β1 and increase tendon cell proliferation over time when compared to blood clots of similar volume: A comparative in vitro analysis. Vet Surg., 39(7): 811-817. [Crossref] [PubMed]

8. Peran, M., Garcia, M.A., Lopez-Ruiz, E., Jimenez, G. and Marchal, J.A. (2013) How can nanotechnology help to repair the body, advances in cardiac, skin, bone, cartilage and nerve tissue regeneration. Materials, 6: 1333-1359. [Crossref] [PubMed] [PMC]

9. Jain, D., Daima, H., Kachhwaha, S. and Kothari, S.L. (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Biostruct., 4: 557-563.

10. De, M., Ghosh, P.S. and Rotello, V.M. (2008) Applications of nanoparticles in biology. Adv. Mater., 20: 4225-4241. [Crossref]

11. Teli, M.K., Mutalik, S. and Rajanikant, G.K. (2010) Nanotechnology and nan medicine going small means aiming big. Cur. Pharm. Design., 16: 1882-1892. [Crossref] [PubMed]

12. Chaudhuri, G. and Paria, R.S. (2012) Core/shell nanoparticles: Classes, properties synthesis mechanism, characterization and application. Chem. Rev., 112(4): 2373-2433. [Crossref] [PubMed]

13. Sun, Y. and Xia, Y. (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science, 298(5601): 2176-2179. [Crossref]

14. Sharma, V.K., Yngard, R.A. and Lin, Y. (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid. Sur. Interface Sci., 145(1-2): 83-96. [Crossref] [PubMed]

15. Gong, P., Li, H., He, X., Wang, K., Hu, J., Zhang, S. and Yang, X. (2007) Preparation and antibacterial activity of Fe3O4Ag nanoparticles. Nanotechnology, 18(28): 604-611. [Crossref]

16. Akl, M.A., Nida, M.S. and Amany, O.A. (2012) Biosynthesis of silver nanoparticles using Olea europaea Leaves extract and its antibacterial activity. Nanosci. Nanotechnol., 2(6): 164-170.

17. Dubey, S.B., Lahtinen, M. and Sillanpaa, M. (2010) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf. A Physicochem. Eng. Asp., 364: 34-41. [Crossref]

18. Veera, B.N., Rama, K., Rajkiran, B., Jahnavi, A., Manisha, D., Pratap, R. and Manthur, P. (2013) Green synthesis of plant-mediated silver nanoparticles using Withania somnifera leaf extract and evaluation of their antimicrobial activity. Int. J. Adv. Res., 1(9): 307-313.

19. Nelson, J.S., Orenstein, A., Liaw, L.H. and Berus, M.W. (1989) Midinfrared erbium-YAG lasers a blation of bone. The effect of laser osteotomy on bone healing lasers. Surg. Med., 9(4): 362-374. [Crossref]

20. Dekanski, D., Janicijevic-Hudomal, S., Tadic, V., Markovic, G., Arsic, I. and Mitrovic, D. (2009) Phytochemical analysis and gastroprotective activity of an olive leaf extract. J. Serb. Chem. Soc., 74(4): 367-377. [Crossref]

21. Reboredo-Rodriguez, P., Rey-Salgueiro, L., Regueiro, J., Gonza lez-Barreiro, C., Cancho-Grande, B. and Simal-Ga'ndara, J. (2014) Ultrasound-assisted emulsification-microextraction for the determination of phenolic compounds in olive oils. Food Chem. 150: 128-136. [Crossref] [PubMed]

22. Sharma, G., Sharma, A.R., Kurian, M., Bhavesh, R., Nam, J.S. and Leeb, S.S. (2014) Green synthesis of silver nanoparticles using Myristica fracrans (nutmeg) seed extract and its biological activity. Dig. J. Nanomater. Biostruct., 9(1): 325-332.

23. Reyna, E.R., Salas, B.V., Beltran, M.C., Nedev, N., Alvarez, M.C. and Salas, E.V. (2015) Antibacterial properties of silver nanoparticles biosynthesized from Staphylococcus aureus. Int. J. Emerg. Technol. Adv. Eng., 5(1): 54-58.

24. Roy, K., Sarkar, C.K. and Ghosh, C.K. (2015) Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: Spectral analysis of the particles and antibacterial study. Appl. Nanosci., 5: 945-951. [Crossref]

25. Jae, Y.S. and Beom, S.K. (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess. Biosyst. Eng., 32: 79-84. [Crossref] [PubMed]

26. Khatami, M., Pourseyedi, S., Khatami, M., Hamidi, H., Zaeifi, M. and Soltani, L. (2015) Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour. Bioprocess, 2: 19-26. [Crossref]

27. Duan, J.S., Park, K., MacCuspie, R.I., Vaia, R.A. and Pachter, R. (2009) Optical properties of rodlike metallic nanostructures: Insight from theory and experiment. J. Phys. Chem., 113(35): 15524-15532. [Crossref]

28. Mukherjee, P., Roy, M., Mandal, B.P., Dey, G.K. and Ghatak, J. (2008) Green synthesis of highly stabilized nanocrystalline silver particles by non-pathogenic and agriculturally important fungus T asperellum. Nanotechnology, 19(7): 1-7. [Crossref] [PubMed]

29. Dohan, D.M., Choukroun, J., Diss, A., Dohan, S.L., Dohan, A.J.J., Mouhyi, J. and Gogly, B. (2006) Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part III. Leukocyte activation: A new feature for platelet concentrates. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 101: e51-e55. [Crossref] [PubMed]

30. Simonpieri, A., Del Corso, M., Sammartino, G. and Ehrenfest, D.M.D. (2009) The relevance of choukroun's platelet-rich fibrin and metronidazole during complex maxillary rehabilitations using bone allograft. Part I: A new grafting protocol. Implant Dent., 18: 102-111. [Crossref]

31. Vence, B.S., Mandelaris, G.A. and Forbes, D.P. (2009) Management of dent alveolar ridge defects for implant site development: An interdisciplinary approach. Comp. Cont. Educ. Dent., 30(5): 250-262. [PubMed]

32. Gabling, V.L.W., Acil, Y., Springer, I.N., Hubert, N. and Wiltfang, J. (2009) Platelet-rich plasma and platelet-rich fibrin in human cell culture. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 108: 48-55. [Crossref] [PubMed]

33. Andrea, T., Anna, K. and Anita, I. (2012) Nanoparticles and their potential for application in bone. Int. J. Nanomed., 17(7): 4545-4557.

34. Zhang, R., Lee, P., Lui, V.C., Chen, Y., Liu, X., Lok, C.N., To, M., Yeung, K.W. and Wong, K.K. (2015) Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine, 11(8): 1949-1959. [Crossref] [PubMed]

35. Shin-Woo, H., Neale, W.M. and George, R.B. (2014) Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano., 8(6): 5898-5910. [Crossref] [PubMed] [PMC]

36. Stylios, G., Wan, T. and Giannoudis, P. (2007) Present status and future potential of enhancing bone healing using nanotechnology. Injury, 38(1): 63-74. [Crossref] [PubMed]

37. Nair, L.S. and Laurencin, C.T. (2008) Nanofibers and nanoparticles for orthopedic surgery applications. J. Bone Joint Surg. Am., 90(1): 128-131. [Crossref] [PubMed]

38. Giardin, S.E., Travassos, L.H. and Herve, M. (2003) Peptidoglycan molecular requirements allowing detection by NOD1 and NOD 2. J. Biol. Chem., 278(43): 41702-41708. [Crossref] [PubMed]

39. Danon, D., Kowatch, M.A. and Roth, G.S. (1998) Promotion of wound repair in old mice by local injection of macrophages. Proc. Natl. Acad. Sci., 86(6): 2018-2020. [Crossref]

40. Champagne, C.M., Takebe, J. and Offenbacher, S. (2002) Macrophage cell lines produce osteoinductive signals that include bone morphogenic protein-2. Bone, 30(1): 26-31. [Crossref]

41. Kovacs, E.J. and DiPietro, L.A. (1994) Fibrinogenic cytokines and connective tissue production. FASEJ, 8(11): 854-861.