Open Access
Research (Published online: 10-07-2018)
5. Molecular detection and immunopathological examination of Deltapapillomavirus 4 in skin and udder of Egyptian cattle
Emad Beshir Ata, Mohamed Abd El-Fatah Mahmoud and A. A. Madboli
Veterinary World, 11(7): 915-920

Emad Beshir Ata: Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Center, 12622 Dokki, Giza, Egypt.
Mohamed Abd El-Fatah Mahmoud: Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Center, 12622 Dokki, Giza, Egypt.
A. A. Madboli: Department of Animal Reproduction and Artificial Insemination, Veterinary Research Division, National Research Center, 12622 Dokki, Giza, Egypt.

doi: 10.14202/vetworld.2018.915-920

Share this article on [Facebook] [LinkedIn]

Article history: Received: 18-03-2018, Accepted: 29-05-2018, Published online: 10-07-2018

Corresponding author: Emad Beshir Ata

E-mail: emadvet2003@gmail.com

Citation: Ata EB, Mahmoud MAE,Madboli AA. (2018) Molecular detection and immunopathological examination of Deltapapillomavirus 4 in skin and udder of Egyptian cattle, Veterinary World, 11(7): 915-920.
Abstract

Aim: Bovine papillomaviruses (BPVs) are the main cause of bovine papillomatosis resulting in cutaneous and/or mucosal benign tumors that could be transformed to malignant ones with marked economic importance, especially in the dairy farms. Molecular, pathological, and immunohistochemical (IHC) diagnosis of bovine papillomatosis cases was conducted to identify and characterize the circulating BPV genotype in some Egyptian governorates.

Materials and Methods: Wart-like lesions in skin, udder, and teats were collected from 123 infected cases in Giza, Beni Suef, and El Menoufia Governorates, Egypt, during 2016-2017. Pathological and IHC characterization, molecular identification, genotyping, and phylogenetic analysis based on the conserved late (L1) gene of the all samples were carried out.

Results: 89 of the 123 collected samples (72.3%) were positively detected by polymerase chain reaction (PCR). The sequence analysis of the obtained PCR amplicons was identical revealing identification and genotyping of only one type (Deltapapillomavirus 4 isolate EGY 2017) with accession number (MG547343) which found to be closely related to the recently detected Deltapapillomavirus 4 isolate 04_asi_UK (accession no. MF384288.1) and isolate Deltapapillomavirus 4 isolate 25_equ_CH (accession no. MF384286.1) with 99% nucleotide sequence identity. Histopathological examination revealed severe hyperkeratosis in stratum corneum and acanthosis in most of the cases. These tissue changes were confirmed by the presence of golden brown stained proliferating cell nuclear antigen which was localized intranuclear and perinuclear in other cells using IHC Technique.

Conclusion: It is the first time to detect and genotype the BPVs in these areas with no record of previous genotyping in the whole country. The obtained results will highlight the importance of this disease.

Keywords: bovine papillomaviruses, characterization, Egypt, genotyping, immunohistochemical, pathological, phylogeny.

References

1. Dagalp, S.B., Dogan, F.F., Farzani, T.A., Salar, S. and Bastan, A. (2017) The genetic diversity of bovine papillomaviruses (BPV) from different papillomatosis cases in dairy cows in Turkey. Arch. Virol., 162(6): 1507-1518. [Crossref] [PubMed]

2. Silva, M.S.E., Weiss, M., Brum, M.C.S., Dos Anjos, B.L., Torres, F.D., Weiblen, R. and Flores, E.F. (2010) Molecular identification of bovine papillomaviruses associated with cutaneous warts in southern Brazil. J. Vet. Diagn. Invest., 22(4): 603-606. [Crossref] [PubMed]

3. Bernard, H.U., Burk, R.D., Chen, Z., Van doorslaer, K., Hausen, H.Z. and De Villiers, E.M. (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology., 401(1): 70-79. [Crossref] [PubMed] [PMC]

4. Da Silva, F.R.C., Daudt, C., Streck, A.F., Weber, M.N., Filho, R.V.L., Driemeier, D. and Canal, C.W. (2015) Genetic characterization of amazonian bovine papillomavirus reveals the existence of four new putative types. Virus. Genes., 51(1): 77-84. [Crossref] [PubMed]

5. Savini, F., Gallina, L., Alberti, A., Muller, M. and Scagliarini, A. (2016) Bovine papillomavirus Type 7 in Italy: Complete genomes and sequence variants. Virus. Genes., 52(2): 253-260. [Crossref] [PubMed]

6. Ataseven, V.S., Kanat, O. and Ergun, Y. (2016) Molecular identification of bovine papillomaviruses in dairy and beef cattle: First description of Xi-and Epsilonpapillomavirus in Turkey. Turk. J. Vet. Anim. Sci., 40: 757-763. [Crossref]

7. Tozato, C.C., Lunardi, M., Alfieri, A.F., Otonel, R.A., Di Santis, G.W., de Alcantara, B.K., Headley, S.A. and Alfieri, A.F. (2013) Teat papillomatosis associated with bovine papillomavirus types 6, 7, 9, and 10 in dairy cattle from Brazil. Braz. J. Microbiol., 44(3): 905-909. [Crossref] [PubMed] [PMC]

8. Lindsey, C.J., Almeida, M.E., Vicari, C.F., Carvalho, C., Yaguiu, A., Freitas, A.C., Becak, W. and Stocco, R.C. (2009) Bovine papillomavirus DNA in milk, blood, urine, semen, and spermatozoa of bovine papillomavirus-infected animals. Gent. Mol. Res., 8(1): 310-318. [Crossref]

9. Gottschling, M., Goker, M., Stamatakis, A., Bininda-Emonds, O.R., Nindl, I. and Bravo, I.G. (2011) Quantifying the phylodynamic forces driving papillomavirus evolution. Mol. Biol. Evol., 28(7): 2101-2113. [Crossref] [PubMed]

10. Rojas-Anaya, E., Cantu-Covarrubias, A., Alvarez, J.F. and Loza-Rubio, E. (2016) Detection and phylogenetic analysis of bovine papillomavirus in cutaneous warts in cattle in Tamaulipas, Mexico. Can. J. Vet. Res., 80(4): 262-268. [PubMed] [PMC]

11. Corteggio, A., Altamura, G., Roperto, F. and Borzacchiello, G. (2013) Bovine papillomavirus e5 and e7 oncoproteins in naturally occurring tumors: Are two better than one? Infect. Agent. Cancer., 8(1): 1. [Crossref] [PubMed] [PMC]

12. Munday, J.S. (2014) Bovine and human papillomaviruses. Vet. Pathol., 51(6): 1063-1075. [Crossref] [PubMed]

13. Hamad, M.A., Al-Shammari, A.M., Odisho, S.M. and Yaseen, N.Y. (2016) molecular and phylogenetic analysis of bovine papillomavirus Type 1: First report in Iraqi cattle. Adv. Virol., 2016: 1-7. [Crossref]

14. Gaballah, M. (1993) Fibropapillomatosis of the skin and external genitalia of Friesian cattle. J. Egypt. Comp. Pathol. Clin. Pathol., 6: 312-318.

15. Salib, F.A. and Farghali, H.A. (2011) Clinical, epidemiological and therapeutic studies on bovine papillomatosis in Northern oases, Egypt in 2008. Vet. World, 4(2): 53-59.

16. Eisa, M.I., Kandeel, A., El-Sawalhy, A.A. and El-Fetouh, M.S. (2000) Some studies on bovine papillomavirus infection in cattle with trials of its treatment. Vet. Med. J. Giza, 48: 47-55.

17. Ogawa, T., Tomita, Y., Okada, M., Shinozaki, K., Kubonoya, H., Kaiho, I. and Shirasawa, H. (2004) Broad-spectrum detection of papillomaviruses in bovine teat papillomas and healthy teat skin. J. Gen. Virol., 85(8): 2191-2197.

18. Tamura, K. and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol., 10(3): 512-526. [PubMed]

19. Kumar, S., Stecher, G. and Tamura, K. (2016) Mega7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33(7): 1870-1874. [Crossref] [PubMed]

20. Suvarna, K., Layton, C. and Bancroft, J. (2012) Theory and Practice of Histological Techniques. 7th ed. Churchill Livingstone, New York. p1-645.

21. Haines, D.M. and Clark, E.G. (1991) Enzyme immunohistochemical staining of formalin-fixed tissues for diagnosis in veterinary pathology. Can. Vet. J., 32(5): 295-302. [PubMed] [PMC]

22. Santos, E.U., Silva, M.A., Pontes, N.E., Coutinho, L.C., Paiva, S.S., Castro, R.S. and Freitas, A.C. (2016) Detection of different bovine papillomavirus types and co-infection in bloodstream of cattle. Transbound. Emerg. Dis., 63(1): e103-e108. [Crossref]

23. Venuti, A., Paolini, F., Nasir, L., Corteggio, A., Roperto, S., Campo, M.S. and Borzacchiello, G. (2011) Papillomavirus e5: The smallest oncoprotein with many functions. Mol. Cancer., 10: 140. [Crossref] [PubMed] [PMC]

24. Bocaneti, F., Altamura, G., Corteggio, A., Velescu, E., Roperto, F. and Borzacchiello, G. (2016) Bovine papillomavirus: New insights into an old disease. Transbound. Emerg. Dis., 63(1): 14-23. [Crossref] [PubMed]

25. Jangir, B.L., Bind, R.B., Kumar, P. and Somvanshi, R. (2017) Pathological studies and detection of different bovine papillomavirus types in buffalo cutaneous warts. Turk. J. Vet. Anim. Sci., 41: 306-311. [Crossref]

26. Somvanshi, R. (2011) Papillomatosis in buffaloes: A less-known disease. Transbound. Emerg. Dis., 58(4): 327-332. [Crossref] [PubMed]

27. Maiolino, P., Ozkul, A., Sepici-Dincel, A., Roperto, F., Yucel, G., Russo, V., Urraro C., Luca, R., Riccardi, M.G., Martano, M., Borzacchiello, G., Esposito, I. and Roperto, S. (2013) Bovine Papillomavirus Type 2 infection and microscopic patterns of urothelial tumors of the urinary bladder in water buffaloes. Biomed. Res. Int., 2013: 1-6. [Crossref] [PubMed] [PMC]

28. Roperto, S., Russo, V., Ozkul, A., Corteggio, A., Sepici-Dincel, A., Catoi, C., Esposito, I., Riccardi, M.G., Urraro, C., Luca, R., Ceccarelli, D.M, Longo, M. and Roperto, F. (2013) Productive infection of bovine papillomavirus Type 2 in the urothelial cells of naturally occurring urinary bladder tumors in cattle and water buffaloes. PLoS One, 8(5): e62227. [Crossref]

29. Silvestre, O., Borzacchiello, G., Nava, D., Iovane, G., Russo, V., Vecchio, D., D'ausilio, F., Gault, E.A., Campo, M.S. and Paciello, O. (2009) Bovine papillomavirus Type 1 DNA and e5 oncoprotein expression in water buffalo fibropapillomas. Vet. Pathol., 46(4): 636-641. [Crossref] [PubMed]

30. Brandstetter, T., Bohmer, S., Prucker, O., Bisse, E., Zur Hausen, A., Alt-Morbe, J. and Ruhe, J. (2010) A polymer-based DNA biochip platform for human papillomavirus genotyping. J. Virol. Methods, 163(1): 40-48. [Crossref] [PubMed]

31. Qu, W., Jiang, G., Cruz, Y., Chang, C.J. and Ho, G.Y. (1997) PCR detection of human papillomavirus: Comparison between MY09/MY11 and GP5+/GP6+primer systems. J. Clin. Microbiol., 35(6): 1304-1310. [PubMed] [PMC]

32. Szostek, S., Klimek, M., Zawilinska, B., Rys, J., Kopec, J. and Daszkiewicz, E. (2006) Detection of human papillomavirus in cervical cell specimens by hybrid capture and PCR with different primers. Acta Biochim. Pol. 53(3): 603-607. [PubMed]

33. Camargo, M., Soto-De Leon, S., Sanchez, R., Munoz, M., Vega, E., Beltran, M., Perez-Prados, A., Patarroyo, M.E. and Patarroyo, M.A. (2011) Detection by PCR of human papillomavirus in Colombia: Comparison of GP5+/6+ and MY09/11 primer sets. J. Virol. Methods, 178(1-2): 68-74. [Crossref] [PubMed]

34. Lunardi M., De Alcantara B.K., Otonel R.A., Rodrigues, W.B., Alfieri, A.F. and Alfieri, A.A. (2013) Bovine papillomavirus Type 13 DNA in equine sarcoids. J. Clin. Microbiol., 51(7): 2167-2171. [Crossref] [PubMed] [PMC]

35. Koch, C., Ramsauer, A.S., Drogemuller, M., Ackermann, M., Gerber, V. and Tobler, K. (2018) Genomic comparison of bovine papillomavirus 1 isolates from bovine, equine and asinine lesional tissue samples. Virus Res., 244: 6-12. [Crossref] [PubMed]

36. De Villiers, E.M., Fauquet, C., Broker, T.R.., Bernard, H.U. and Zur Hausen, H. (2004) Classification of papillomaviruses. Virology, 324: 17-27. [Crossref] [PubMed]

37. Maeda, Y., Shibahara, T., Wada, Y., Kadota, K., Kanno, T., Uchida, I. and Hatama, S. (2007) An outbreak of teat papillomatosis in cattle caused by bovine papilloma virus (BPV) Type 6 and unclassified BPVs. Vet. Microbiol., 121(3-4): 242-248. [Crossref] [PubMed]

38. Lunardi, M., De Camargo T.C., Alfieri, A.F., De Alcantara, B.K., Vilas-Boas, L.A., Otonel, R.A., Headley, S.A. and Alfieri, A.A. (2016) Genetic diversity of bovine papillomavirus types, including two putative new types, in teat warts from dairy cattle herds. Arch. Virol., 161(6): 1569-1577. [Crossref] [PubMed]