doi: 10.14202/vetworld.2018.809-818
Share this article on [Facebook] [LinkedIn]
Article history: Received: 23-02-2018, Accepted: 01-05-2018, Published online: 19-06-2018
Corresponding author: Pradeep Kumar Malik
E-mail: malikndri@gmail.com
Citation: Baruah L, Malik PK, Kolte AP, Dhali A, Bhatta R (2018) Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro, Veterinary World, 11(6): 809-818.Aim: The aim of the study was to explore the anti-methanogenic potential of phyto-sources from Northeast region of the country and assess the effect on rumen fermentation characteristics and protozoa for their likely inclusion in animal diet to reduce methane emission.
Materials and Methods: Twenty phyto-sources were collected from Northeast state, Assam, during March to April 2014. Phyto-sources were analyzed for their tannin content followed by screening for methane mitigation potential using in vitro system. The effect of tannin on methane production and other fermentation parameters was confirmed by attenuating the effect of tannin with polyethylene glycol (PEG)-6000 addition. About 200 mg dried phyto-source samples were incubated for 24 h in vitro, and volume of gas produced was recorded. The gas sample was analyzed on gas chromatograph for the proportion of methane in the sample. The effect of phyto-sources on rumen fermentation characteristics and protozoal population was determined using standard methodologies.
Results: Results from studies demonstrated that Litchi chinensis, Melastoma malabathricum, Lagerstroemia speciosa, Terminalia chebula, and Syzygium cumini produced comparatively less methane, while Christella parasitica, Leucas linifolia, Citrus grandis, and Aquilaria malaccensis produced relatively more methane during in vitro incubation. An increase (p<0.05) in gas and methane production from the phyto-sources was observed when incubated with PEG-6000. Entodinimorphs were prominent ciliates irrespective of the phyto-sources, while holotrichs represented only small fraction of protozoa. An increase (p<0.05) in total protozoa, entodinimorphs, and holotrichs was noted when PEG-6000 added to the basal substrate. Our study confirmed variable impact of phyto-sources on total volatile fatty acid production and ammonia-N.
Conclusion: It may be concluded that L. chinensis, M. malabathricum, L. speciosa, S. cumini, and T. chebula are having potent methane suppressing properties as observed in vitro in 24 h. These leaves could be supplemented in the animal diet for reducing methane emission; however, in vivo trials are warranted to confirm the methane inhibitory action and optimize the level of supplementation.
Keywords: methane, phyto-sources, protozoa, rumen fermentation, tannin.
1. Johnson, K.A. and Johnson, D.E. (1995) Methane emissions from cattle. J. Anim. Sci., 73(8): 2483-2492. [Crossref]
2. Guan, H., Wittenberg, K.M., Ominski, K.H. and Krause, D.O. (2006) Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci., 84(7): 1896-1906. [Crossref] [PubMed]
3. Malik, P.K., Bhatta, R., Soren, N.M., Sejian, V., Mech, A., Prasad, K.S. and Prasad, C.S. (2015) Feed Based Approaches in Enteric Methane Amelioration. Livestock Production and Climate Change. CAB International, Wallingford. p336-359. [Crossref]
4. Malik, P.K., Kolte, A.P., Dhali, A., Sejian, V., Thirumalaisamy, G., Gupta, R. and Bhatta, R. (2016) GHG emissions from Livestock: Challenges and ameliorative measures to counter adversity. In Greenhouse Gases-Selected Case Studies. InTech, Janeza Trdine 9, 51000 Rijeka, Croatia.
5. Guo, Y.Q., Liu, J.X., Lu, Y., Zhu, W.Y., Denman, S.E. and McSweeney, C.S. (2008) Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol., 47(5): 421-426. [Crossref] [PubMed]
6. Bhatta, R., Saravanan, M., Baruah, L. and Sampath, K.T. (2012) Nutrient content, in vitro ruminal fermentation characteristics and methane reduction potential of tropical tannin-containing leaves. J. Sci. Food Agric., 92(15): 2929-2935. [Crossref] [PubMed]
7. Patra, A.K. and Yu, Z. (2012) Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol., 78(12): 4271-4280. [Crossref] [PubMed] [PMC]
8. Bhatta, R., Baruah, L., Saravanan, M., Suresh, K.P. and Sampath, K.T. (2013) Effect of medicinal and aromatic plants on rumen fermentation, protozoa population and methanogenesis in vitro. J. Anim. Physiol. Anim. Nutr., 97(3): 446-456. [Crossref] [PubMed]
9. Pal, K., Patra, A.K. and Sahoo, A. (2015) Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro. Spanian J. Agric. Res., 13(3): 608. [Crossref]
10. Chatterjee, S., Saikia, A., Dutta, P., Ghosh, D., Pangging, G. and Goswami, A.K. (2006) Biodiversity Significance of North East India. WWF India, Delhi, India.
11. AOAC. (1995) Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington, DC.
12. Van Soest, P.V., Robertson, J.B. and Lewis, B.A. (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci., 74(10): 3583-3597. [Crossref]
13. Makkar, H.P. (2003) Quantification of tannins in tree and shrub foliage: A laboratory manual. Springer Science and Business Media, New York. [Crossref]
14. Menke, K.H., Raab, L., Salewski, A., Steingass, H., Fritz, D. and Schneider, W. (1979) The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci., 93(01): 217-222. [Crossref]
15. Conway, E.J. (1957) Micro Diffusion Analysis and Volumetric Error. 4th ed. Crossby Lockwood and Son, London, England.
16. Barnett, A.J.G. and Reid, R.L. (1957) Studies on the production of volatile fatty acids from grass and rumen liquor in an artificial rumen 1. Volatile fatty acids production from fresh grasses. J. Agric. Sci., 48: 315-321. [Crossref]
17. Kamra, D.N., Sawal, R.K., Pathak, N.N., Kewalramani, N. and Agarwal, N. (1991) Diurnal variation in ciliate protozoa in the rumen of blackbuck (Antilope cervicapra) fed green forage. Lett. Appl. Microbiol., 13(3): 165-167. [Crossref]
18. IBM SPSS. (2011) Statistics for Windows, Version 20.0. IBM Corp, Armonk, New York.
19. Makkar, H.P.S., Blummel, M. and Becker, K. (1995) Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr., 73(6): 897-913. [Crossref]
20. Silanikove, N., Perevolotsky, A. and Provenza, F.D. (2001) Use of tannin-binding chemicals to assay for tannins and their negative post-ingestive effects in ruminants. Anim. Feed Sci. Technol., 91(1-2): 69-81. [Crossref]
21. Besharati, M. and Taghizadeh, A. (2011) Effect of tannin-binding agents (polyethylene glycol and polyvinylpyrrolidone) supplementation on in vitro gas production kinetics of some grape yield byproducts. ISRN Vet. Sci., 2011: 780540. [Crossref]
22. Haslam, E. (1989). Plant polyphenols: Vegetable tannins revisited. In: Chemistry and Pharmacology of Natural Products. Cambridge University Press, Cambridge.
23. Tang, H.R., Covington, A.D. and Hancock, R.A. (2003). Structure-activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolymers, 70(3): 403-413. [Crossref] [PubMed]
24. Hatew, B., Stringano, E., Mueller-Harvey, I., Hendriks, W.H., Carbonero, C.H., Smith, L.M.J. and Pellikaan, W.F. (2016) Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutr., 100(2): 348-360. [Crossref] [PubMed]
25. Gemeda, B.S. and Hassen, A. (2015) Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian Australas. J. Anim. Sci., 28(2): 188-199. [Crossref]
26. Huyen, N.T., Fryganas, C., Uittenbogaard, G., Mueller-Harvey, I., Verstegen, M.W.A., Hendriks, W.H. and Pellikaan, W.F. (2016) Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci., 154(8): 1474-1487. [Crossref]
27. Barahona, R., Lascano, C.E., Narvaez, N., Owen, E., Morris, P. and Theodorou, M.K. (2003) In vitro degradability of mature and immature leaves of tropical forage legumes differing in condensed tannin and non-starch polysaccharide content and composition. J. Sci. Food Agric., 83(12): 1256-1266. [Crossref]
28. Nsahlai, I.V., Siaw, D.E.K.A. and Osuji, P.O. (1994) The relationships between gas production and chemical composition of 23 browses of the genus Sesbania. J. Sci. Food Agric., 65(1): 13-20. [Crossref]
29. Karabulut, A., Canbolat, O., Ozkan, C.O. and Kamalak, A. (2007) Determination of nutritive value of citrus tree leaves for sheep using in vitro gas production technique. Asian Australas. J. Anim. Sci., 20(4): 529. [Crossref]
30. Ndlovu, L.R. and Nherera, F.V. (1997) Chemical composition and relationship to in vitro gas production of Zimbabwean browsable indigenous tree species. Anim. Feed. Sci. Technol., 69(1-3): 121-129. [Crossref]
31. Patra, A.K. and Saxena, J. (2011) Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food. Agric., 91(1): 24-37. [Crossref] [PubMed]
32. Wen, L., Wu, D., Jiang, Y., Prasad, K.N., Lin, S., Jiang, G., He, J., Zhao, M., Luo, W. and Yang, B. (2014) Identification of flavonoids in litchi (Litchi chinensis Sonn.) leaf and evaluation of anticancer activities. J. Funct. Foods, 6: 555-563. [Crossref]
33. Shukla, R.K., Painuly, D., Porval, A. and Shukla, A. (2014) Proximate analysis, nutritional value, phytochemical evaluation, and biological activity of Litchi chinensis Sonn. leaves. J. Herbs Spices Med. Plants, 20(2): 196-208. [Crossref]
34. Patra, A.K. and Saxena, J. (2010) A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Photochemistry, 71(11-12): 1198-1222. [Crossref] [PubMed]
35. dos Santos, E.T., Pereira, M.L.A., da Silva, C.F.P., Souza-Neta, L.C., Geris, R., Martins, D., Santana, A.E.G., Barbosa, L.C.A., Silva, H.G.O., Freitas, G.C. and Figueiredo, M.P. (2013) Antibacterial activity of the alkaloid-enriched extract from Prosopis juliflora pods and its influence on in vitro ruminal digestion. Int. J. Mol. Sci., 14(4): 8496-8516. [Crossref] [PubMed] [PMC]
36. Hariadi, B.T. and Santoso, B. (2010) Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J. Sci. Food Agric., 90(3): 456-461. [PubMed]
37. Jayanegara, A., Goel, G., Makkar, H.P.S. and Becker, K. (2010) Reduction in methane emissions from ruminants by plant secondary metabolites: Effects of polyphenols and saponins. Sustainable Improvement of Animal Production and Health. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. p151-157.
38. Yang, W.Z., Beauchemin, K.A and Rode, L.M. (2001) Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. J. Dairy Sci., 84(10): 2203-2216. [Crossref]
39. Krause, K.M., Combs, D.K. and Beauchemin, K.A. (2002) Effects of forage particle size and grain fermentability in midlactation cows. II. Ruminal pH and chewing activity. J. Dairy Sci., 85: 1947-1957. [Crossref]
40. Dschaak, C.M., Williams, C.M., Holt, M.S., Eun, J.S., Young, A.J. and Min, B.R. (2011) Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. J. Dairy Sci., 94(5): 2508-2519. [Crossref] [PubMed]
41. Getachew, G., Robinson, P.H., De Peters, E.J. and Taylor, S.J. (2004) Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol., 111(1-4): 57-71. [Crossref]
42. Beuvink, J.M.W. and Spoelstra, S.F. (1992) Interactions between substrate, fermentation end products, buffering systems and gas production upon fermentation of different carbohydrates by mixed rumen microorganisms in vitro. Appl. Microbiol. Biotechnol., 37: 505-509. [Crossref]
43. Moss, A.R., Jouany, J.P. and Newbold, J. (2000) Methane production by ruminants: Its contribution to global warming. Ann. Zootech., 49: 231-253. [Crossref]
44. Santra, A. and Karim, S.A. (2002) Influence of ciliate protozoa on biochemical changes and hydrolytic enzyme profile in the rumen ecosystem. J. Appl. Microbiol., 92(5): 801-811. [Crossref]
45. Makkar, H.P.S., Francis, G. and Becker, K. (2007) Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal, 1: 1371-1391. [Crossref] [PubMed]
46. Bhatta, R., Uyeno, Y., Tajima, K., Takenaka, A., Yabumoto, Y., Nonaka, I., Enishi, O. and Kurihara, M. (2009) Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci., 92(11): 5512-5522. [Crossref] [PubMed]
47. Newbold, C.J., de la Fuente, G., Belanche, A., Ramos-Morales, E. and McEwan, N.R. (2015) The role of ciliate protozoa in the rumen. Front. Microbiol., 6: 1313. [Crossref] [PubMed] [PMC]
48. Deaville, E.R., Green, R.J., Mueller-Harvey, I., Willoughby, I. and Frazier, R.A., (2007) Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths. J. Agric. Food Chem., 55(11): 4554-4561. [Crossref] [PubMed]
49. Gonzalez, S., Pabon, M.L. and Carulla, J. (2005) Effects of tannins on in vitro ammonia release and dry matter degradation of soybean meal. Arch. Latinoam Prod. Anim., 10: 97-101.
50. Bhatta, R., Mani, S., Baruah, L. and Sampath, K.T. (2012) Phenolic composition, fermentation profile, protozoa population and methane production from sheanut (Butryospermum parkii) byproducts in vitro. Asian Australas. J. Anim. Sci., 25(10): 1389-1394. [Crossref] [PubMed] [PMC]
51. Mamat, S.S., Kamarolzaman, M.F.F., Yahya, F., Mahmood, N.D., Shahril, M.S., Jakius, K.F., Mohtarrudin, N., Ching, S.M., Susanti, D., Taher, M. and Zakaria, Z.A. (2013) Methanol extract of Melastoma malabathricum leaves exerted antioxidant and liver protective activity in rats. BMC Complement. Altern. Med., 13(1): 326. [Crossref]
52. Oskoueian, E., Abdullah, N. and Oskoueian, A. (2013) Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed. Res. Int., 2013: 349129. [Crossref] [PubMed] [PMC]
53. Kim, E.T., Le Luo Guan, S.J.L., Lee, S.M., Lee, S.S., Lee, I.D., Lee, S.K. and Lee, S.S. (2015) Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian Australas. J. Anim. Sci., 28(4): 530. [Crossref]
54. Goel, G., Makkar, H.P.S. and Becker, K. (2008) Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J. Appl. Microbiol., 105(3): 770-777. [Crossref] [PubMed]
55. Goel, G. and Makkar, H.P. (2012) Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod., 44(4): 729-739. [Crossref] [PubMed]