doi: 10.14202/vetworld.2018.1277-1284
Share this article on [Facebook] [LinkedIn]
Article history: Received: 30-04-2018, Accepted: 02-08-2018, Published online: 17-09-2018
Corresponding author: Siriwadee Chomdej
E-mail: siriwadee.submission@gmail.com
Citation: Srinarang P, Nganvongpanit K, Pradit W, Buddhachat K, Siengdee P, Soontornvipart K, Chomdej S (2018) Dystroglycan 1: A new candidate gene for patellar luxation in Chihuahua dogs, Veterinary World, 11(9): 1277-1284.Aim: The objective of this study was to uncover new candidate genes related to patellar luxation (PL) in dogs to select for those with low susceptibility for breeding purposes.
Materials and Methods: The inter simple sequence repeat (ISSR) technique was performed to construct DNA fingerprints of 61 Chihuahua dogs with PL and 30 healthy Chihuahua dogs. DNA polymorphisms were detected by comparing the sequences between the affected and unaffected dogs, using the pairwise alignments in MultAlin. Genotyping was performed using allele-specific polymerase chain reaction (AS-PCR). The association analysis of ISSR DNA fingerprints and genotypes or phenotypes was performed using the Chi-square (χ2) model and generalized linear model (GLM), respectively.
Results: Two single nucleotide polymorphisms (SNPs), namely SNP1UBC811 (g.91175C>G) and SNP2UBC811 (g.92259T>C), were found in the intron of the Dystroglycan 1 (DAG1) gene, which was obtained using the PL-related marker UBC811 primer (p=0.02), and genotyped by AS-PCR. When investigated using the GLM, g.91175C>G had a significant association with PL (p=0.0424), whereas g.92259T>C did not have such an association (p=0.0959).
Conclusion: DAG1 might be one of the genes related to PL in Chihuahuas and could aid the process of marker-assisted selection in genetic breeding for Chihuahua dogs without PL.
Keywords: DNA marker, Dystroglycan 1 gene, inter simple sequence repeat, patellar luxation, single-nucleotide polymorphism.
1. Nganvongpanit, K. and Yano, T. (2011) Prevalence of and risk factors of patellar luxation in dogs in Chiang Mai, Thailand, during the years 2006-2011. Thai J. Vet. Med., 41: 449.
2. Soontornvipart, K., Wangdee, C., Kalpravidh, M., Brahmasa, A., Sarikaputi, M., Temwichitr, J., Lavrijsen, I., Theyse, L., Leegwater, P. and Hazewinkel, H. (2013) Incidence and genetic aspects of patellar luxation in Pomeranian dogs in Thailand. Vet. J., 196: 122-125. [Crossref] [PubMed]
3. Hayes, A.G., Boudrieau, R.J. and Hungerford, L.L. (1994) Frequency and distribution of medial and lateral patellar luxation in dogs: 124 cases (1982-1992). J. Am. Vet. Med. Assoc., 205: 716-720. [PubMed]
4. Lavrijsen, I.C., Leegwater, P.A., Wangdee, C., van Steenbeek, F.G., Schwencke, M., Breur, G.J., Meutstege, F.J., Nijman, I.J., Cuppen, E. and Heuven, H.C. (2014) Genome-wide survey indicates involvement of loci on canine chromosomes 7 and 31 in patellar luxation in flat-coated retrievers. BMC Genet., 15: 64. [Crossref] [PubMed] [PMC]
5. Wangdee, C., Leegwater, P., Heuven, H., van Steenbeek, F., Techakumphu, M. and Hazewinkel, H. (2017) Population genetic analysis and genome-wide association study of patellar luxation in a Thai population of Pomeranian dogs. Res. Vet. Sci., 111: 9-13. [Crossref] [PubMed]
6. Lavrijsen, I.C., Heuven, H.C., Breur, G.J., Leegwater, P.A., Meutstege, F.J. and Hazewinkel, H.A. (2013) Phenotypic and genetic trends of patellar luxation in Dutch flat-coated retrievers. Anim. Genet., 44: 736-741. [Crossref] [PubMed]
7. Chomdej, S., Kuensaen, C., Pradit, W. and Nganvongpanit, K. (2014) Detection of DNA markers in dogs with patellar luxation by high annealing temperature-random amplified polymorphic DNA analysis. Kafkas Univ. Vet. Fakul. Derg., 20: 6.
8. Ratnaparkhe, M., Tekeoglu, M. and Muehlbauer, F. (1998) Inter-simple-sequence-repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor. Appl. Genet., 97: 515-519. [Crossref]
9. Vijayan, K. (2005) Inter simple sequence repeat (ISSR) polymorphism and its application in mulberry genome analysis. Int. J. Indust. Entomol., 10: 79-86.
10. Hu, J., Nakatani, M., Lalusin, A.G., Kuranouchi, T. and Fujimura, T. (2003) Genetic analysis of sweet potato and wild relatives using inter-simple sequence repeats (ISSRs). Breed. Sci., 53: 297-304. [Crossref]
11. Seltman, H., Roeder, K. and Devlin, B. (2003) Evolutionary-based association analysis using haplotype data. Genet. Epidemiol., 25: 48-58. [Crossref] [PubMed]
12. Moran, C.N., Yang, N., Bailey, M.E., Tsiokanos, A., Jamurtas, A., MacArthur, D.G., North, K., Pitsiladis, Y.P. and Wilson, R.H. (2007) Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur. J. Hum. Genet., 15: 88. [Crossref] [PubMed]
13. Ibraghimov-Beskrovnaya, O., Ervasti, J.M., Leveille, C.J., Slaughter, C.A., Sernett, S.W. and Campbell, K.P. (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature, 355: 696. [Crossref] [PubMed]
14. Sweeney, H.L. and Barton, E.R. (2000) The dystrophin-associated glycoprotein complex: What parts can you do without? Proc. Natl. Acad. Sci., 97: 13464-13466. [Crossref] [PubMed] [PMC]
15. Cohn, R.D., Henry, M.D., Michele, D.E., Barresi, R., Saito, F., Moore, S.A., Flanagan, J.D., Skwarchuk, M.W., Robbins, M.E., Mendell, J.R., Williamson, R.A. and Campbell, K.P. (2002) Disruption of dag1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell, 110: 639-648. [Crossref]
16. Singhal, N. and Martin, P.T. (2011) Role of extracellular matrix proteins and their receptors in the development of the vertebrate neuromuscular junction. Dev. Neurobiol., 71: 982-1005. [Crossref] [PubMed] [PMC]
17. Johnson, E.K. (2012) A New Model for the Dystrophin Associated Protein Complex in Striated Muscles. The Ohio State University, Ohio.
18. Lommel, M., Willer, T. and Strahl, S. (2008) POMT2, a key enzyme in walker-warburg syndrome: Somatic sPOMT2, but not testis-specific tPOMT2, is crucial for mannosyltransferase activity in vivo. Glycobiology, 18: 615-625. [Crossref] [PubMed]
19. Biancheri, R., Bertini, E., Falace, A., Pedemonte, M., Rossi, A., D'Amico, A., Scapolan, S., Bergamino, L., Petrini, S., Cassandrini, D., Broda, P., Manfredi, M., Zara, F., Santorelli, FM., Minetti, C. and Bruno C. (2006) POMGnT1 mutations in congenital muscular dystrophy: Genotype-phenotype correlation and expanded clinical spectrum. Arch. Neurol., 63: 1491-1495. [Crossref] [PubMed]