Open Access
Review (Published online: 06-04-2019)
5. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance
Saleh Mohammed Jajere
Veterinary World, 12(4): 504-521

Saleh Mohammed Jajere: Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, PMB 1069, Maiduguri, Borno State, Nigeria.

doi: 10.14202/vetworld.2019.504-521

Share this article on [Facebook] [LinkedIn]

Article history: Received: 19-12-2018, Accepted: 11-02-2019, Published online: 06-04-2019

Corresponding author: Saleh Mohammed Jajere

E-mail: drmsjajere@unimaid.edu.ng

Citation: Jajere SM (2019) A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance, Veterinary World, 12(4):504-521.
Abstract

Salmonella genus represents the most common foodborne pathogens frequently isolated from food-producing animals that is responsible for zoonotic infections in humans and animal species including birds. Thus, Salmonella infections represent a major concern to public health, animals, and food industry worldwide. Salmonella enterica represents the most pathogenic specie and includes >2600 serovars characterized thus far. Salmonella can be transmitted to humans along the farm-to-fork continuum, commonly through contaminated foods of animal origin, namely poultry and poultry-related products (eggs), pork, fish etc. Some Salmonella serovars are restricted to one specific host commonly referred to as "host-restricted" whereas others have broad host spectrum known as "host-adapted" serovars. For Salmonella to colonize its hosts through invading, attaching, and bypassing the host's intestinal defense mechanisms such as the gastric acid, many virulence markers and determinants have been demonstrated to play crucial role in its pathogenesis; and these factors included flagella, capsule, plasmids, adhesion systems, and type 3 secretion systems encoded on the Salmonella pathogenicity island (SPI)-1 and SPI- 2, and other SPIs. The epidemiologically important non-typhoidal Salmonella (NTS) serovars linked with a high burden of foodborne Salmonella outbreaks in humans worldwide included Typhimurium, Enteritidis, Heidelberg, and Newport. The increased number of NTS cases reported through surveillance in recent years from the United States, Europe and low- and middle-income countries of the world suggested that the control programs targeted at reducing the contamination of food animals along the food chain have largely not been successful. Furthermore, the emergence of several clones of Salmonella resistant to multiple antimicrobials worldwide underscores a significant food safety hazard. In this review, we discussed on the historical background, nomenclature and taxonomy, morphological features, physical and biochemical characteristics of NTS with a particular focus on the pathogenicity and virulence factors, host specificity, transmission, and antimicrobial resistance including multidrug resistance and its surveillance.

Keywords: Enteritidis, foodborne pathogens, Heidelberg, multidrug-resistant, pathogenicity and virulence factors, Salmonella enterica, Typhimurium.

References

1. Lee, K.M., Runyon, M., Herrmanm, T.J., Phillips, R. and Hsieh, J. (2015) Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control, 47(2015): 264-276. [Crossref]

2. Newell, D.G., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., Opsteegh, M., Langelaar, M., Threfall, J., Scheutz, F., van der Giessen, J. and Kruse, H. (2010) Food-borne diseases the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol., 139(1): S3-S15. [Crossref] [PubMed]

3. Putturu, R., Eevuri, T., Ch, B. and Nelapati, K. (2015) Salmonella enteritidis-foodborne pathogen-a review. Int. J. Pharm Biol. Sci., 5(1): 86-95.

4. Alzwghaibi, A.B., Yahyaraeyat, R., Fasaei, B.N., Langeroudi, A.G. and Salehi, T.Z. (2018) Rapid molecular identification and differentiation of common Salmonella serovars isolated from poultry, domestic animals and foodstuff using multiplex PCR assay. Arch. Microbiol., 200(7): 1009-1016. [Crossref] [PubMed]

5. Eguale, T. (2018) Non-typhoidal Salmonella serovars in poultry farms in central Ethiopia: Prevalence and antimicrobial resistance BMC Vet. Res., 14(1): 217. [Crossref]

6. Zishiri, O.T., Mkhize, N. and Mukaratirwa, S. (2016) Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil. Onderstepoort J. Vet. Res., 83(1): e1-e11. [Crossref] [PubMed] [PMC]

7. Velasquez, C.G., MacKlin, K.S., Kumar, S., Bailey, M., Ebner, P.E., Oliver, H.F., Martin-Gonzalez, F.S. and Singh, M. (2018) Prevalence and antimicrobial resistance patterns of Salmonella isolated from poultry farms in Southeastern United States. Poult. Sci., 97(6): 2144-2152. [Crossref] [PubMed]

8. Ed-dra, A., Filali, F.R., Karraouan, B., El Allaoui, A., Aboulkacem, A. and Bouchrif, B. (2017) Prevalence, molecular and antimicrobial resistance of Salmonella isolated from sausages in Meknes, Morocco. Microb. Pathog., 105: 340-345. [Crossref] [PubMed]

9. Odoch, T., Wasteson, Y., L'Abee-Lund, T., Muwonge, A., Kankya, C., Nyakarahuka, L., Tegule, S. and Skjerve, E. (2017) Prevalence, antimicrobial susceptibility and risk factors associated with non-typhoidal Salmonella on Ugandan layer hen farms. BMC Vet. Res., 13(1): 365. [Crossref]

10. Mezal, E.H., Sabol, A., Khan, M.A., Ali, N., Stefanova, R. and Khan, A.A. (2014) Isolation and molecular characterization of Salmonella enterica serovar Enteritidis from poultry house and clinical samples during 2010. Food Microbiol., 38: 67-74. [Crossref] [PubMed]

11. Xiong, D., Song, L., Pan, Z. and Jiao, X. (2018) Identification and discrimination of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum based on a one-step multiplex PCR assay. Front. Microbiol., 9: 1718. [Crossref]

12. Penha Filho, R.A.C., Ferreira, J.C., Kanashiro, A.M.I., Darini, A.L.C. and Berchieri, J.A. (2016) Antimicrobial susceptibility of Salmonella gallinarum and Salmonella Pullorum isolated from ill poultry in Brazil. Ciencia Rural, 46(3): 513-518. [Crossref]

13. Eriksson, H., Soderlund, R., Ernholm, L., Melin, L. and Jansson, D.S. (2018) Diagnostics, epidemiological observations and genomic subtyping in an outbreak of pullorum disease in non-commercial chickens. Vet. Microbiol., 217: 47-52. [Crossref] [PubMed]

14. Yue, M. and Schifferli, D.M. (2013) Allelic variation in Salmonella: An underappreciated driver of adaptation and virulence. Front. Microbiol., 4: 419.

15. Niki, M., Shakeel, A., Zahid, K. and Konstantinos, C.K (2017) Prevalence, Risks and Antibiotic Resistance of Salmonella in Poultry Production Chain. In: Current Topics in Salmonella and Salmonellosis. InTechOpen, London, United Kingdom p216-234.

16. Elkenany, R.M., Eladl, A.H. and El-Shafei, R.A. (2018) Genetic characterization of class 1 integrons among multidrug-resistant Salmonella serotypes in broiler chicken farms. J. Glob. Antimicrob. Resist., 14: 202-208. [Crossref] [PubMed]

17. Liljebjelke, K.A., Hofacre, C.L., White, D.G., Ayers, S., Lee, M.D. and Maurer, J.J. (2017) Diversity of antimicrobial resistance phenotypes in Salmonella isolated from commercial poultry farms. Front. Vet. Sci., 4: 96. [Crossref] [PubMed] [PMC]

18. Iwamoto, M., Reynolds, J., Karp, B.E., Tate, H., Fedorka-Cray, P.J., Plumblee, J.R., Hoekstra, R.M., Whichard, J.M. and Mahon, B.E. (2017) Ceftriaxone-resistant nontyphoidal Salmonella from humans, retail meats, and food animals in the United States, 1996-2013. Foodborne Pathog. Dis., 14(2): 74-83. [Crossref] [PubMed]

19. Faruq, A.A., Hassan, M.M., Uddin, M.M., Rahman, M.L., Rakib, T.M., Alam, M. and Islam, A. (2016) Prevalence and multidrug resistance pattern of Salmonella isolated from resident wild birds of Bangladesh. Int. J. One Health, 2: 35-41. [Crossref]

20. Omoshaba, E.O., Olufemi, F.O., Ojo, O.E., Sonibare, A.O. and Agbaje, M. (2017) Multidrug-resistant Salmonellae isolated in Japanese quails reared in Abeokuta, Nigeria. Trop. Anim. Health Prod., 49(7): 1455-1460. [Crossref] [PubMed]

21. Migura-Garcia, L., Ramos, R. and Cerda-Cuellar, M. (2017) Antimicrobial resistance of Salmonella serovars and Campylobacter spp. Isolated from an opportunistic gull species, yellow-legged gull (Larus michahellis). J. Wildl. Dis., 53(1): 148-152. [Crossref] [PubMed]

22. Anjum, M.F., Duggett, N.A., AbuOun, M., Randall, L., Nunez-Garcia, J., Ellis, R.J., Rogers, J., Horton, R., Brena, C., Williamson, S., Martelli, F., Davies, R. and Teale, C. (2016) Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. J. Antimicrob. Chemother., 71(8): 2306-2313. [Crossref] [PubMed]

23. Phoon, Y.W., Chan, Y.Y.C. and Koh, T.H. (2015) Isolation of multidrug-resistant Salmonella in Singapore. Singapore Med. J., 56(8): 142-144. [Crossref] [PubMed] [PMC]

24. Andoh, L.A., Ahmed, S., Olsen, J.E., Obiri-Danso, K., Newman, M.J., Opintan, J.A., Barco, L. and Dalsgaard, A. (2017) Prevalence and characterization of Salmonella among humans in Ghana. Trop. Med. Health, 45: 3. [Crossref] [PubMed] [PMC]

25. Afema, J.A., Mather, A.E. and Sischo, W.M. (2015) Antimicrobial resistance profiles diversity in Salmonella from humans cattle, 2004-2011. Zoonoses Public Health, 62(7): 506-517. [Crossref] [PubMed]

26. Brands, D.A., Inman, A.E., Gerba, C.P., Mare, C.J., Billington, S.J., Saif, L.A., Levine, J.F. and Joens, L.A. (2005) Prevalence of Salmonella spp. In oysters in the United States. Appl. Environ. Microbiol., 71(2): 893-897. [Crossref] [PubMed] [PMC]

27. Chao, G., Zhou, X., Jiao, X., Qian, X. and Xu, L. (2007) Prevalence and antimicrobial resistance of foodborne pathogens isolated from food products in China. Foodborne Pathog. Dis., 4(3): 277-284. [Crossref] [PubMed]

28. Gebreyes, W.A. and Thakur, S. (2005) Multidrug-resistant Salmonella enterica serovar Muenchen from pigs and humans and potential interserovar transfer of antimicrobial resistance. Antimicrob. Agents Chemother., 49(2): 503-511. [Crossref] [PubMed] [PMC]

29. Glenn, L.M., Lindsey, R.L., Folster, J.P., Pecic, G., Boerlin, P., Gilmour, M.W., Harbottle, H., Zhao, S., McDermott, P.F. and Fedorka-Cray, P.J. (2013) Antimicrobial resistance genes in multidrug-resistant Salmonella enterica isolated from animals, retail meats, and humans in the United States and Canada. Microb. Drug Resist., 19(3): 175-184. [Crossref] [PubMed] [PMC]

30. Voss-Rech, D., Potter, L., Vaz, C.S.L., Pereira, D.I.B., Sangioni, L.A., Vargas, A.C. and de Avila, B.S. (2017) Antimicrobial resistance in nontyphoidal Salmonella isolated from human and poultry-related samples in Brazil: 20-year meta-analysis. Foodborne Pathog. Dis., 14(2): 116-124. [Crossref] [PubMed]

31. Michael, G.B. and Schwarz, S. (2016) Antimicrobial resistance in zoonotic nontyphoidal Salmonella: An alarming trend? Clin. Microbiol. Infect., 22(12): 968-974. [Crossref] [PubMed]

32. Shrestha, K.L., Pant, N.D., Bhandari, R., Khatri, S., Shrestha, B. and Lekhak, B. (2016) Re-emergence of the susceptibility of the Salmonella spp. Isolated from blood samples to conventional first-line antibiotics. Antimicrob. Resist. Infect. Control, 5(2016): 22. [Crossref] [PubMed] [PMC]

33. Angelo, K.M., Reynolds, J., Karp, B.E., Hoekstra, R.M., Scheel, C.M. and Friedman C. (2016) Antimicrobial resistance among nontyphoidal Salmonella isolated from blood in the United States, 2003-2013. J. Infect. Dis., 214(10): 1565-1570. [Crossref] [PubMed]

34. Majowicz, S.E., Musto, J., Scallan, E., Angulo, F.J., Kirk, M., O'Brien, S.J., Jones, T.F., Fazil, A. and Hoekstra, R.M (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin. Infect. Dis., 50(6): 882-889. [Crossref] [PubMed]

35. Prestinaci, F., Pezzotti, P. and Pantosti, A. (2015) Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 109(7): 309-318. [Crossref] [PubMed] [PMC]

36. Li, B., Liu, C., Liu, L., Li, S., Fan, N., Hou, H., Jin, J. and Xing, Y. (2018) Prevalence and etiologic agent of Salmonella in livestock and poultry meats in Huai'an City during 2015-2016. Wei Sheng Yan Jiu, 47(2): 260-300. [PubMed]

37. Adhikari, S.K., Gyawali, A., Shrestha, S., Shrestha, S.P., Prajapati, M. and Raj, D. (2018) Molecular confirmation of Salmonella Typhimurium in poultry from Kathmandu valley. J. Nepal Agric. Res. Counc., 4(1): 86-89. [Crossref]

38. Shah, D.H., Paul, N.C., Sischo, W.C., Crespo, R. and Guard, J (2017) Microbiology and food safety: Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult. Sci., 96(3): 687-702. [PubMed]

39. Tarabees, R., Elsayed, M.S.A., Shawish, R., Basiouni, S. and Shehata, A.A. (2017) Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt. J. Infect. Dev. Ctries., 11(4): 314-319. [Crossref] [PubMed]

40. Fagbamila, I.O., Barco, L., Mancin, M, Abdu, P.A., Kabir, J., Umoh, J., Ricci, A. and Muhammad, M. (2017) Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS One, 12(3): e0173097. [Crossref]

41. Krawiec, M., Kuczkowski, M., Kruszewicz, A.G. and Wieliczko, A. (2015) Prevalence and genetic characteristics of Salmonella in free-living birds in Poland. BMC Vet. Res., 11: 15. [Crossref] [PubMed] [PMC]

42. Myskova, P. and Iskova, R.K. (2017) Prevalence and characteristics of Salmonella in retail poultry and pork meat in the Czech Republic in 2013-2014. Czech J. Food Sci., 35(2): 106-112. [Crossref]

43. Ronnqvist, M., Valttila, V., Ranta, J. and Tuominen, P. (2018) Salmonella risk to consumers via pork is related to the Salmonella prevalence in pig feed. Food Microbiol., 71(2018): 93-97. [Crossref] [PubMed]

44. Cummings, K.J., Rodriguez-Rivera, L.D., Grigar, M.K., Rankin, S.C., Mesenbrink, B.T., Leland, B.R. and Bodenchuk, M.J. (2016) Prevalence and characterization of Salmonella isolated from feral pigs throughout Texas. Zoonoses Public Health, 63(6): 436-441. [Crossref] [PubMed]

45. Afema, J.A. and Sischo, W.M. (2016) Salmonella in wild birds utilizing protected and human-impacted habitats, Uganda. Ecohealth, 13(3): 558-569. [Crossref] [PubMed] [PMC]

46. Mustaffa, S.S., Saleha, A.A. and Jalila, A. (2014) Occurrence of antibiotic-resistant Salmonella and Campylobacter in wild birds. J. Vet. Malaysia, 26(2): 17-19.

47. Botti, V., Valerie, N.F., Domenis, L., Orusa, R., Pepe, E., Robetto, S. and Guidetti, C (2013) Salmonella spp. And antibiotic-resistant strains in wild mammals and birds in North-Western Italy from 2002 to 2010. Vet. Ital., 49(2): 195-202. [PubMed]

48. Grigar, M.K., Cummings, K.J., Rodriguez-Rivera, L.D., Rankin, S.C., Johns, K., Hamer, G.L. and Hamer, S.A. (2016) Salmonella surveillance among great-tailed grackles (Quiscalus mexicanus) and other urban bird species in eastern Texas. Vector-Borne Zoonotic Dis., 16(12): 752-757. [Crossref] [PubMed]

49. Lawson, B., De Pinna, E., Horton, R.A, Macgregor, S.K., John, S.K., Chantrey, J., Duff, J.P. and Kirkwood, J.K. (2014) Epidemiological evidence that garden birds are a source of human salmonellosis in England and Wales. PLoS One, 9(2): e88968. [Crossref]

50. Matias, C.A.R., Pereira, I.A., Reis, E.M.F., Rodrigues, D.P. and Siciliano, S. (2016) Frequency of zoonotic bacteria among illegally traded wild birds in Rio de Janeiro. Braz. J Microbiol., 47(4): 882-888. [Crossref] [PubMed] [PMC]

51. Brobey, B., Kucknoor, A. and Armacost, J. (2017) Prevalence of Trichomonas, Salmonella, and Listeria in wild birds from Southeast Texas. Avian Dis., 61(3): 347-352. [Crossref] [PubMed]

52. Andres-Barranco, S., Vico, J.P., Garrido, V., Samper, S., Herrera-Leon, S., de Frutos C. and Mainar-Jaime, R.C. (2014) Role of wild bird and rodents in the epidemiology of subclinical salmonellosis in finishing pigs. Foodborne Pathog. Dis., 11(9): 689-697. [Crossref] [PubMed]

53. Dang-Xuan, S., Nguyen-Viet, H., Pham-Duc, P., Unger, F., Tran-Thi, N., Grace, D. and Makita, K. (2019) Risk factors associated with Salmonella spp. prevalence along smallholder pig value chains in Vietnam. Int. J. Food Microbiol., 290(1): 105-115. [Crossref] [PubMed]

54. Smith, S.I., Seriki, A. and Ajayi, A. (2016) Typhoidal and non-typhoidal Salmonella infections in Africa. Eur. J. Clin. Microbiol. Infect. Dis., 35(112): 1913-1922. [Crossref] [PubMed]

55. Le Minor, L. (1991) The genus Salmonella. In: Balows, A., Truper, H.G., Dworkin, C., Harder, W. and Scheilfer, K.H., editors. The Prokaryotes. Springer-Varlag, New York. p2760-2774.

56. D'Aoust, J.Y. (1989) Salmonella. In: Doyle, M.P., editor. Foodborne Bacterial Pathogens. Marcel Inc., New York. p327-445.

57. Eng, S.K., Pusparajah, P., Ab Mutalib, N.S., Ser, H.L., Chan, K.G. and Lee, L.H. (2015) Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci., 8(3): 284-293. [Crossref]

58. Popoff, M.Y., Bockemuhl, J. and Gheesling, L.L. (2003) Supplement 2001 (no. 45) to the Kauffmann-White scheme. Res. Microbiol., 154(3): 173-174. [Crossref]

59. Reeves, M.W., Evins, G.M., Heiba, A.A., Plikaytis, B.D. and Farmer, J.J. (1989) Clonal nature of Salmonella Typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis and proposal of Salmonella bongori Comb. J. Clin. Microbiol., 27(2): 313-320. [PubMed] [PMC]

60. Brenner, F.W., Villar, R.G., Angulo, F.J., Tauxe, R. and Swaminathan, B. (2000) Salmonella nomenclature. J. Clin. Microbiol., 38(7): 2465-2467. [PubMed] [PMC]

61. Kauffmann, F. (1941) A Typhoid variant and a new serological variation in the Salmonella group. J. Bacteriol., 41(2): 127-140. [PubMed] [PMC]

62. White, P.B. (1925) Med. Res. Council, Gt. Brit. Spec. Rep. Ser. no. 91.

63. McQuiston, J.R., Fields, P.I., Tauxe, R.V. and Logsdon, J.M. (2008) Do Salmonella carry spare tyres? Trends Microbiol., 16(4): 142-148. [Crossref] [PubMed]

64. Guibourdenche, M., Roggentin, P., Mikoleit, M., Fields, P.I., Bockemuhl, J., Grimont, P.A.D. and Weill, F.X. (2010) Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res. Microbiol., 161(1): 26-29. [Crossref] [PubMed]

65. Popoff, M.Y. and Le Minor, L. (2005) Salmonella. In: Brenner, D.J., Kreig, N.R. and Staley, J.T., editors. Bergey's Manual of Systematic Bacteriology. 2nd ed. Springer, New York, USA. p764-799.

66. Rambach, A. (1990) New plate medium for facilitated differentiation of Salmonella spp. From Proteus spp. And other enteric bacteria. Appl. Environ. Microbiol., 56(1): 301-303. [PubMed] [PMC]

67. Andrews, W.H. and Hammack, T.S. (2001) Salmonella. Bacteriological Analytical Manual. Ch. 5. U.S. Food and Drug Administration, United States.

68. Anderson, R.C. and Ziprin, R.L. (2001) Bacteriology of Salmonella. In: Hui, Y.H., Pierson, M.D. and Gorham, J.R., editors. Foodborne Disease Handbook, Bacterial Pathogens. Marcel Dekker, New York. p247-263.

69. ISO. (2002). Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Detection of Salmonella spp. ISO No. 6579, Geneva, Switzerland.

70. Pui, C.F., Wong, W.C., Chai, L.C., Tunung, R., Jeyaletchumi, P., Noor, H.M.N., Ubong, A., Farinazleen, M.G., Cheah, Y.K. and Son, R. (2011) Salmonella: A foodborne pathogen. Int. Food Res. J., 18(1): 465-473.

71. Gerlach, R.G. and Hensel, M. (2007) Salmonella pathogenicity islands in host specificity, host pathogen-interactions and antibiotics resistance of Salmonella enterica. Berl. Munch. Tierarztl. Wochenschr., 120(7-8): 317-327. [PubMed]

72. Daigle, F. (2008) Typhi genes expressed during infection or involved in pathogenesis. J. Infect. Dev. Ctries., 2(6): 431-437. [Crossref]

73. Sabbagh, S.C., Forest, C.G., Lepage, C., Leclerc, J.M. and Daigle, F. (2010) So similar, yet so different: Uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol. Lett., 305(1): 1-13. [Crossref]

74. Lee, M.D., Curtiss, R. and Peay, T. (1996) The effect of bacterial surface structures on the pathogenesis of Salmonella Typhimurium infection in chickens. Avian Dis., 40(1): 28-36. [Crossref]

75. Foley, S.L., Lynne, A.M. and Nayak, R. (2008) Salmonella challenges: Prevalence in swine and poultry and potential pathogenicity of such isolates. J. Anim. Sci., 86(14): E149-E162. [Crossref]

76. Kaur, J. and Jain, S.K. (2012) Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol. Res., 167(4): 199-210. [Crossref] [PubMed]

77. Schmidt, H. and Hensel, M. (2004) Pathogenicity Islands in bacterial pathogenesis. Clin. Microbiol. Rev., 17(1): 14-56. [Crossref] [PMC]

78. Marcus, S.L., Brumell, J.H., Pfeifer, C.G. and Finlay, B.B. (2000) Salmonella pathogenicity islands: Big virulence in small packages. Microbes Infect., 2(2): 145-156. [Crossref]

79. Foley, S.L. and Lynne, A.M. (2008) Food animal-associated Salmonella challenges: Pathogenicity and antimicrobial resistance. J. Anim. Sci., 86(1): E173-E187. [Crossref]

80. Van Asten, A.J.A. and Van Dijk, J.E. (2005) Distribution of "classic" virulence factors among Salmonella spp. FEMS Immunol. Med. Microbiol., 44(3): 251-259. [Crossref] [PubMed]

81. Stevens, M.P., Humphrey, T.J. and Maskell, D.J. (2009) Molecular insights into farm animal and zoonotic Salmonella infections. Philos. Trans. R. Soc. B. Biol. Sci., 364(1530): 2709-2723. [Crossref] [PubMed] [PMC]

82. Leung, K.Y., Siame, B.A., Snowball, H. and Mok, Y.K. (2011) Type VI secretion regulation: Crosstalk and intracellular communication. Curr. Opin. Microbiol., 14(1): 9-15. [Crossref] [PubMed]

83. Bingle, L.E., Bailey, C.M. and Pallen, M.J. (2008) Type VI secretion: A beginner's guide. Curr. Opin. Microbiol., 11(1): 3-8. [Crossref] [PubMed]

84. Amavisit, P., Lightfoot, D., Browning, G.F. and Markham, P.F. (2003) Variation between pathogenic serovars within Salmonella pathogenicity islands. J. Bacteriol., 185(12): 3624-3635. [Crossref] [PMC]

85. Rotger, R. and Casadesus, J. (1999) The virulence plasmids of Salmonella. Int Microbiol., 2(3): 177-184. [PubMed]

86. Ahmer, B.M.M., Tran, M. and Heffron, F. (1999) The virulence plasmid of Salmonella Typhimurium is self-transmissible. J. Bacteriol., 181(4): 1364-1368. [PubMed] [PMC]

87. Foley, S.L., Johnson, T.J., Ricke, S.C., Nayak, R. and Danzeisen, J. (2013) Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol. Mol. Biol. Rev., 77(4): 582-607. [Crossref] [PubMed] [PMC]

88. Han, J., Lynne, A.M., David, D.E., Tang, H., Xu, J., Nayak, R., Kaldhone, P., Logue, C.M. and Foley, S.L. (2012) DNA sequence analysis of plasmids from multidrug-resistant Salmonella enterica serotype Heidelberg isolates. PLoS One, 7(12): e51160. [Crossref]

89. Johnson, T.J., Thorsness, J.L. and Anderson CP, Williams, D. and Gogarten, J.P. (2010) Horizontal gene transfer of a colV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky. PLoS One, 5(12): e15524. [Crossref]

90. Ashkenazi, S., Cleary, T.G., Murray, B.E., Wanger, A. and Pickering, L.K. (1988) Quantitative analysis and partial characterization of cytotoxin production by Salmonella strains. Infect. Immun., 56(12): 3089-3094. [PubMed] [PMC]

91. Prager, R., Fruth, A. and Tschape, H. (1995) Salmonella enterotoxin (stn) gene is prevalent among strains of Salmonella enterica, but not among Salmonella bongori and other Enterobacteriaceae. FEMS Immunol. Med. Microbiol., 12(1): 47-50. [Crossref] [PubMed]

92. Dehoux, P. and Cossart, P. (1995) Homologies between salmolysin and some bacterial regulatory proteins. Mol. Microbiol., 15(3): 591-592. [Crossref]

93. Kasturi, P.K., Panigrahi, D., Ganguly, N.K., Nayak, N., Ayyagari, A. and Khuller, M. (1991) Enterotoxin production and mouse virulence of clinical isolates of Salmonella Typhimurium strains. Indian J. Med. Res., 93(1): 166-170. [PubMed]

94. Morales, E.R.M., Gonzalez-Valencia, G., Munoz, O. and Torres, J (1993) Production of cytotoxins and enterotoxins by strains of Shigella and Salmonella isolated from children with bloody diarrhea. Arch. Med. Res., 24(1): 13-21.

95. Malik, P., Sharma, V.D. and Chandra, R. (1995) Cytotoxigenicity in Salmonella serovars. Indian J. Exp. Biol., 33(3): 177-181. [PubMed]

96. Rumeu, M.T., Suarez, M.A., Morales, S. and Rotger, R. (1997) Enterotoxin and cytotoxin production by Salmonella Enteritidis strains isolated from gastroenteritis outbreaks. J. Appl. Microbiol., 82(1): 19-31. [Crossref]

97. Ansong, C., Yoon, H., Norbeck, A.D., Gustin, J.K., McDermott, J.E., Mottaz, H.M., Rue, J., Adkins, J.N., Heffron, F. and Smith, R.D. (2008) Proteomics analysis of the causative agent of typhoid fever. J. Proteome Res., 7(2): 546-557. [Crossref] [PubMed]

98. Parker, M.W. and Feil, S.C. (2005) Pore-forming protein toxins: From structure to function. Prog. Biophys. Mol. Biol., 88(1): 91-142. [Crossref] [PubMed]

99. Agrawal, R.K., Singh, B.R., Babu, N. and Chandra, M (2005) Novel haemolysins of Salmonella enterica spp. enterica serovar Gallinarum. Indian J. Exp. Biol., 43(7): 626-630. [PubMed]

100. Shamma, F., Ahsan, N., Mj, I. and Ahsan, C.R. (2016) Environmental factors regulate the hlye gene expression in both S. Typhi and E. coli in a similar way to display haemolytic activity. Bangladesh Med. Res. Counc. Bull., 42(1): 33-38.

101. Singh, B.R., Singh, V.P., Agarwal, M., Sharma, G. and Chandra, M. (2004) Haemolysins of Salmonella, their role in pathogenesis and subtyping of Salmonella serovars. Indian J. Exp. Biol., 42(3): 303-313. [PubMed]

102. Dufresne, K. and Daigle, F. (2017) Salmonella fimbriae: What is the clue to their hairdo? In: Current Topics in Salmonella and Salmonellosis. InTechOpen, London. p59-79.

103. Dufresne, K., Saulnier-Bellemare, J. and Daigle, F. (2018) Functional analysis of the chaperone-usher fimbrial gene clusters of Salmonella enterica serovar Typhi. Front. Cell. Infect. Microbiol., 8: 26. [Crossref]

104. Humphries, A.D., Raffatellu, M., Winter, S., Weening, E.H., Kingsley, R.A., Droleskey, R., Zhang, S., Figueiredo, J., Khare, S., Nunes, J., Adams, L.G., Tsolis, R.M. and Baumler, A.J. (2003) The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol. Microbiol., 48(5): 1357-1376. [Crossref]

105. Townsend, S.M., Kramer, N.E., Edwards, R., Baker, S., Hamlin, N., Simmonds, M., Stevens, K., Maloy, S., Parkhill, J., Dougan, G. and Baumler, A.J. (2001) Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect. Immun., 69(5): 2894-2901. [Crossref] [PubMed] [PMC]

106. Nuccio, S. and Baumler, A. (2007) Evolution of the chaperone/usher assembly pathway: Fimbrial classification goes Greek. Microbiol. Mol. Biol. Rev., 71(4): 551-575. [Crossref] [PubMed] [PMC]

107. Mol, O. and Oudega, B. (1996) Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiol. Rev., 19(1): 25-52. [Crossref] [PubMed]

108. Harris, J.B., Baresch-Bernal, A., Rollins, S.M., Alam, A., LaRocque, R.C., Bikowski, M., Peppercorn, A.F., Handfield, M., Hillman, J.D., Qadri, F., Calderwood, S.B., Hohmann, E., Breiman, R.F., Brooks, W.A. and Ryan, E.T. (2006) Identification of in vivo-induced bacterial protein antigens during human infection with Salmonella enterica serovar Typhi. Infect. Immun., 74(9): 5161-5168. [Crossref] [PubMed] [PMC]

109. Boddicker, J.D., Ledeboer, N.A., Jagnow, J., Jones, B.D. and Clegg, S. (2002) Differential binding to and biofilm formation on HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol. Microbiol., 45(5): 1255-1265. [Crossref]

110. Edwards, R.A., Schifferli, D.M. and Maloy, S.R. (2000) A role for Salmonella fimbriae in intraperitoneal infections. Proc. Natl. Acad. Sci., 97(3): 1258-1262. [Crossref]

111. Chessa, D., Winter, M.G., Jakomin, M. and Baumler, A.J. (2009) Salmonella enterica serotype Typhimurium std fimbriae bind terminal a(1,2)fucose residues in the cecal mucosa. Mol. Microbiol., 71(4): 864-875. [Crossref] [PubMed] [PMC]

112. Humphries, A., Deridder, S. and Baumler, A.J. (2005) Salmonella enterica serotype Typhimurium fimbrial proteins serve as antigens during infection of mice. Infect. Immun., 73(9): 5329-5338. [Crossref] [PubMed] [PMC]

113. Weening, E.H., Barker, J.D., Laarakker, M.C., Humphries, A.D., Tsolis, R.M. and Baumler, A.J. (2005) The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect. Immun., 73(6): 3358-3366. [Crossref] [PubMed] [PMC]

114. Yue, M., Han, X., De Masi, L., Zhu, C., Ma, X., Zhang, J., Wu, R., Schmieder, R., Kaushik, R.S., Fraser, G.P., Zhao, S., McDermott, P.F., Weill, F.X., Mainil, J.G., Arze, C., Fricke, W.F., Edwards, R.A., Brisson, D., Zhang, N.R., Rankin, S.C. and Schifferli, D.M. (2015) Corrigendum: Allelic variation contributes to bacterial host specificity. Nat Commun., 6(2015): 8754. [Crossref] [PubMed] [PMC]

115. Turner, A.K., Lovell, M.A., Hulme, S.D., Zhang-Barber, L. and Barrow, P.A. (1998) Identification of Salmonella Typhimurium genes required for colonization of the chicken alimentary tract and for virulence in newly hatched chicks. Infect. Immun., 66(5): 2099-2106. [PubMed] [PMC]

116. Morgan, E., Campbell, J.D., Rowe, S.C., Bispham, J., Stevens, M.P., Bowen, A.J., Barrow, P.A., Maskell, D.J. and Wallis, T.S. (2004) Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol. Microbiol., 54(4): 994-1010. [Crossref] [PubMed]

117. Carnell, S.C., Bowen, A., Morgan, E., Maskell, D.J., Wallis, T.S. and Stevens, M.P. (2007) Role in virulence and protective efficacy in pigs of Salmonella enterica serovar Typhimurium secreted components identified by signature-tagged mutagenesis. Microbiology, 153(Pt6): 1940-1952. [Crossref] [PubMed]

118. Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck. F., Hautefort, I., Thompson, A., Hinton, J.C. and Van Immerseel, F. (2006) Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol., 72(1): 946-949. [Crossref] [PubMed] [PMC]

119. Evangelopoulou, G., Kritas, S., Govaris, A. and Burriel, A.R. (2013) Animal salmonelloses: A brief review of "host adaptation and host specificity" of Salmonella spp. Vet. World, 6(10): 703-708. [Crossref]

120. Uzzau, S., Leori, G.S., Petruzzi, V., Watson, P.R., Schianchi, G., Bacciu, D., Mazzarello, V., Wallis, T.S. and Rubino, S. (2001) Salmonella enterica serovar-host specificity does not correlate with the magnitude of intestinal invasion in sheep. Infect. Immun., 69(5): 3092-3099. [Crossref] [PubMed] [PMC]

121. Kingsley, R.A. and Baumler, A.J. (2000) Host adaptation and the emergence of infectious disease: The Salmonella paradigm. Mol. Microbiol., 36(5): 1006-1014. [Crossref]

122. Kisiela, D.I., Chattopadhyay, S., Libby, S.J, Karlinsey, J.E., Fang, F.C., Tchesnokova, V., Kramer, J.J., Beskhlebnaya, V., Samadpour, M., Grzymajlo, K., Ugorski, M., Lankau, E.W., Mackie, R.I., Clegg, S. and Sokurenko, E.V. (2012) Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog., 8(6): e1002733. [Crossref]

123. Rabsch, W., Andrews, H.L., Kingsley, R.A., Prager, R., Tschape, H., Adams, L.G. and Baumler, A.J. (2002) Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect. Immun., 70(5): 2249-2255. [Crossref] [PMC]

124. Heithoff, D.M., Shimp, W.R., Lau, P.W., Badie, G., Enioutina, E.Y., Daynes, R.A., Byrne, B.A., House, J.K. and Mahan, M.J. (2008) Human Salmonella clinical isolates distinct from those of animal origin. Appl. Environ. Microbiol., 74(6): 1757-1766. [Crossref] [PubMed] [PMC]

125. Paulin, S.M., Watson, P.R., Benmore, A.R., Stevens, M.P., Jones, P.W., Villarreal-Ramos, B. and Wallis, T.S. (2002) Analysis of Salmonella enterica serotype-host specificity in calves: Avirulence of S. enterica serotype Gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo. Infect. Immun., 70(12): 6788-6797. [Crossref] [PubMed] [PMC]

126. Xu, T., Maloy, S., McGuire, K.L. (2009) Macrophages influence Salmonella host-specificity in vivo. Microb. Pathog., 47(4): 212-222. [Crossref] [PubMed]

127. Singh, B.R. (2013) Effect of aroA, htrA and aroA-htrA deletion mutation on ability of Salmonella Abortusequi to survive and multiply in macrophages. Available from: https://www.notoare.com/index.php/index/explorer/getNoto/10864328. Last accessed on 27-03-2019.

128. Baumler, A.J., Tsolis, R.M., Ficht, T.A. and Adams, L.G. (1998) Evolution of host adaptation in Salmonella enterica. Infect. Immun., 66(10): 4579-4587. [PubMed] [PMC]

129. Su, L.H. and Chiu, C.H. (2007) Salmonella: Clinical importance and evolution of nomenclature. Chang Gung Med. J., 30(3): 210-219. [PubMed]

130. Rebecca, Z.S. and Andrea, M.A. (2017) Preharvest Salmonella risk contamination and the control strategies. In: Current Topics in Salmonella and Salmonellosis. InTechOpen, London. p193-213.

131. Poppe, C., Johnson, R.P., Forsberg, C.M. and Irwin, R.J. (1992) Salmonella Enteritidis and other Salmonella in laying hens and eggs from flocks with Salmonella in their environment. Can. J. Vet. Res., 56(3): 226-232. [PubMed] [PMC]

132. Andres, V.M. and Davies, R.H. (2015) Biosecurity measures to control Salmonella and other infectious agents in pig farms: A review. Compr. Rev. Food Sci. Food Saf., 14(4): 317-335. [Crossref]

133. Gow, A.G., Gow, D.J., Hall, E.J., Langton, D., Clarke, C. and Papasouliotis, K. (2009) Prevalence of potentially pathogenic enteric organisms in clinically healthy kittens in the UK. J. Feline Med. Surg., 11(8): 655-662. [Crossref] [PubMed]

134. Hanson, D.L., Loneragan, G.H., Brown, T.R., Nisbet, D.J., Hume, M.E. and Edrington, T.S. (2016) Evidence supporting vertical transmission of Salmonella in dairy cattle. Epidemiol. Infect., 144(5): 962-967. [Crossref] [PubMed] [PMC]

135. Xu, Y., Tao, S., Hinkle, N., Harrison, M. and Chen, J. (2018) Salmonella, including antibiotic-resistant Salmonella, from flies captured from cattle farms in Georgia, U.S.A. Sci. Total Environ., 616-617(2018): 90-96. [Crossref] [PubMed]

136. Choo, L.C., Saleha, A.A., Wai, S.S. and Fauziah, N. (2011) Isolation of Campylobacter and Salmonella from houseflies (Musca domestica) in a university campus and a poultry farm in Selangor, Malaysia. Trop. Biomed., 28(1): 16-20. [PubMed]

137. Parvez, M.A.K., Marzan, M., Khatun, F., Ahmed, M.F., Mahmud, S.A. and Rahman, S.R. (2016) Isolation of multidrug-resistant pathogenic bacteria from common flies in Dhaka, Bangladesh. J. Entomol., 13(4): 141-147. [Crossref]

138. Ommi, D., Hemmatinezhad, B., Hafshejani, T.T. and Khamesipour, F. (2017) Incidence and antimicrobial resistance of Campylobacter and Salmonella from houseflies (Musca domestica) in kitchens, farms, hospitals and slaughterhouses. Proc. Natl. Acad. Sci. India Sect. B. Biol. Sci., 87(4): 1285-1291. [Crossref]

139. Kich, J.D., Mores, N., Piffer, I.A., Coldebella, A., Amaral, A., Ramminger, L. and Cardoso, M. (2005) Factors associated with seroprevalence of Salmonella in commercial pig herds. Ciencia Rural, 35(2): 398-405. [Crossref]

140. Byarugaba, D.K. (2010) Mechanisms of antimicrobial resistance. In: Sosa, A.J., editor. Antimicrobial Resistance in Developing Countries. Springer Science +Business Media, Berlin. p15-27. [Crossref]

141. Ventola, C.L. (2015) The antibiotic resistance crisis: Part 1: Causes and threats. PT, 40(4): 277-283.

142. World Health Organization. (2015) Global Action Plan on Antimicrobial Resistance. World Health Organization, Geneva.

143. Jelalu, K., Berhanu, S., Sissay, M., Yitagele, T. and Yimer, M. (2015) Antimicrobial resistance patterns of Salmonella in Ethiopia: A review. Afr. J Microbiol. Res., 9(46): 2249-2256. [Crossref]

144. FAO. (2015) Status Report on Antimicrobial Resistance. Food and Agriculture Organization of the United Nations, Rome.

145. Founou, L.L., Founou, R.C. and Essack, S.Y. (2016) Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol., 7: Article no.1881. [Crossref]

146. Araque, M. (2009) Nontyphoid Salmonella gastroenteritis in pediatric patients from urban areas in the city of Merida, Venezuela. J. Infect. Dev. Ctries., 3(1): 28-34. [Crossref]

147. Hur, J., Choi, Y.Y., Park, J.H., Jeon, B.W., Lee, H.S., Kim, A.R. and Lee, J.H. (2011) Antimicrobial resistance, virulence-associated genes, and pulsed-field gel electrophoresis profiles of Salmonella enterica subsp. enterica serovar Typhimurium isolated from piglets with diarrhea in Korea. Can. J. Vet. Res., 75(1): 49-56. [PubMed] [PMC]

148. Singh, S., Yadav, A.S., Singh, S.M. and Bharti, P. (2010) Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res. Int., 43(8): 2027-2030. [Crossref]

149. Garcia-Feliz, C., Collazos, J.A., Carvajal, A., Herrera, S., Echeita, M.A. and Rubio, P. (2008) Antimicrobial resistance of Salmonella enterica isolates from apparently healthy and clinically ill finishing pigs in Spain. Zoonoses Public Health, 55(4): 195-205. [Crossref] [PubMed]

150. Niranjan, H.B. and Bhaskar, M.M. (2017) Drug resistance in nontyphoidal Salmonella - challenges for the future. J. Vet. Med. Res., 4(4).

151. Chang, Q., Wang, W., Regev-Yochay, G., Lipsitch, M. and Hanage, W.P. (2015) Antibiotics in agriculture and the risk to human health: How worried should we be? Evol. Appl., 8(3): 240-245. [Crossref]

152. Da Costa, P.M., Loureiro, L. and Matos, A.J.F. (2013) Transfer of multi-drug resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health, 10(1): 278-294. [Crossref] [PubMed] [PMC]

153. Al Bayssari, C., Dabboussi, F., Hamze, M. and Rolain, J.M. (2015) Emergence of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in livestock animals in Lebanon. J. Antimicrob. Chemother., 70(3): 950-951. [Crossref] [PubMed]

154. Fischer, J., Rodriguez, I., Schmoger, S., Friese, A., Roesler, U., Helmuth R, Guerra, B. (2012) Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm. J. Antimicrob. Chemother., 67(7): 1793-1795. [Crossref] [PubMed]

155. Bae, D., Cheng, C.M. and Khan, A.A. (2015) Characterization of extended-spectrum β-lactamase (ESBL) producing non-typhoidal Salmonella (NTS) from imported food products. Int. J. Food Microbiol., 214(2015): 12-17. [Crossref] [PubMed]

156. Liu, Y.Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L.F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J.H. and Shen, J. (2016) Emergence of plasmid-mediated colistin resistance mechanis mmcr 1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis., 16(2): 161-168. [Crossref]

157. Ren, D., Chen, P., Wang, Y., Wang, J., Liu, H. and Liu, H. (2017) Phenotypes and antimicrobial resistance genes in Salmonella isolated from retail chicken and pork in Changchun, China. J. Food Saf., 37(2): e12314. [Crossref]

158. Montville, T. and Matthews, K. (2008) Food Microbiology: An Introduction. 2nd ed. ASM Press, Washington, USA.

159. Yoke-Kqueen. C., Learn-Han, L., Noorzaleha, A.S., Son, R., Sabrina, S., Jiun-Horng, S. and Chai-Hoon, K. (2008) Characterization of multiple-antimicrobial-resistant Salmonella enterica subsp. enterica isolated from indigenous vegetables and poultry in Malaysia. Lett. Appl. Microbiol., 46(3): 318-324. [Crossref] [PubMed]

160. Singh, R., Yadav, A.S., Tripathi, V. and Singh, R.P. (2013) Antimicrobial resistance profile of Salmonella present in poultry and poultry environment in North India. Food Control, 33(2): 545-548. [Crossref]

161. Asai, T., Namimatsu, T., Osumi, T., Kojima, A., Harada, K., Aoki, H., Sameshima, T. and Takahashi, T. (2010) Molecular typing and antimicrobial resistance of Salmonella enterica subspecies serovar Choleraesuis isolates from diseased pigs in Japan. Comp. Immunol. Microbiol. Infect. Dis., 33(2): 109-119. [Crossref] [PubMed]

162. Singh, B.R. (2012) Prevalence of multiple drug-resistant Salmonella and E. coli in table eggs in North India. Available from: https://www.notoare.com/index.php/index/explorer/getNoto/11636071. Last accessed on 27-03-2019.

163. Ahmed, A.M., Shimamoto, T. and Shimamoto, T. (2014) Characterization of integrons and resistance genes in multidrug-resistant Salmonella enterica isolated from meat and dairy products in Egypt. Int. J. Food Microbiol., 189(2014): 39-44. [Crossref] [PubMed]

164. Rotimi, V.O., Jamal, W., Pal, T., Sovenned, A. and Albert, M.J. (2008) Emergence of CTX-M-15 type extended-spectrum β-lactamase-producing Salmonella spp. in Kuwait and the United Arab Emirates. J. Med. Microbiol., 57(Pt 1): 881-886. [Crossref] [PubMed]

165. Garedew, L., Hagos, Z., Addis, Z., Tesfaye, R. and Zegeye, B. (2015) Prevalence and antimicrobial susceptibility patterns of Salmonella isolates in association with hygienic status from butcher shops in Gondar town, Ethiopia. Antimicrob. Resist. Infect. Control, 4: 21. [Crossref]

166. Moe, A.Z., Paulsen, P., Pichpol, D., Fries, R., Irsigler, H., Baumann, M.P.O. and Oo, K.N. (2017) Prevalence and antimicrobial resistance of Salmonella isolates from chicken carcasses in retail markets in Yangon, Myanmar. J. Food Prot., 80(6): 947-951. [Crossref] [PubMed]

167. Karp, B.E., Tate, H., Plumblee, J.R, Dessai, U., Whichard, J.M., Thacker, E.L., Hale, K.R., Wilson, W., Friedman, C.R. and Griffin, P.M. (2017) National antimicrobial resistance monitoring system: Two decades of advancing public health through integrated surveillance of antimicrobial resistance. Foodborne Pathog. Dis., 14(10): 545-557. [Crossref] [PubMed] [PMC]

168. FDA. (2010) National Antimicrobial Monitoring System-Enteric Bacteria (NARMS): 2007 Executive Summary Report. U.S. Department of Health and Human Services, US Food and Drug Administration, Rokville, MD.

169. NARMS. (2013) NARMS Report for Human Isolates Final Report. National Center for Emerging and Zoonotic Infectious Disease, Atlanta, USA.

170. Hur, J., Jawale, C. and Lee, J.H. (2012) Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Res. Int., 45(2): 819-830. [Crossref]

171. Zhao, S., White, D.G., Friedman, S.L., Glenn, A., Blickenstaff, K., Ayers, S.L., Abbott, J.W., Hall-Robinson, E. and McDermott, P.F. (2008) Antimicrobial resistance in Salmonella enterica serovar Heidelberg isolates from retail meats, including poultry, from 2002 to 2006. Appl. Environ. Microbiol., 74(21): 6656-6662. [Crossref] [PubMed] [PMC]

172. Brisabois, A., Cazin, I., Breuil, J. and Collatz, E. (1997) Surveillance of antibiotic resistance in Salmonella. Eurosurveillance, 2(3): 19-20. [Crossref]

173. Voogd, C.E., van Leeuwen, W.J., Guinee, P.A., Manten, A. and Valkenburg, J.J. (1977) Incidence of resistance to ampicillin, chloramphenicol, kanamycin and tetracycline among Salmonella species isolated in the Netherlands in 1972, 1973 and 1974. Antonie Van Leeuwenhoek, 43(3-4): 269-281. [Crossref]

174. Folster, J.P., Pecic, G., Singh, A, Duval, B., Rickert, R., Ayers, S., Abbott, J., McGlinchey, B., Bauer-Turpin, J., Haro, J., Hise, K., Zhao, S., Fedorka-Cray, P.J., Whichard, J. and McDermott, P.F. (2012) Characterization of extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009. Foodborne Pathog. Dis., 9(7): 638-645. [Crossref] [PubMed] [PMC]

175. Threlfall, E.J., Frost, J.A., Ward, L.R., Rowe, B. (1996) Increasing spectrum of resistance in multiresistant Salmonella Typhimurium. Lancet, 347(9007): 1053-1054. [Crossref]

176. Gebreyes, W.A., Thakur, S., Davies, P.R., Funk, J.A. and Altier, C (2004) Trends in antimicrobial resistance, phage types and integrons among Salmonella serotypes from pigs, 1997-2000. J. Antimicrob. Chemother., 53(6): 997-1003. [Crossref] [PubMed]

177. Rayamajhi, N., Kang, S.G., Kang, M.L., Lee, H.S., Park, K.Y. and Yoo, H.S. (2008) Assessment of antibiotic resistance phenotype and integrons in Salmonella enterica serovar Typhimurium isolated from swine. J. Vet. Med. Sci., 70(10): 1133-1137. [Crossref]

178. Chen, S., Zhao, S., White, D.G., Schroeder, C.M., Lu, R., Yang, H., McDermott, P.F., Ayers, S. and Meng, J. (2004) Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol., 70(1): 1-7. [Crossref]

179. Tauxe, R.V., Doyle, M.P., Kuchenmuller, T., Schlundt, J. and Stein, C.E. (2010) Evolving public health approaches to the global challenge of foodborne infections. Int. J. Food Microbiol., 139(1): 16-28. [Crossref] [PubMed]

180. Olobatoke, R.Y. (2017) Public health burden of non-typhoidal Salmonella strains in sub-Saharan Africa. Int. Res. J. Public Environ. Health, 4(6): 112-119.

181. Saravanan, S., Purushothaman, V., Ramasamy, T., Krishna, G., Sukumar, K., Srinivasan, P., Gowthaman, V., Balusamy, M., Atterbury, R. and Kuchipudi, S.V. (2015) Molecular epidemiology of nontyphoidal Salmonella in poultry and poultry products in India: Implications for human health. Indian J. Microbiol., 55(3): 319-326. [Crossref] [PubMed] [PMC]

182. Crump, J.A, Luby, S.P. and Mintz, E.D. (2004) The global burden of typhoid fever. Bull. World Health Organ., 82(5): 346-353. [PubMed] [PMC]

183. Langridge, G.C., Wain, J. and Nair, S. (2012) Invasive salmonellosis in humans. EcoSal Plus, 5(1). [Crossref] [PubMed]

184. Galanis, E., Fo Wong, D.M.A., Patrick, M.E., Binsztein, N., Cieslik, A., Chalermchaikit, T., Aidara-Kane, A., Ellis, A., Angulo, F.J. and Wegener, H.C. (2006) Web-based surveillance and global Salmonella distribution, 2000-2002. Emerg. Infect. Dis., 12(3): 381-388. [Crossref] [PubMed]

185. USDA. (2013) Foodborne Illness Cost Calculator: Salmonella. Available from: https://www.ers.usda.gov/amber-waves/2013/november/recent-estimates-of-the-cost-of-foodborne-illness-are-in-general-agreement. Last accessed on 07-11-2017.

186. Taitt, C.R., Shubin, Y.S., Angel, R. and Ligler, F.S. (2004) Detection of Salmonella enterica serovar Typhimurium by using a rapid, array-based immunosensor. Appl. Environ. Microbiol., 70(1): 152-158. [Crossref] [PMC]