doi: 10.14202/vetworld.2019.629-637
Share this article on [Facebook] [LinkedIn]
Article history: Received: 04-12-2018, Accepted: 13-03-2019, Published Online: 06-05-2019
Corresponding author: David Gleeson
E-mail: david.gleeson@teagasc.ie
Citation: Fitzpatrick SR, Garvey M, Jordan K, Flynn J, O'Brien B, Gleeson D (2019) Screening commercial teat disinfectants against bacteria isolated from bovine milk using disk diffusion, Veterinary World, 12(5): 629-637.Background and Aim: Teat disinfection is an important tool in reducing the incidence of bovine mastitis. Identifying the potential mastitis-causing bacterial species in milk can be the first step in choosing the correct teat disinfectant product. The objective of this study was to screen commercial teat disinfectants for inhibition against mastitis-associated bacteria isolated from various types of milk samples.
Materials and Methods: Twelve commercially available teat disinfectant products were tested, against 12 mastitis-associated bacteria strains isolated from bulk tank milk samples and bacterial strains isolated from clinical (n=2) and subclinical (n=3) quarter foremilk samples using the disk diffusion method.
Results: There was a significant variation (7-30 mm) in bacterial inhibition between teat disinfection products, with products containing a lactic acid combination (with chlorhexidine or salicylic acid) resulting in the greatest levels of bacterial inhibition against all tested bacteria (p<0.05).
Conclusion: In this study, combined ingredients in teat disinfection products had greater levels of bacterial inhibition than when the ingredients were used individually. The disk diffusion assay is a suitable screening method to effectively differentiate the bacterial inhibition of different teat disinfectant products.
Keywords: bacteria, disk diffusion, mastitis, teat disinfectant.
1. Keane, O.M., Budd, K.E., Flynn, J. and McCoy, F. (2013) Pathogen profile of clinical mastitis in Irish milk-recording herds reveals a complex etiology. Vet. Rec., 173(1): 17. [Crossref] [PubMed]
2. Berry, D.P. and Meaney, W.J. (2006) Interdependence and distribution of subclinical mastitis and intramammary infection among udder quarters in dairy cattle. Prev. Vet. Med., 75(1-2): 81-91. [Crossref] [PubMed]
3. Bradley, A.J. (2002) Bovine mastitis: An evolving disease. Vet. J., 164(2): 116-128. [Crossref]
4. Geary, U., Lopez-Villalobos, N., O'Brien, B., Garrick, D.J. and Shalloo, L. (2013) Examining the impact of mastitis on the profitability of the Irish dairy industry. Irish J Agric. Food Res., 52(2): 135-149.
5. Ruegg, P.L. (2012) New perspectives in udder health management. Vet. Clin. N. Am. Food A., 28(2): 149-163. [Crossref] [PubMed]
6. Barkema, H.W., Schukken, Y.H., Lam, T.J.G., Beiboer, M.L., Benedictus, G. and Brand, A. (1998) Management practices associated with low, medium, and high somatic cell counts in bulk milk. J. Dairy Sci., 81(1): 1917-1927. [Crossref]
7. Nickerson, S.C. (2009) Control of heifer mastitis: Antimicrobial treatment an overview. Vet. Microbiol., 134(1-2): 128-135. [Crossref] [PubMed]
8. Oliver, S.P., Lewis, M.J., King, S.H., Gillespie, B.E., Ingle, T., Matthews, K.R., Dowlen, P.A., Wildman, D.E. and Pankey, J.W. (1991) Efficacy of low concentration iodine postmilking teat disinfectant against contagious and environmental mastitis pathogens in 2 dairy herds. J. Food Prot., 54(9): 737-742. [Crossref]
9. Wesen, D.P. and Schultz, L.H. (1970) Effectiveness of a post-milking teat dip in preventing new udder infections. J. Dairy Sci., 53(10): 1391-1403. [Crossref]
10. NMC. (2017) Current Concepts of Bovine Mastitis. 5th ed. National Mastitis Council, Minnesota, USA.
11. Baumberger, C., Guarin, J.F. and Ruegg, P.L. (2016) Effect of 2 different premilking teat sanitation routines on reduction of bacterial counts on teat skin of cows on commercial dairy farms. J. Dairy Sci., 99(4): 2915-2929. [Crossref] [PubMed]
12. Boddie, R.L., Owens, W.E., Ray, C.H., Nickerson, S.C. and Boddie, N.T. (2002) Germicidal activities of representatives of five different teat dip classes against three bovine Mycoplasma species using a modified excised teat model. J. Dairy Sci., 85(8): 1909-1912. [Crossref]
13. Foret, C.J., Corbellini, C., Young, S. and Janowicz, P. (2005) Efficacy of two iodine teat dips based on reduction of naturally occurring new intramammary infections. J. Dairy Sci., 88(1): 426-432. [Crossref]
14. O'Brien, B., Gleeson, D. and Jordan, K. (2013) Iodine concentrations in milk. Irish J. Agric. Food Res., 52(2): 209-216.
15. Oura, L.Y., Fox, L.K., Warf, C.C. and Kemp, G.K. (2002) Efficacy of two acidified chlorite postmilking teat disinfectants with sodium dodecylbenzene sulfonic acid on prevention of contagious mastitis using an experimental challenge protocol. J. Dairy Sci., 85(1): 252-257. [Crossref]
16. Fox, L.K., Hancock, D.D., Mickelson, A. and Britten, A. (2003) Bulk tank milk analysis: Factors associated with appearance of Mycoplasma Sp. in milk. Vet. Med. B Infect. Dis. Vet. Public Health, 50(5): 235-240. [Crossref]
17. Jayarao, B.M. and Wolfgang, D.R. (2003) Bulk tank milk analysis. A useful tool for improving milk quality and herd udder health. Vet. Clin. North Am. Food Anim. Pract., 19(1): 75-92. [Crossref]
18. Carrillo-Casas, E.M. and Miranda-Morales, R.E. (2012) Bovine mastitis pathogens: Prevalence and effects on somatic cell count. In: Chaiyabutr N, editor. Milk production an up-to-date overview of animal nutrition, management and health. InTech, Rijeka. p359-374.
19. Souza, F., Cunha, A.F., Rosa, D.L.S., Brito, M.A., Guimaraes, A.S., Mendonca, L.E. (2016) Somatic cell count and mastitis pathogen detection in composite and single or duplicate quarter milk samples. Pesqui. Vet. Bras., 36(9): 811-818. [Crossref]
20. Quigley, L., O'Sullivan, O., Stanton, C., Beresford, T.P., Ross, R.P., Fitzgerald, G.F., Cotter, P.D. (2013) The complex microbiota of raw milk. FEMS Microbiol. Rev., 37(5): 664-698. [Crossref] [PubMed]
21. Riffon, R., Sayasith, K., Khalil, H., Dubreuil, P., Drolet, M. and Lagace J. (2001) Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J. Clin. Microbiol., 39(7): 2584-2589. [Crossref] [PubMed] [PMC]
22. Lopez-Benavides, M., LeJune, D., Mateus, C., Faltynowski, A. and Hemling, T.C., editors. (2012) In Vitro Efficacy of Non-Iodine Teat Disinfectants. In: Proceedings of 51st National Mastitis Council Annual Meeting, St. Pete Beach, Florida, USA.
23. ATS. (2014) European Standards (En) Teats Methods. Available from: http://www.ats-labs.com/testing-services/antimicrobial-test-library/european-standards-en-test-methods. Last assessed on 11-10-2018.
24. MSG. (2019) Disinfectant Testing: MSG Laboratories. Available from: https://www.mgslabs.co.uk/Disinfectant-Testing.aspx. Last assessed on 06-02-2019.
25. Garvey, M., Curran, D. and Savage, M. (2017) Efficacy testing of teat dip solutions used as disinfectants for the dairy industry: Antimicrobial properties. Int. J. Dairy Technol., 70(2): 179-187. [Crossref]
26. Keane, O.M., Budd, K.E., Flynn, J. and McCoy, F. (2013) Increased detection of mastitis pathogens by real-time PCR compare to bacterial culture. Vet. Rec., 17(11): 268. [Crossref] [PubMed]
27. Balouiri, M., Sadiki, M. and Ibnsouda, S.K. (2016) Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 6(2): 71-79. [Crossref] [PubMed] [PMC]
28. CLSI. (2015) Performance Standards for Antimicrobial Susceptibility Testing; 25th Information Supplement. Lenexa: Clinical and Laboratory Standards Institute.
29. Enger, B.D., Fox, L.K., Gay, J.M. and Johnson, K.A. (2015) Reduction of teat skin mastitis pathogen loads: Differences between strains, dips and contact times. J. Dairy Sci., 98(2): 1354-1361. [Crossref] [PubMed]
30. Oliver, S.P., King, S.H., Lewis, M.J., Torre, P.M., Matthews, K.R. and Dowlen, H.H. (1990) Efficacy of chlorhexidine as a postmilking teat disinfectant for the prevention of bovine mastitis during lactation. J. Dairy Sci., 73(8): 2230-2235. [Crossref]
31. Boddie, R.L., Nickerson, S.C. and Kemp. G.K. (1994) Efficacy of two barrier teat dips containing chlorous acid germicides against experimental challenge with Staphylococcus aureus and Streptococcus agalactiae. J. Dairy Sci., 77(10): 3192-3197. [Crossref]
32. Schmidt, A.L., Oliver, S.P. and Fydenkevez, M.E. (1984) Evaluation of experimental teat dip containing sodium chlorite and lactic acid by excised teat assay. J. Dairy Sci., 67(12): 3075-3080. [Crossref]
33. Philpot, W.N., Boddie, R.L. and Pankey, J.W. (1978) Hygiene in the prevention of udder infections. IV. Evaluation of teat dips with excised cow teats. J. Dairy Sci., 61(7): 950-955. [Crossref]
34. Miseikiene, R., Rudejeviene, J. and Gerulis, G. (2015) Effect of pre-milking antiseptic treatment on the bacterial contamination of cow teats' skin. Bulg. J. Vet. Med., 18(2): 159-166. [Crossref]
35. Gleeson, D., Flynn, J. and O'Brien, B. (2018) Effect of pre-milking teat disinfection on new mastitis infection rates of dairy cows. Irish Vet. J., 71(11): 1-8. [Crossref] [PubMed] [PMC]
36. Boddie, R.L., Nickerson, S.C. and Adkinson, R.W. (2000) Efficacies of chlorine dioxide and iodophor teat dips during experimental challenge with Staphylococcus aureus and Streptococcus agalactiae. J. Dairy Sci., 83(12): 2975-2979. [Crossref]
37. Watts, J.L., Boddie, R.L., Pankey, J.W. and Nickerson, S.C. (1984) Evaluation of teat dips with excised teats. J. Dairy Sci., 67(9): 2062-2065. [Crossref]
38. Fessler, A.T., Billerbeck, C., Kadlec, K. and Schwarz, S. (2010) Identification and characterization of methicillin-resistant coagulase-negative staphylococci from bovine mastitis. J. Antimicrob. Chemother., 65(8): 1576-1582. [Crossref] [PubMed]
39. Biemer, J.J. (1973) Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann. Clin. Lab. Sci., 3(2): 135-1340.