Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Review
(Published
online: 27-08-2014)
14.
Metabolizable protein systems in ruminant
nutrition: A review - Lalatendu Keshary Das, S. S.
Kundu, Dinesh Kumar and Chander Datt
Veterinary World, 7(8): 622-629
doi:
10.14202/vetworld.2014.622-629
Lalatendu Keshary Das: Veterinary
Dispensary, Kalampur, Kalahandi, Odisha, India; drlalatendu27@gmail.com
S. S. Kundu: Division of Dairy Cattle
Nutrition, National DairyResearch Institute, Karnal, Haryana,
India; sskundu.kln@gmail.com
Dinesh Kumar: Division of Animal
Nutrition, Indian Veterinary Research Institute, Izatnagar, Uttar
Pradesh, India; kr.dinesh7@gmail.com
Chander Datt:
Division of Dairy
Cattle Nutrition, National Dairy Research Institute, Karnal,
Haryana, India; chandatt@gmail.com
Received:
15-05-2014, Revised: 07-07-2014, Accepted: 15-07-2014, Published
online: 27-08-2014
Corresponding author: Lalatendu
Keshary Das, email: drlalatendu27@gmail.com
Abstract
Protein available to ruminants is supplied by both microbial and
dietary sources. Metabolizable protein (MP) is the true protein
which is absorbed by the intestine and supplied by both microbial
protein and protein which escapes degradation in the rumen; the
protein which is available to the animal for maintenance, growth,
fetal growth during gestation, and milk production. Thus, the
concept of balancing ruminant rations basing on only dietary crude
protein (CP) content seems erroneous. In India, ruminant rations
are still balanced for digestible CP and total digestible
nutrients for protein and energy requirements, respectively.
Traditional feed analysis methods such as proximate analysis and
detergent analysis consider feed protein as a single unit and do
not take into account of the degradation processes that occur in
rumen and passage rates of feed fractions from rumen to intestine.
Therefore, the protein requirement of ruminants should include not
only
the dietary protein source, but also the microbial CP from rumen.
The MP systems consider both the factors, thus predict the protein
availability more accurately and precisely. This system is aptly
designed to represent the extent of protein degradation in the
rumen and the synthesis of microbial protein as variable
functions. Feed protein fractions, i.e., rumen degradable protein
and rumen undegradable protein play vital roles in meeting protein
requirements of rumen microbes and host animal, respectively. With
the advent of sophisticated nutrition models such as Cornell net
carbohydrate and protein system, National Research Council,
Agricultural Research Council, Cornell Penn Miner Dairy and Amino
Cow; ration formulation has moved from balancing diets from CP to
MP, a concept that describes the protein requirements of
ruminantsat intestinal level, and which is available to animals
for useful purposes.
Keywords:
digestible crude protein,
metabolizable protein, microbial protein, protein requirement,
total digestible nutrients.
References
1. Datta, D. (2013). Indian fodder management towards 2030: A
case of vision or myopia. Int. J. Manage. Soc. Sci. Res.,
2(2): 33-41. |
|
2. Dikshit, A.K. and Birthal, P.S. (2010). India's livestock
feed demand: Estimates and projections. Agric. Econ. Res.
Rev., 23: 15-28. |
|
3. NRC. (1996). Nutrient Requirements of Beef Cattle. 7th ed.
National Academy Press, Washington, DC. |
|
4. Van Soest, P.J. (1994). Nutritional Ecology of the
Ruminant. 2nd ed. Cornell University Press, Ithaca, New York. |
|
5. Varga, G.A. (2007). Why use metabolizable protein for
ration balancing? Proceedings of Pennsylvania State Dairy
Cattle Nutrition Workshop, Grantville, PA. p. 51-57.
PMid:18297794 |
|
6. Beever, D.E. and Cottrill, B.R. (1994). Protein systems for
feeding ruminant livestock: A European assessment. J. Dairy
Sci., 77(7): 2031-2043.
http://dx.doi.org/10.3168/jds.S0022-0302(94)77148-4 |
|
7. Beever, D.E. (1996). Meeting the protein requirement of
ruminant livestock. S. Afr. J. Anim. Sci., 26(1): 20-26. |
|
8. Schwab, C.G. and Ordway, R.S. (2004). Balancing diets for
amino acids: Implications of production efficiency and feed
costs. Proceedings of Pennsylvania State Dairy Cattle
Nutrition Workshop, Grantville, PA. p1-16. |
|
9. NRC. (2001). Nutrient Requirements of Dairy Cattle. 7th
Revised ed. National Academy Press, Washington, DC. |
|
10. Burroughs, W., Trenkle, A. and Vetter, R.L. (1974). A
system of protein evaluation for cattle and sheep involving
metabolizable protein (amino acids) and urea fermentation
potential of feedstuffs. Vet. Med. Small Anim. Clin., 69(6):
713.
PMid:4494868 |
|
11. ARC. (1984). The Nutrient Requirements of Ruminant
Livestock. Suppl. 1. Commonwealth Agricultural Bureaux,
Slough, UK. |
|
12. NRC. (1985). Ruminant Nitrogen Usage. National Academy
Press, Washington, DC. |
|
13. AFRC. (1992). Technical Committee on Responses to
Nutrients, Report No. 9. Nutritive Requirements of Ruminant
Animals: Protein. Commonwealth Agricultural Bureaux, Slough,
UK. |
|
14. Kebreab, E., France, J., Mills, J.A.N., Allison, R. and
Dijkstra, J. (2002). A dynamic model of N metabolism in the
lactating dairy cow and an assessment of impact of N excretion
on the environment. J. Anim. Sci., 80: 248-259.
PMid:11833535 |
|
15. Whitehouse, N., Schwab, C., Luchini, D., Tylutki, T and
Sloan, B. (2009). Comparison of optimal lysine and methionine
concentrations in metabolizable protein estimated by the NRC
(2001), CPM-Dairy (v.3.0.10) and ATMS. Cattle (v.2.1.1)
models. J. Anim. Sci., 92 (Suppl. 1): 103. (Abstr.) |
|
16. Rius, A.G., Mcgilliard, M.L., Umberger, C.A. and Hanigan,
M.D. (2010). Interactions of energy and predicted
metabolizable protein in determining nitrogen efficiency in
the lactating dairy cows. J. Dairy Sci., 93(5): 2034-2043.
http://dx.doi.org/10.3168/jds.2008-1777
PMid:20412918 |
|
17. Aboozar, M. (2012). Impacts of dietary metabolizable
protein on performance and ruminal parameters of Holstein cows
at early lactation. Res. Opin. Anim. Vet. Sci., 2(2): 102-108. |
|
18. Lee, C., Hristov, A.N., Heyler, K.S. and Cassidy, T.W.
(2012) Effect of metabolizable protein supply and amino acid
supplementation on nitrogen utilization, milk production, and
ammonia emission from manure in dairy cows. J. Dairy Sci.,
95(9): 5253-5268.
http://dx.doi.org/10.3168/jds.2012-5366
PMid:22916930 |
|
19. Wilkerson, A., Klopfenstein, T.J., Britton, R.A., Stock,
R.A. and Miller, P.S. (1993) Metabolizable protein and amino
acid requirements of growing cattle. J. Anim. Sci., 71(10):
2777-2784.
PMid:8226380 |
|
20. Verite, R. (1987). In: Jarrige, R. and Alderman, G.,
editors. Present situation of protein evaluation for ruminants
in France: The PDI system. Commission of the European
Communities, Luxembourg. p11-20. |
|
21. Jarrige, R. (1989). Ruminant Nutrition: Recommended
Allowances and Feed Tables. John Libbey Eurotext, Montrouge,
France. |
|
22. Das, L.K. (2012). Metabolizable protein availability from
different feeds and the effects of its graded levels in the
diet on nutrient utilization in growing Sahiwal calves. M.V.Sc.
Thesis, Division of Dairy Cattle Nutrition, National Dairy
Research Institute, Karnal, Haryana, India. |
|
23. Robson, G.L.V., Filho, S.C.V., Diniz, R.V.F., Luciana, N.R.,
Veiga, P.P.R. and de Souza, M.A. (2007) Effects of increasing
dietary crude protein levels on nitrogen balance and
metabolizable protein requirements for maintenance in Nellore
cattle. Braz. J. Anim. Sci., 36(4): 1212-1217. |
|
24. Ezekiel, J.M.B. (1987). Protein and energy requirements of
cattle: Endogenous fractions. Ph. D. Thesis in Animal Science.
Federal University of Vicosa, Minas Gerais. |
|
25. Valadares, R.F.D. (1997). Protein levels in diets for
cattle: Intake, digestibility, microbial efficiency, ruminal
ammonia, urea and plasma urea and creatinine excretions. Ph.
D. Thesis in Animal Science. Federal University of Vicosa,
Minas Gerais. |
|
26. Hill, M.M. (1998). Consumption, total and partial
digestibility of diets containing different levels of
concentrate in Nellore. M.Sc. Dissertation (Zoology), Federal
University of Vicosa, Minas Gerais. |
|
27. Vermeulen, C. (2001). Metabolizable protein requirements
of early lactating beef cows grazing dormant native (Oklahoma)
range. Agricola., 1 116-123. |
|
28. Luo, J., Goetsch, A.L., Nsahlai, I.V., Sahlu, T., Ferrell,
C.L., Owens, F.N., Galyean, M.L., Moore, J.E. and Johnson, Z.B.
(2004a). Metabolizable protein requirements for maintenance
and gain of growing goats. Small Rumin. Res., 53: 309-326.
http://dx.doi.org/10.1016/j.smallrumres.2004.04.003 |
|
29. Luo, J., Goetsch, A.L., Nsahlai, I.V., Sahlu, T., Ferrell,
C.L., Owens, F.N., Galyean, M.L., Moore, J.E. and Johnson, Z.B.
(2004b). Prediction of metabolizable energy and protein
requirements for maintenance, gain and fiber growth of Angora
goats. Small Rumin. Res., 53: 339-356.
http://dx.doi.org/10.1016/j.smallrumres.2004.01.003 |
|
30. Silva, A.M.A., Sobrinho, A.G.S., Trindade, I.A.C.M.,
Resende, K.T. and Bakke, O.A. (2007). Net and metabolizable
protein requirements for body weight gain in hair and wool
lambs. Small Rumin. Res., 67: 192-198.
http://dx.doi.org/10.1016/j.smallrumres.2005.10.012 |
|
31. CNCP. (2003). The net carbohydrate and protein system for
evaluating herd nutrition and nutrient excretion. CNCPS
Version 5.0., Cornell University, 130 Morrison Hall, Ethaca,
New York. |
|
32. Blouin, J.P., Bernier, J.F., Reynolds, C.K., Lobley, G.E.,
Dubreuilg, P. and Lapierre, H. (2002). Effect of supply of
metabolizable protein on splanchnic fluxes of nutrients and
hormones in lactating dairy cows. J. Dairy Sci., 85(10):
2618-2630.
http://dx.doi.org/10.3168/jds.S0022-0302(02)74347-6 |
|
33. Doepel, L. and Lapierre, H. (2006). Challenges in protein
nutrition for dairy cows. WCDS Adv. Dairy Technol., 18: 57-67. |
|
34. Raggio, G., Pacheco, D., Berthiaume, R., Lobley, G.E. and
Pellerin, D. (2004). Effect of level of metabolizable protein
on splanchnic flux of amino acids in lactating dairy cows. J.
Dairy Sci., 87(10): 3461-3472.
http://dx.doi.org/10.3168/jds.S0022-0302(04)73481-5 |
|
35. Weiss, W.P. and Wyatt, D.J. (2006). Effect of corn silage
hybrid and metabolizable protein supply on nitrogen metabolism
of lactating dairy cows. J. Dairy Sci., 89(5): 1644-1653.
http://dx.doi.org/10.3168/jds.S0022-0302(06)72231-7 |
|
36. Wang, C., Liu, J.X., Yuan, Z.P., Wu, Y.M., Zhai, S.W. and
Ye, H.W. (2007). Effect of level of metabolizable protein on
milk production and nitrogen utilization in lactating dairy
cows. J. Dairy Sci., 90(6): 2960-2965.
http://dx.doi.org/10.3168/jds.2006-129
PMid:17517736 |
|
37. Yu, P., Rossnagel, B.G. and Niu, Z. (2008). Protein value
of a new genotype oat (CDC SO-I) for the NRC dairy model:
Protein degradation balance and kinetics, protein fractions
and total metabolizable protein supply. Can. J. Anim. Sci.,
88(3): 507-513.
http://dx.doi.org/10.4141/CJAS07137 |
|
38. Taghizadeh, A., Safamehr, A., Palangi, V. and Mehmannavaz,
Y. (2008). The determination of metabolizable protein of some
feedstuffs used in ruminants. Res. J. Biol. Sci., 3(7):
804-806. |
|
39. Yu, P. and Racz, V. (2010). Modeling nutrient supply to
ruminants: Frost damaged wheat vs. normal wheat. Asian-Aust.
J. Anim. Sci., 23(3): 333-339. |
|
40. Damiran, D. and Yu, P. (2012). Metabolic characteristics
in ruminants of the protein in newly developed hull – less
barley varieties with altered starch traits. J. Cereal Sci.,
55: 351-360.
http://dx.doi.org/10.1016/j.jcs.2012.01.006 |
|
41. Xin, H. and Yu. P. (2014). Rumen degradation, intestinal
and total digestion characteristics and metabolizable protein
supply of carinata meal (a non-conventional feed resource) in
comparison with canola meal. Anim. Feed Sci. Technol., 191:
106-110.
http://dx.doi.org/10.1016/j.anifeedsci.2014.01.013 |
|
42. Theodoridou, K. and Yu, P. (2013). Metabolic
characteristics of the proteins in yellow-seeded and
brown-seeded canola meal and press cake in dairy cattle:
comparison of three systems (PDI, DVE and NRC) in nutrient
supply and feed milk value (FMV). J. Agric. Food Chem.,
61(11): 2820-2830.
http://dx.doi.org/10.1021/jf305171z
PMid:23410190 |
|
43. Nuez Ortin, W. and Yu, P. (2010). Modeling the metabolic
characteristics of proteins in dairy cattle from co-products
of bioethanol processing: Comparison of the NRC 2001 model
with DVE/OEB system. J. Sci. Food Agric., 91(3): 405-411.
http://dx.doi.org/10.1002/jsfa.4199
PMid:20960458 |
|
44. Wang, Y., Xin, H.S., Li, Y.Z., Zhang, W.W., Xia, K., Wang,
Z.B., Li, M. and Zhang, Y.G. (2012). The effects of different
processing methods on the estimated nutritional value of rice
bran according to NRC-2001 model or DVE/OEB system. J. Anim.
Feed Sci., 21: 503-520. |
|
45. Pooponpan, P., Chinrasri, O., Saenthaweesuk, S. and
Chantiratikul, A. (2011). Evaluation of metabolizable protein
and metabolizable energy values of Wolffia meal [Wolffia
globosa (L). Wimm.] in broilers. Int. J. Poult. Sci., 10(5):
401-403.
http://dx.doi.org/10.3923/ijps.2011.401.403 |
|
46. Islam, M.R., Ishida, M., Ando, S., Nishida, T. and
Yoshida, N. (2011). Whole crop rice silage: Prediction of
yield and content of metabolizable energy, metabolizable
protein and other nutrients for dairy cows from crop maturity
and botanical fractions at harvest. Anim. Feed Sci. Technol.,
163: 222-230.
http://dx.doi.org/10.1016/j.anifeedsci.2010.11.007 |
|
47. Chase, L.E. (2011). Maintaning milk yield while lowering
dietary protein content. WCDS Adv Dairy Technol., 23: 153-164. |
|
48. Vahdani, N., Moravej, H., Rezayazdi, K. and
Dehgham-Banadaki, M. (2014). Evaluation of nutritive value of
grass pea hay in sheep nutrition and its palatability as
compared with alfalfa. J. Agric. Sci. Techol., 16: 537-550. |
|
49. Khalilvandi-Behroozyar, H., Dehghan-Banadaki, M. and
Rezayazdi, K. (2010). Palatability, in situ and in vitro
nutritive value of dried sainfoin (Onobrychis viciifolia). J.
Agric. Sci., 148(6): 723-733.
http://dx.doi.org/10.1017/S0021859610000523 |
|
50. Ebrahimi, B., Taghizadeh, A., Mehmannavaz, Y. and Palangi,
V. (2012). Evaluation of pomegranate pomace using in situ and
gas production techniques. J. Environ. Sci. Eng., A1: 951-955. |
|
51. Piri, A., Palangi, V. and Eivazi, P. (2012). The
determination of nutritive value of Alhagi by in situ and gas
production techniques. Euro. J. Exp. Biol., 2(3): 846-849. |
|
52. Huhtanen, P., Hetta, M. and Swensson, C. (2011).
Evaluation of canola meal as a protein supplement for dairy
cows: A review and a meta-analysis. Can. J. Anim. Sci., 91:
529-543.
http://dx.doi.org/10.4141/cjas2011-029 |
|
53. Lee, C., Hristov, A.N., Heyler, K.S., Cassidy, T.W., Long,
M., Corl, B.A. and Karnati, S.K.R. (2011). Effects of dietary
protein concentration and coconut oil supplementation on
nitrogen utilization and production in dairy cows. J. Dairy
Sci., 94(11): 5544-5557.
http://dx.doi.org/10.3168/jds.2010-3889
PMid:22032378 |
|
54. Rahbarpour, A., Palangi, V., Eivagi, P. and Jalili, M.
(2012). Calculation of metabolizable protein and energy of
tomato pomace by nylon bags and gas production datas. Eur. J.
Exp. Bio.,2(3): 822-825. |
|
55. Das, L.K., Kundu, S.S., Kumar, D. and Datt, C. (2014). The
evaluation of metabolizable protein content of some indigenous
feedstuffs used in ruminant nutrition. Vet. World., 7(4):
257-261.
http://dx.doi.org/10.14202/vetworld.2014.257-261 |
|
56. Cooper, R., Milton, T. and Klopfenstein, T.J. (2000).
Phase feeding of metabolizable protein in steers. Nebraska
Beef Cattle Report. p62-65. |
|
57. Colin-Schoellen, O., Jorjanz, S. and Laurent, F. (2000).
Metabolizable protein supply (PDIE) and restricted level of
ruminally degradable nitrogen (PDIN) in total mixed rations:
Effect on milk production and composition and on nitrogen
utilization by dairy cows. Livest. Prod. Sci., 67(1): 41-53.
http://dx.doi.org/10.1016/S0301-6226(00)00191-3 |
|
58. Whitlock, B.K., Vandehaar, M.J., Silva, L.F.P. and Tucker,
H.A. (2002). Effect of dietary protein on prepubertal mammary
development in rapidly growing dairy heifers. J. Dairy Sci.,
85(6): 1516-1525.
http://dx.doi.org/10.3168/jds.S0022-0302(02)74221-5 |
|
59. Faverdin, P., M'hamed, D. and Verite, R. (2003) Effects of
metabolizable protein on intake and milk production of dairy
cows independent of effects on ruminal digestion. Anim. Sci.,
76: 137-146. |
|
60. Patterson, H.H., Adams, D.C., Klopfenstein, T.J., Clark,
R.T. and Teichert, B. (2003b) Supplementation to meet
metabolizable protein requirements of primiparous beef
heifers: II. Pregnancy and economics. J. Anim. Sci., 81(3):
563-570.
PMid:12661635 |
|
61. Waterman, R.C., Sawyer, J.E., Mathis, C.P., Hawkins, D.E.,
Donart, G.B. and Petersen, M.K. (2006). Effects of supplements
that contain increasing amounts of metabolizable protein with
or without Ca-propionate salt on postpartum interval and
nutrient partitioning in young beef cows. J. Anim. Sci.,
84(2): 433-446.
PMid:16424272 |
|
62. Huhtanen, P., Rinne, M. and Nousiainen, J. (2008). Effects
of silage soluble nitrogen components on metabolizable protein
concentration: A meta analysis dairy cow production
experiments. J. Dairy Sci., 91(3): 1150-1158.
http://dx.doi.org/10.3168/jds.2007-0323
PMid:18292271 |
|
63. Voltolini, T.V., Santos, F.A.P., Martinez, J.C., Imaizumi,
H., Pires, A.V. and Penati, M.A. (2008). Metabolizable protein
supply according to the NRC (2001) for dairy cows grazing
elephant grass. Sci. Agricola., 65(2): 130-138.
http://dx.doi.org/10.1590/S0103-90162008000200004 |
|
64. Weiss, W.P., St-Pierre, N.R. and Willett, L.B. (2009).
Varying type of forage, concentration of metabolizable
protein, and source of carbohydrate affects nutrient
digestibility and production by dairy cows. J. Dairy Sci.,
92(11): 5595-5606.
http://dx.doi.org/10.3168/jds.2009-2247
PMid:19841220 |
|
65. Nichols, B.M., Mcdonald, T.J., Harbac, M.M., Roberts, A.J.
and Paterson, J.A. (2010). Effects of gestational dietary
metabolizable protein level and dry matter intake on
subsequent production traits in primiparous heifers. Proc.
West. Sect. Am. Soc. Anim. Sci., 61: 35-40. |
|
66. Amaral, G.A., Kozloski, G.V., Santos, A.B., Castagnino,
D.S., Fluck, A.C., Farenzena, R., Alves, T.P. and Mesquita,
F.R. (2011). Metabolizable protein and energy supply in lambs
fed annual rye grass (Lolium multiflorum Lam.) supplemented
with sources of protein and energy. J. Agric. Sci., 149(4):
519-527.
http://dx.doi.org/10.1017/S002185961000122X |
|
67. Imaizumi, H., Santos, F.A.P., Bittar, C.M.M., Correia,
P.S. and Martinez, J.C. (2010). Diet crude protein content and
sources for lactating dairy cows. Sci. Agricola., 67(1):
16-22.
http://dx.doi.org/10.1590/S0103-90162010000100003 |
|
68. Emon, M.L.V., Eckerman, S.E., Lekatz, L.A., Berg, P.B.,
Carlin, K.R.M., Vonnahme, K.A., Thompson, M.M. and Schauer,
C.S. (2011). Effects of maternal metabolizable protein
supplementation during the last 50 days of gestation on ewe
and offspring performance and carcass characteristics. Sheep
Research Report of USDA National Institute of Food and
Agriculture. p17-22. |
|
69. NRC. (2007). Nutrient Requirements of Small Ruminants.
National Academy Press, Washington, DC. |
|