|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published
online: 02-01-2014)
1. Binding of VEGF-A to canine cancer cells with
preferential expression of VEGFR1 - Antonella Borgatti, Megan Duckett,
Charles Spangler and Jaime F. Modiano
Veterinary World, 7(1): 1-6
doi:
10.14202/vetworld.2014.1-6
Abstract
Aim: Despite encouraging
results in syngeneic and xenografts cancer models with various
inhibitors of vascular endothelial growth factor (VEGF) or its
receptors (VEGFRs), beneficial effects have not been consistently
translated to the clinic, underscoring the need to develop
strategies that go beyond the inhibition of these targets. The
purpose of this study was to generate data to support the
hypothesis that VEGF may be used as “bait” to selectively deliver
therapeutics to VEGFR-expressing cancer cells.
Materials and Methods: VEGFR1 and VEGFR2 expression was
characterized using real time quantitative reverse transcriptase
polymerase chain reaction (RT-qPCR) in canine hemangiosarcoma
(Grace-HSA, Emma-HSA), melanoma (TLM-1), and thyroid
adenocarcinoma (CTAC) cell lines. TLM-1 and Grace-HSA were
identified as representative cell lines that selectively expressed
high levels of VEGFR1. Flow cytometry was performed to examine
binding of a single VEGF molecule (biotinylated VEGFA and avidin
conjugated to fluorescein isothiocyanate (FITC)) by these
chemoresistant cell lines.
Results: RT-qPCR showed that canine tumor cells can
preferentially express VEGFR1 over VEGFR2. Both TLM-1 and Grace-HSA
cell lines, which represent VEGFR1-expressing tumors, showed
specific binding to VEGF-A and this binding was competitively
inhibited by anti-VEGF antibody.
Conclusions: Cells preferentially expressing VEGFR1 can be
targeted with a single VEGF molecule and these ligand-receptor
pairs are well suited for targeting cytotoxic molecules in various
canine tumor cells. Further studies are needed to develop
strategies to selectively deliver therapeutics through VEGF-VEGFRs
binding into VEGFR-expressing tumors.
Keywords: canine, dog, delivery, target, vascular
endothelial growth factor, vascular endothelial growth factor
receptor
References
1. Sitohi, B., Nagy, J.A. and Dvorak, H.F. (2012) Anti-VEGF /
VEGFR therapy for cancer: reassessing the target. Cancer Res.,
72(8):15, 1909-1914. |
|
2. Restucci, B., Paparella, S., Maiolino, P. and De Vico, G.
(2002) Expression of vascular endothelial growth factor in
canine mammary tumors. Vet. Pathol., 39:488-493.
http://dx.doi.org/10.1354/vp.39-4-488
PMid:12126152 |
|
3. Wergin, M.C. and Kaser-Hotz. (2004) Plasma vascular
endothelial growth factor (VEGF) measured in 70 dogs with
spontaneously occurring tumors. In Vivo, 18:15-20.
PMid:15011746 |
|
4. Tamburini, B.A, Trapp, S., Phang, T.L., Schappa, J.T.,
Hunter, L.E. and Modiano, J.F. (2009) Gene expression profiles
of sporadic canine hemangiosarcoma are uniquely associated
with breed. PLoS One, 4(5):e5549.
http://dx.doi.org/10.1371/journal.pone.0005549
PMid:19461996 PMCid:PMC2680013 |
|
5. Yonemaru, K., Sakai, H., Yanai, T. and Masegi, T. (2006)
Expression of vascular endothelial growth factor, basic
fibroblast growth factor, and their receptors (FLT-1, FLK-1,
and FLG-1) in canine vascular tumors. Vet. Pathol., 43: 971-
980.
http://dx.doi.org/10.1354/vp.43-6-971
PMid:17099154 |
|
6. Koch, S. and Claesson-Welsh, L. (2012) Signal transduction
by vascular endothelial growth factor receptors. Cold Sprinng
Harb Perspect Med., 2:a006502. |
|
7. Kerber, M., Reiss, Y., Wickersheim, A., Jugold, M.,
Kiessling, F., Heil, M., Tchaikovski, V., Walternberger, J.,
Shibuya, M., Plate, K.H. and Machein, M.R. (2008). Flt-1
signaling in macrophages promotes glioma growth in vivo.
Cancer Res., 68:7342-7351.
http://dx.doi.org/10.1158/0008-5472.CAN-07-6241
PMid:18794121 |
|
8. Murakami, M., Iwai, S., Hiratsuka, S., Yamauchi, M.,
Nakamura, K., Iwakura, Y. and Shibuya, M. (2006) Signaling of
vascular endothelial growth factor receptor-1 tyrosine kinase
promotes rheumatoid arthritis through activation of monocytess/macrophages.
Blood, 108:(1849- 1856).
http://dx.doi.org/10.1182/blood-2006-04-016030
PMid:16709927 |
|
9. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T.,
Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S.,
Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R. and
Kabbinavar, F. (2004) Bevacizumab plus irinotecan,
fluorouracil, and leucovorin for metastatic colorectal cancer.
N. Eng. J. Med., 350:2335-2342.
http://dx.doi.org/10.1056/NEJMoa032691
PMid:15175435 |
|
10. Miller, K., Wang, M., Gralow, J., Dickler, M., Cobleigh,
M., Perez, E.A., Shenkier, T., Cella, D. and Davidson, N.E.
(2007) Paclitaxel plus bevacizumab versus paclitaxel alone for
metastatic breast cancer. N. Engl. J. Med., 357:2666- 2676.
http://dx.doi.org/10.1056/NEJMoa072113
PMid:18160686 |
|
11. Jain, R.K., Duda, D.G., Clark, J.W. and Loeffler, J.S.
(2006) Lessons from phase III clinical trials on anti-VEGF
therapy for cancer. Nat. Clin. Pract. Oncol., 3:24-40.
http://dx.doi.org/10.1038/ncponc0403
PMid:16407877 |
|
12. Oh, S., Stish, B.J., Sachdev, D., Chen, H., Dudek, A.Z.
and Vallera, D.A. (2009) A novel reduced immunogenicity
bispecific ligand targeted toxin simultaneously recognizing
human epidermal growth factor and interleukin-4 receptors in a
mouse model of metastatic breast carcinoma. Clin. Cancer Res.,
15(19): 6137-6147.
http://dx.doi.org/10.1158/1078-0432.CCR-09-0696
PMid:19789305 PMCid:PMC2756320 |
|
13. Spangler, C.W., Starkey, J.R., Rebane, A., Drobizhev, M.,
Meng, F. and Gong, A. (2008) Synthesis, characterization and
two-photon PDT efficacy studies of triads incorporating tumor
targeting and imaging components. Proc. Soc. Photo. Opt.
Instrum., Optical Methods for Tumor Treatment and Detection:
Mechanisms and Techniques in Photodynamic Therapy XVII,
68450S; doi:10.1117/12.763472.
http://dx.doi.org/10.1117/12.763472 |
|
14. Hamada, Y., Gonda, K., Takeda, M., Sato, A., Watanabe, M.,
Yambe, T., Satomi, S. and Ohuchi, N. (2011) In vivo imaging of
the molecular distribution of the VEGF receptor during
angiogenesis in a mouse model of ischemia. Blood 118(13).
http://dx.doi.org/10.1182/blood-2010-12-322842 |
|
15. Ritt, M.G., Wojcieszyn, J., Smith, R., Mayor, J., Barton,
C.L. and Modiano, J.F. (2000) Sustained nuclear localization
of p21/Waf-1 upon growth arrest induced by contact inhibition.
Cancer Lett., 158, 73-84.
http://dx.doi.org/10.1016/S0304-3835(00)00507-3 |
|
16. Fosmire, S.P., Dickerson, E.B., Scott, A.M., Bianco, S.R.,
Pettengill, M.J., Meylemans, H., Padilla, M., Frazer-Abel, A.A.,
Akhtar, N., Getzy, D.M., Wojcieszyn, J., Breen, M., Helfand,
S.C. and Modiano, J.F. (2004) Canine malignant hemangiosarcoma
as a model of primitive angiogenic endothelium. Lab. Invest.,
84(5): 562-72.
http://dx.doi.org/10.1038/labinvest.3700080
PMid:15064773 |
|
17. Kasza, L. (1964) Establishment and characterization of
canine thyroid adenocarcinoma and canine melanoma cell lines.
Am. J. Vet. Res., 25:1178-85.
PMid:14266865 |
|
18. Scott, M.C., Sarver, A.L., Gavin, K.J., Thayanithy, V.,
Getzy, D.M., Newman, R.A., Cutter, G.R., Lindblad-Toh, K.,
Kisseberth, W.C., Hunter, L.E., Subramanian, S., Breen, M. and
Modiano, J.F. (2011) Molecular subtypes of osteosarcoma
identified by reducing tumor heterogeneity through an
interspecies comparative approach. Bone, 49, 356-367.
http://dx.doi.org/10.1016/j.bone.2011.05.008
PMid:21621658 PMCid:PMC3143255 |
|
19. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of
relative gene expression data using real-time quantitative PCR
and the 2(-Delta Delta C(T)) Method. Methods, 25, 402-408.
http://dx.doi.org/10.1006/meth.2001.1262
PMid:11846609 |
|
20. Schappa, J.T., Frantz, A.M., Dickerson, E.B., Vallera,
D.A. and Modiano, J.F. (2013) Hemangiosarcoma and its cancer
stem cell sub-population are effectively killed by a toxin
targeted through epidermal growth factor and urokinase
receptors. Int. J. Cancer, 133, 1936-44.
http://dx.doi.org/10.1002/ijc.28187
PMid:23553371 |
|
21. Pastan, I., Chaudhary, V. and FitzGerald, D.J. (1992)
Recombinant toxins as novel therapeutic agents. Annu. Rev.
Biochem., 61:331-54.
http://dx.doi.org/10.1146/annurev.bi.61.070192.001555
PMid:1497314 |
|
22. Waldron, N., Seunguk, Oh. and Vallera, D. (2012)
Bispecific targeting of EGFR and uPAR in a mouse model of head
and neck squamous cell carcinoma. Oral Oncol., 48
(12):1202-1207.
http://dx.doi.org/10.1016/j.oraloncology.2012.06.002
PMid:22818892 PMCid:PMC3480964 |
|
23. Troy, G.C., Huckle, W.R., Rossmeisl, J.H., Panciera, D.,
Lanz, O., Robertson, J.L. and Ward, D.L. (2006) Endostatin and
Vascular Endothelial Growth Factor Concentrations in Healthy
Dogs, Dogs with Selected Neoplasia, and Dogs with
Nonneoplastic Diseases. J. Vet. Intern. Med., 20:144-150.
http://dx.doi.org/10.1111/j.1939-1676.2006.tb02834.x
PMid:16496934 |
|
24. Clifford, C.A., Hughes, D., Beal, M.W., Mackin, A.J.,
Henry, C.J., Shofer, F.S. and Sorenmo, K.U. (2001) Plasma
vascular endothelial growth factor concentrations in healthy
dogs and dogs with hemangiosarcoma; J. Vet. Intern. Med.,
15(2):131- 5.
http://dx.doi.org/10.1111/j.1939-1676.2001.tb01244.x
PMid:11300596 |
|
25. Paoloni, M. and Khanna, C. (2008) Translation of new
cancer treatments from pet dogs to humans. Nature Reviews,
8:147-156.
http://dx.doi.org/10.1038/nrc2273
PMid:18202698 |
|
|