|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Review
(Published
online: 13-01-2014)
4. Functional biology of ion channels: a review -
Subhashree Sarangi, A. P. K. Mahapatra, A. K. Kundu and S.
Mohapatra
Veterinary World, 7(1): 13-16
doi:
10.14202/vetworld.2014.13-16
Abstract
Over the past few decades, a great
deal of attention has been focused on discovering the protein
partners that form mechano-electrical transduction (MeT) channels
in somatic mechanoreceptors. Two classes of ion channel proteins
are leading candidates: amiloride-sensitive channel (ASCs) and
transient receptor potential (TRP) channel proteins. Here, we
surveyed the literature to establish that most, if not all
mechanoreceptor neurons in mice express multiple ASC and TRP
channel proteins. But, the landscape of ion channel co-expression
in mechanoreceptor neurons is only beginning to be mapped. Future
work aimed at refining such maps for mammalian mechanoreceptor
neurons will be critical for deeper understanding. Also, each of
these potential MeT channel subunits operates within a large
company of other ion channel actors that increase the complexity,
flexibility, and robustness of somatosensory neuron function.
Recently, two additional classes of membrane proteins (Piezo and
TMC) have been linked to mechano-transduction. This situation is
likely to exist in other mechanoreceptor neurons, including those
responsible for touch and pain sensation in mammals.
Keywords: mechano-electrical transduction (MeT) channels,
amiloride-sensitive channels (ASCs), transient receptor potential
(TRP) channels, mechanoreceptor neuron, somatosensory neuron
References
1. Rieke, F., and Rudd, M.E. (2009) The challenges natural
images pose for visual adaptation. Neuron 64: 605–616.
http://dx.doi.org/10.1016/j.neuron.2009.11.028
PMid:20005818 |
|
2. H. S. Vedpathak, P. H. Tank, A. S. Karle, H. K. Mahida, D.O.
Joshi and M. A. Dhami (2009) Pain Management in Veterinary
Patients. Veterinary World, 2(9):360-363 |
|
3. Shana L. Geffeney and Miriam B. Goodman (2012) How We Feel:
Ion Channel Partnerships that Detect Mechanical Inputs and
Give Rise to Touch and Pain Perception. Neuron Review . 74:
609-619.
http://dx.doi.org/10.1016/j.neuron.2012.04.023
PMid:22632719 PMCid:PMC3371091 |
|
4. Smith, E.S.J., Omerba si c, D., Lechner, S.G., Anirudhan,
G., Lapatsina, L., and Lewin, G.R. (2011) The molecular basis
of acid insensitivity in the African naked mole-rat. Science
334: 1557–1560. |
|
5. William A. Catterall (2010) Ion Channel Voltage Sensors:
Structure, Function, and Pathophysiology. Neuron Review. 67:
915-928.
http://dx.doi.org/10.1016/j.neuron.2010.08.021
PMid:20869590 PMCid:PMC2950829 |
|
6. Hodgkin, A.L., and Huxley, A.F. (1952) A quantitative
description of membrane current and its application to
conduction and excitation in nerve. J. Physiol.117: 500–544.
PMid:12991237 |
|
7. Kuzmenkin, A., Bezanilla, F., and Correa, A.M. (2004)
Gating of the bacterial sodium channel, NaChBac: voltage-
dependent charge movement and gating currents. J. Gen. Physiol.
124: 349–356.
http://dx.doi.org/10.1085/jgp.200409139
PMid:15365092 PMCid:PMC2233907 |
|
8. Sato, C., Ueno, Y., Asai, K., Takahashi, K., Sato, M.,
Engel, A., and Fujiyoshi, Y. (2001) The voltage-sensitive
sodium channel is a bell-shaped molecule with several
cavities. Nature 409:1047–1051.
http://dx.doi.org/10.1038/35059098
PMid:11234014 |
|
9. Long, S.B., Tao, X., Campbell, E.B., and MacKinnon, R.
(2007) Atomic structure of a voltage-dependent K+ channel in a
lipid membrane-like environment. Nature 450: 376–382.
http://dx.doi.org/10.1038/nature06265
PMid:18004376 |
|
10. Cohen, L., Gilles, N., Karbat, I., Ilan, N., Gordon, D.,
and Gurevitz, M. (2006) Direct evidence that receptor site-4
of sodium channel gating modifiers is not dipped in the
phospholipid bilayer of neuronal membranes. J. Biol. Chem.
281: 20673–20679.
http://dx.doi.org/10.1074/jbc.M603212200
PMid:16720570 |
|
11. Schmidt, D., Jiang, Q. X., and MacKinnon, R. (2006)
Phospholipids and the origin of cationic gating charges in
voltage sensors. Nature 444: 775–779.
http://dx.doi.org/10.1038/nature05416
PMid:17136096 |
|
12. Adrian, E.D. (1926) The impulses produced by sensory
nerve-endings: Part 4.Impulses from Pain Receptors. J. Physiol.
62: 33–51.
PMid:16993827 |
|
13. Hunter, S., Jones, P., Mitchell, A., Apweiler, R.,
Attwood, T.K., Bateman, A., Bernard, T., Binns, D., Bork, P.,
Burge, S., (2012) InterPro in 2011: new developments in the
family and domain prediction database. Nucleic Acids Res.40
(Database issue), D306–D312.
http://dx.doi.org/10.1093/nar/gkr948
PMid:22096229 PMCid:PMC3245097 |
|
14. Gonzales, E.B., Kawate, T., and Gouaux, E. (2009) Pore
architecture and ion sites in acid-sensing ion channels and
P2X receptors. Nature 460: 599–604.
http://dx.doi.org/10.1038/nature08218
PMid:19641589 PMCid:PMC2845979 |
|
15. Jasti, J., Furukawa, H., Gonzales, E.B., and Gouaux, E.
(2007) Structure of acid-sensing ion channel 1 at 1.9 A
resolution and low pH. Nature 449: 316–323.
http://dx.doi.org/10.1038/nature06163
PMid:17882215 |
|
16. Deval, E., Gasull, X., Noeš l, J., Salinas, M., Baron, A.,
Diochot, S., and Lingueglia, E. (2010) Acid-sensing ion
channels (ASICs): pharmacology and implication in pain.
Pharmacol. Ther. 128: 549–558.
http://dx.doi.org/10.1016/j.pharmthera.2010.08.006
PMid:20807551 |
|
17. Donier, E., Rugiero, F., Jacob, C., and Wood, J.N. (2008)
Regulation of ASIC activity by ASIC4—new insights into ASIC
channel function revealed by a yeast two-hybrid assay. Eur. J.
Neurosci. 28: 74–86.
http://dx.doi.org/10.1111/j.1460-9568.2008.06282.x
PMid:18662336 |
|
18. Hesselager, M., Timmermann, D.B., and Ahring, P.K. (2004)
pH Dependency and desensitization kinetics of heterologously
expressed combinations of acid-sensing ion channel subunits.
J. Biol. Chem. 279: 11006–11015.
http://dx.doi.org/10.1074/jbc.M313507200
PMid:14701823 |
|
19. Venkatachalam, K., and Montell, C. (2007) TRP channels.
Annu. Rev.Biochem. 76: 387–417.
http://dx.doi.org/10.1146/annurev.biochem.75.103004.142819
PMid:17579562 |
|
20. Coste, B., Mathur, J., Schmidt, M., Earley, T.J., Ranade,
S., Petrus, M.J., Dubin, A.E., and Patapoutian, A. (2010)
Piezo1 and Piezo2 are essential components of distinct
mechanically activated cation channels. Science 330: 55–60.
http://dx.doi.org/10.1126/science.1193270
PMid:20813920 PMCid:PMC3062430 |
|
21. Coste, B., Xiao, B., Santos, J.S., Syeda, R., Grandl, J.,
Spencer, K.S., Kim, S.E., Schmidt, M., Mathur, J., Dubin, A.E.
(2012) Piezo proteins are pore-forming subunits of
mechanically activated channels. Nature 483: 176–181
http://dx.doi.org/10.1038/nature10812
PMid:22343900 PMCid:PMC3297710 |
|
22. Kawashima, Y., GeŽ leŽ oc, G.S.G., Kurima, K., Labay, V.,
Lelli, A., Asai, Y., Makishima, T., Wu, D.K., Della Santina,
C.C., Holt, J.R., and Griffith, A.J. (2011) Mechanotrans-
duction in mouse inner ear hair cells requires transmembrane
channel-like genes 1 and 2. J. Clin. Invest. 121: 4796–4809.
http://dx.doi.org/10.1172/JCI60405
PMid:22105175 PMCid:PMC3223072 |
|
23. Kim, S.E., Coste, B., Chadha, A., Cook, B., and
Patapoutian, A. (2012) The role of Drosophila Piezo in
mechanical nociception. Nature 483: 209–212.
http://dx.doi.org/10.1038/nature10801
PMid:22343891 PMCid:PMC3297676 |
|
|