Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Review
(Published
online: 20-06-2014)
11. An overview on single nucleotide polymorphism studies in
mastitis research - V. N. Muhasin Asaf, Amod Kumar,
Abdul Rahim, Renjith Sebastian, Vysakh Mohan, Prashant Dewangan
and Manjit Panigrahi
Veterinary World, 7(6): 416-421
doi:
10.14202/vetworld.2014.416-421
V. N. Muhasin Asaf: Division of Animal Genetics, Indian
Veterinary Research Institute, Izatnagar - 2431212, Uttar Pradesh,
India; asaf.muhasin@gmail.com
Amod Kumar: Division of Animal Genetics, Indian Veterinary
Research Institute, Izatnagar - 2431212, Uttar Pradesh, India;
amodvet@gmail.com
Abdul Rahim: Division of Animal Genetics, Indian Veterinary
Research Institute, Izatnagar - 2431212, Uttar Pradesh, India;
choudhary633@gmail.com
Renjith Sebastian: Division of Animal Biochemistry, Indian
Veterinary Research Institute, Izatnagar - 2431212, Uttar Pradesh,
India; renjithkerala.s@gmail.com
Vysakh Mohan: Division of Veterinary Public Health, Indian
Veterinary Research Institute, Izatnagar - 2431212, Uttar Pradesh,
India; vysakhmohanvet@gmail.com
Prashant Dewangan: Division of Animal Genetics, Indian
Veterinary Research Institute, Izatnagar - 2431212, Uttar Pradesh,
India; prshntdewangan@gmail.com
Manjit Panigrahi: Division of Animal Genetics, Indian
Veterinary Research Institute, Izatnagar - 2431212, Uttar Pradesh,
India; manjit707@gmail.com
Received: 10-04-2014, Revised: 18-05-2014, Accepted: 20-05-2014,
Published online: 20-06-2014
Corresponding author: V. N. Muhasin Asaf, email:
asaf.muhasin@gmail.com
Abstract
Mastitis is an inflammatory
condition of the mammary gland caused by microorganisms as diverse
as bacteria, viruses, mycoplasma, yeasts and algae. Mastitis is an
economically devastating disease mainly affecting the crossbred
cattle in India. Control strategies against mastitis includes
antibiotic therapy, vaccination, improvements in dairy cattle
husbandry, farm and feeding management etc. but has met with
little success.. Mastitis tolerance/susceptibility is difficult to
measure directly and hence milk somatic cell count (SCC) or milk
somatic cell score (SCS) is used as an indicator trait for
mastitis as both traits are highly positively correlated. Single
nucleotide polymorphism (SNP) marker is a single base change in a
DNA sequence at a given position. SNP markers are the most
preferred genetic markers nowadays. Currently most researches
worldwide have been targeting molecular high density SNP markers
that are linked to mastitis tolerance in an attempt to incorporate
to understand the genetics of host resistance to mastitis and this
knowledge will be helpful in formulating breeding programmes in an
attempt to control mastitis. This article reviews various SNPs
which are reported to be significantly associated with mastitis
tolerance/susceptibility.
Keywords: mastitis, single nucleotide polymorphism, somatic
cell count.
References
1. Awale, M.M., Dudhatra, G.B., Kumar, A., Chauhan, B.N.,
Kamani, D.R., Modi, C.M., Patel, H.B. and Mody SK. (2012)
Bovine Mastitis: A Threat to Economy. Sci. Rep. 1:295. |
|
2. Dogan, B., Klaessig, S., Rishniw, M., Almeida, R.A.,
Oliver, S.P., Simpson, K. and Schukken, Y.H. (2006) Adherent
and invasive Escherichia coli are associated with persistent
bovine mastitis. Vet. Microbiol. 116: 270-282.
http://dx.doi.org/10.1016/j.vetmic.2006.04.023
PMid:16787715 |
|
3. Burman, P. Mastitis: Expert calls for early detection.
(2002) http://www.thehindubusinessline.in/2002/09/10/stories/2002091000201300.htm.
Accessed on 09-06-2014. |
|
4. Ruegg, P.L. (2003) Investigation of mastitis problems on
farms. Vet. Clin. North Am. Food Anim. Pract. 19:47-73.
http://dx.doi.org/10.1016/S0749-0720(02)00078-6 |
|
5. Bradley, A.J., Leach, K.A., Breen, J.E., Green, L.E. and
Green, M.J. (2007) Survey of the incidence and aetiology of
mastitis on dairy farms in England and Wales. Vet. Rec.
160:253-257.
http://dx.doi.org/10.1136/vr.160.8.253
PMid:17322356 |
|
6. Bagheri, M., Miraie-Ashtiani, R., Moradi-Shahrbabak, M.,
Nejati-Javaremi, A., Pakdel, V., von Borstel, U.U., Pimentel,
E.C.G. and König, S. (2013) Selective genotyping and logistic
regression analyses to identify favorable SNP- genotypes for
clinical mastitis and production traits in Holstein dairy
cattle. Livest. Sci. 151:140–151.
http://dx.doi.org/10.1016/j.livsci.2012.11.018 |
|
7. Gernand, E., Rehbein, P., von Borstel, U.U. and Konig, S.
(2012) Incidences of and genetic parameters for mastitis, claw
disorders, and common health traits recorded in dairy cattle
contract herds. J. Dairy Sci. 95: 2144–2156.
http://dx.doi.org/10.3168/jds.2011-4812
PMid:22459859 |
|
8. Wang, C., Liu, M., Li, Q., Ju, Z., Huang, J., Li, J., Wang,
H. and Zhong, J. (2011) Three novel single-nucleotide
polymorphisms of MBL1 gene in Chinese native cattle and their
associations with milk performance traits. Vet. Immunol.
Immunopathol. 139(2-4):229-236.
http://dx.doi.org/10.1016/j.vetimm.2010.10.023
PMid:21106253 |
|
9. Meuwissen, T.H.E., Hayes, B. and Goddard, M.P. (2001)
Prediction of total genetic value using genome-wide dense
marker maps. Genetics 157: 1819–1829.
PMid:11290733 PMCid:PMC1461589 |
|
10. Miglior, F., Muir, B.L. and Van Doormaal, B.J. (2005)
Selection Indices in Holstein cattle of various countries. J.
Dairy Sci. 88(3):1255–1263.
http://dx.doi.org/10.3168/jds.S0022-0302(05)72792-2 |
|
11. Hamann, J. (2002) Milk quality and udder health in
relation to modern milking. In: Recent developments and
perspec- tives in bovine medicine, XXII World Buiatrics
Congress, Hannover. p334–345.
PMid:12152504 |
|
12. Rodriguez, Z., Gianola, S.L.D. and Shook, G.E. (2000)
Evaluation of models for somatic cell score lactation patterns
in Holsteins. Livestock Prod. Sci. 67:19-30.
http://dx.doi.org/10.1016/S0301-6226(00)00193-7 |
|
13. O'Brien, B., Fitzpatrick, C., Meaney, W.J. and Joyce, P.
(1999) Relationship between somatic cell count and neutrophils
in milk. Irish J. Agric. Food Res. 38:288–296. |
|
14. Leitner, G., Shoshani, E., Krifucks, O., Chaffer, M. and
Saran, A. (2000) Milk leukocyte population patterns in bovine
udder infection of different etiology. J. Vet. Med. Ser.
B47:581–589. |
|
15. Pillai, S.R., Kunze, E., Sordillo, L.M. and Jayarao, B.M.
(2001) Application of differential inflammatory cell count as
a tool to monitor udder health. J. Dairy Sci. 84:1413–1420.
http://dx.doi.org/10.3168/jds.S0022-0302(01)70173-7 |
|
16. Yuan, Z.R., Li, J., Liu, L., Zhang, L.P., Zhang, L.M.,
Chen, C., Chen, X.J., Gao, X., Li, J.Y., Chen, J.B., Gao, H.J.
and Xu, S.Z. (2011) Single nucleotide polymorphism of CACNA2D1
gene and its association with milk somatic cell score in
cattle. Mol. Biol. Rep. 38(8):5179-5183.
http://dx.doi.org/10.1007/s11033-010-0667-0
PMid:21225462 |
|
17. de Haas, Y., Ouweltjes, W., ten Napel, J., Windig, J.J.
and de Jong, G. (2008) Alternative somatic cell count traits
as mastitis indicators for genetic selection. J. Dairy Sci.
91(6):2501-2511.
http://dx.doi.org/10.3168/jds.2007-0459
PMid:18487674 |
|
18. Alain, K., Karrow, N.A., Thibault, C., St-Pierre, J.,
Lessard, M. and Bissonnette, N. 2009. Osteopontin: an early
innate immune marker of Escherichia coli mastitis harbors
genetic polymorphisms with possible links with resistance to
mastitis. BMC Genomics 10:444.
http://dx.doi.org/10.1186/1471-2164-10-444
PMid:19765294 PMCid:PMC2761946 |
|
19. Vignal, A., Milan, D., SanCristobal, M. and Eggen, A.
(2002) A review on SNP and other types of molecular markers
and their use in animal genetics. Genet. Sel. Evol.
34(3):275-305.
http://dx.doi.org/10.1186/1297-9686-34-3-275
PMid:12081799 PMCid:PMC2705447 |
|
20. Schork, N.J., Fallin, D. and Lanchbury, J.S. (2000) Single
nucleotide polymorphisms and the future of genetic
epidemiology. Clin. Genet. 58(4): 250-264.
http://dx.doi.org/10.1034/j.1399-0004.2000.580402.x
PMid:11076050 |
|
21. Krawezak, M., Reiss, J. and Cooper, D.N. (1992) The
mutational spectrum of single base-pair substitutions in mRNA
splice junctions of human genes: causes and consequences. Hum.
Genet. 90: 41-54. |
|
22. Drazen, J.M., Yandava, C.N., Dube, L., Szczerback, N.,
Hippensteel, R., Pillari, A., Israel, E., Schork, N.,
Silverman, E.S., Katz, D.A. and Drajesk, J. (1999)
Pharmacogenetic association between ALOX5 promoter genotype
and the response to anti-asthma treatment. Nat. Genet.
22:168-170.
http://dx.doi.org/10.1038/9680
PMid:10369259 |
|
23. Nickerson, D.A., Whitehurst, C., Boysen, C., Charmley, P.,
Kaiser, R. and Hood, L. (1992). Identification of clusters of
biallelic polymorphic sequence-tagged sites (pSTSs) that
generate highly information and automatable markers for
genetic linkage mapping. Genomics 12: 377-387.
http://dx.doi.org/10.1016/0888-7543(92)90388-9 |
|
24. Ramsay, G. (1998). DNA chips: state of the art. Nature
Biotech. 16:40-44.
http://dx.doi.org/10.1038/nbt0198-40
PMid:9447591 |
|
25. Stallings, R.L., Ford, A.F., Nelson, D., Torney, D.C.,
Hildebrand, C.E. and Moyzis, R.K. (1991) Evolution and
distribution of (GT)n repetitive sequences in mammalian
genomes. Genomics 10:807-815.
http://dx.doi.org/10.1016/0888-7543(91)90467-S |
|
26. Brookes, A.J. (1999) The essence of SNPs. Gene 8:177-186.
http://dx.doi.org/10.1016/S0378-1119(99)00219-X |
|
27. Wangkumhang, P., Chaichoompu, K., Ngamphiw, C., Ruangrit,
U., Chanprasert, J., Assawamakin, A. and Tongsima, S. (2007)
WASP: a Web-based Allele-Specific PCR assay designing tool for
detecting SNPs and mutations. BMC Genomics 8:275.
http://dx.doi.org/10.1186/1471-2164-8-275
PMid:17697334 PMCid:PMC1976135 |
|
28. Ye, S., Dhillon, S., Ke, X., Collins, A.R. and Day, I.N.
(2001) An efficient procedure for genotyping single nucleotide
polymorphisms. Nucleic Acids Res. 29(17):E88-8.
http://dx.doi.org/10.1093/nar/29.17.e88
PMid:11522844 PMCid:PMC55900 |
|
29. Jehan and Lakhanpaul. (2006) Single nucleotide
polymorphism (SNP)–Methods and applications in plant genetics:
A review. Indian J. Biotech. 5:435-459. |
|
30. Syvänen, A.C. (2001) Accessing genetic variation:
genotyping single nucleotide polymorphisms. Nat. Rev. Genet.
2(12): 930-942.
http://dx.doi.org/10.1038/35103535
PMid:11733746 |
|
31. Fan, J.B., Chen, X., Halushka, M.K., Berno, A., Huang, X.,
Ryder, T., Lipshutz, R.J., Lockhart, D.J. and Chakravarti, A.
(2000) Parallel Genotyping of Human SNPs Using Generic
High-density Oligonucleotide Tag Arrays. Genome Res. 10(6):
853–860.
http://dx.doi.org/10.1101/gr.10.6.853
PMid:10854416 PMCid:PMC310915 |
|
32. Leyva-Baca, I., Schenkel, F., Sharma, B.S., Jansen, G.B.
and Karrow, N.A. (2007) Identification of single nucleotide
polymorphisms in the bovine CCL2, IL8, CCR2 and IL8RA genes
and their association with health and production in Canadian
Holsteins. Anim. Genet. 38(3):198-202.
http://dx.doi.org/10.1111/j.1365-2052.2007.01588.x
PMid:17433017 |
|
33. Pant, S.D., Schenkel, F.S., Leyva-Baca, I., Sharma, B.S.
and Karrow, N.A. (2007) Identification of single nucleotide
polymorphisms in bovine CARD15 and their associations with
health and production traits in Canadian Holsteins. BMC
Genomics 8:421.
http://dx.doi.org/10.1186/1471-2164-8-421
PMid:18005441 PMCid:PMC2234259 |
|
34. Wang, X., Xu, S., Gao, Z., Li, J., Ren, H. and Luoren, Z.
(2008) Cloning and SNP screening of the TLR4 gene and the
association between its polymorphism and somatic cell score in
dairy cattle. South African Journal of Animal Science
38(2):101-109. |
|
35. Mesquita, A.Q., Rezende, C.S.M., Mesquita, A.J., Garcia,
E.A., Jardim, D.V and Kipnis, A.P.J. (2012) Association of
TLR4 Polymorphisms with subclinical mastitis in Brazilian
Holsteins. Braz. J. Microbiol. 43(2): 692-697
http://dx.doi.org/10.1590/S1517-83822012000200034
PMid:24031881 PMCid:PMC3768839 |
|
36. Ogorevc, J., Kunej, T., Razpet, A. and Dovc, P. (2009).
Database of cattle candidate genes and genetic markers for
milk production and mastitis. Anim. Genet. 40(6):832-851.
http://dx.doi.org/10.1111/j.1365-2052.2009.01921.x
PMid:19508288 PMCid:PMC2779988 |
|
37. Kolbehdari, D., Wang, Z., Grant, J.R., Murdoch, B.,
Prasad, A., Xiu, Z., Marques, E., Stothard, P. and Moore, S.S.
(2009) A whole genome scan to map QTL for milk production
traits and somatic cell score in Canadian Holstein bulls. J.
Anim. Breed Genet. 126(3):216-27.
http://dx.doi.org/10.1111/j.1439-0388.2008.00793.x
PMid:19646150 |
|
38. Huang, J., Wang, H., Wang, C., Li, J., Li, Q., Hou, M. and
Zhong, J. (2010) Single nucleotide polymorphisms, haplotypes
and combined genotypes of lactoferrin gene and their
associations with mastitis in Chinese Holstein cattle. Mol.
Biol. Rep. 37(1):477-483.
http://dx.doi.org/10.1007/s11033-009-9669-1
PMid:19672694 |
|
39. Sikora, K.M., Magee, D.A., Berkowicz, E.W., Berry, D.P.,
Howard, D.J., Mullen, M.P., Evans, R.D., Machugh, D.E. and
Spillane, C. (2011) DNA sequence polymorphisms within the
bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding
(GNAS) genomic imprinting domain are associated with
performance traits. BMC Genet. 12:4.
http://dx.doi.org/10.1186/1471-2156-12-4
PMid:21214909 PMCid:PMC3025900 |
|
40. Liu, J., Ju, Z., Li, Q., Huang, J., Li, R., Li, J., Ma,
L., Zhong, J. and Wang, C. (2011) Mannose-binding lectin 1
haplotypes influence serum MBL-A concentration, complement
activity, and milk production traits in Chinese Holstein
cattle. Immunogenetics 63(11):727-42.
http://dx.doi.org/10.1007/s00251-011-0548-2
PMid:21695551 |
|
41. Yuan, Z., Li, J., Li, J., Gao, X. and Xu, S. (2013) SNPs
identification and its correlation analysis with milk somatic
cell score in bovine MBL1 gene. Mol. Biol. Rep. 40(1):7-12.
http://dx.doi.org/10.1007/s11033-012-1934-z
PMid:23114911 |
|
42. Zhao, Z.L., Wang, C.F., Li, Q.L., Ju, Z.H., Huang, J.M.,
Li, J.B., Zhong, J.F. and Zhang, J.B. (2012) Novel SNPs of the
mannan-binding lectin 2 gene and their association with
production traits in Chinese Holsteins. Genet. Mol. Res.
11(4):3744-3754.
http://dx.doi.org/10.4238/2012.October.15.6
PMid:23096694 |
|
43. Russell, C.D., Widdison, S., Leigh, J.A. and Coffey, T.J.
(2012) Identification of single nucleotide polymorphisms in
the bovine Toll-like receptor 1 gene and association with
health traits in cattle. Vet. Res. 43:17.
http://dx.doi.org/10.1186/1297-9716-43-17
PMid:22417166 PMCid:PMC3342155 |
|
44. Yuan, Z., Chu, G., Dan, Y., Li, J., Zhang, L., Gao, X.,
Gao, H., Li, J., Xu, S. and Liu, Z. (2012) BRCA1: a new
candidate gene for bovine mastitis and its association
analysis between single nucleotide polymorphisms and milk
somatic cell score. Mol. Biol. Rep. 39(6):6625-31.
http://dx.doi.org/10.1007/s11033-012-1467-5
PMid:22327776 |
|
45. Yuan, Z., Li, J., Li, J., Zhang, L., Gao, X., Gao, H.J.
and Xu, S. (2012) Investigation on BRCA1 SNPs and its effects
on mastitis in Chinese commercial cattle. Gene 505(1):190-4.
http://dx.doi.org/10.1016/j.gene.2012.05.010
PMid:22583824 |
|
46. Yang, Y., Li, Q., Ju, Z., Huang, J., Zhou, L., Li, R., Li,
J., Shi, F., Zhong, J. and Wang, C. (2012) Three novel single-
nucleotide polymorphisms of complement component 4 gene (C4A)
in Chinese Holstein cattle and their associations with milk
performance traits and CH50. Vet. Immunol. Immunopathol.
145(1-2):223-32.
http://dx.doi.org/10.1016/j.vetimm.2011.11.010
PMid:22155013 |
|
47. Xia, P., Wang, Z., Wang, F., Wang, C., Huang, J., Li, Q.
and Wang, G. (2012) Discovery of novel mastitis-related SNP
and RNA splicing on HSF1 gene in Chinese Holstein Cattle. J.
Anim. Sci. Adv. 2(5): 467-474. |
|
48. Bagheri, M., Miraie-Ashtiani, R., Moradi-Shahrbabak, M.,
Nejati-Javaremi, A., Pakdel, V., von Borstel, U.U., Pimentel,
E.C.G. and König, S. (2013) Selective genotyping and logistic
regression analyses to identify favorable SNP- genotypes for
clinical mastitis and production traits in Holstein dairy
cattle. Livest. Sci. 151:140–151.
http://dx.doi.org/10.1016/j.livsci.2012.11.018 |
|
49. Wang, H.L., Li, Z.X., Wang, L.J, He, H., Yang, J., Chen,
L., Niu, F.B., Liu, Y., Guo, J.Z. and Liu, X.L. (2013)
Polymorphism in PGLYRP-1 gene by PCR-RFLP and its association
with somatic cell score in Chinese Holstein. Res. Vet. Sci.
95(2):508-14.
http://dx.doi.org/10.1016/j.rvsc.2013.06.005
PMid:23820447 |
|
50. Łuczak, I.K. and Kulig, H. (2013) Polymorphism of the
FAM13A, ABCG2, OPN, LAP3, HCAP-G, PPARGC1A genes and somatic
cell count of Jersey cows--preliminary study. Res. Vet. Sci.
94(2):252-5.
http://dx.doi.org/10.1016/j.rvsc.2012.08.006
PMid:23021125 |
|
51. Li, Z., Zhai, M., Wang, H., Chen, L., Wang, L., Ru, C.,
Song, A. and Liu, X. (2014) Identification of splice variants,
expression analysis and single nucleotide polymorphisms of the
PRMT2 gene in dairy cattle.Gene 539(1):37-43.
http://dx.doi.org/10.1016/j.gene.2014.01.065
PMid:24502989 |
|
52. Goertz, I., Baes, C., Weimann, C., Reinsch, N. and Erhardt,
G. (2009) Association between single nucleotide polymorphisms
in the CXCR1 gene and somatic cell score in Holstein dairy
cattle. J. Dairy Sci. 92(8):4018-22.
http://dx.doi.org/10.3168/jds.2008-1536
PMid:19620685 |
|
53. Carvajal, A.M., Huircan, P. and Lepori, A. (2013)Single
nucleotide polymorphisms in immunity-related genes and their
association with mastitis in Chilean dairy cattle. Genet. Mol.
Res. 12(3):2702-11.
http://dx.doi.org/10.4238/2013.July.30.8
PMid:23979895 |
|
54. Zhang, C., Wang, Y., Chen, H., Gu, C. and Fang, X. (2009)
SLC11A1gene polymorphisms are not associated to somatic cell
score and milk yield in Chinese Holstein. Vet. Immunol.
Immunopathol. 127: 389–392.
http://dx.doi.org/10.1016/j.vetimm.2008.10.333
PMid:19070368 |
|