Veterinary World
Open access and peer reviewed journal
|
ISSN (Online):
2231-0916
ISSN (Print): 0972-8988
|
|
Home
l
Editorial board
l
Instructions for authors
l
Reviewer guideline
l
Open access policy
l
Archives
l
FAQ
|
Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published
online: 08-03-2014)
5.
Identification of transition bias in oxidized low density
lipoprotein receptor 1 gene in buffalo - N. Shabir,
Chetan V. Jawale, Naveed A. Chikan, C. D. Bhong, D. N. Rank and C.
G. Joshi
Veterinary World, 7(3): 135-140
doi:
10.14202/vetworld.2014.135-140
Abstract
Aim: Though transition bias
has been previously demonstrated in cattle, however, there has not
been any study that has explored transition bias in buffalo
nuclear genome. The aim of the present study was to evaluate the
nucleotide substitution pattern in the Intron I of Oxidised Low
Density Lipoprotein Receptor 1 (OLR1) gene in four breeds of
Indian buffalo using 24 different nucleotide substitution models
and evaluate their association with DNA methylation.
Materials and Methods: Transition/transversion bias (R) was
estimated by 24 different nucleotide substitution models available
in MEGA 5.0. The transition/transversion bias (R) was estimated
under the Kimura 2-parameter model. Substitution patterns and the
transitions/transversions rates (r) were then estimated by Tamura-Nei-I
and Tamura-Nei-II models. The CpG Island search was done by using
CpG Plot Island online Software available at European
Bioinformatics Institute (EBI) website.
Results: The frequency of transition was found to be 3.5
times higher than that of the transversion mutation frequency. Out
of 9 nucleotide substitutions, 7 transitions and 2 transversions
were found. Among all the nucleotide substitutions, thymine to
cytosine substitutions was observed to be very high. CpG Island
search tool revealed that IntronI of OLR1 genes is a CpG rich
region, thus prone to methylation.
Conclusions: Higher transition frequency was found in the
intronI of OLR1 gene, however due to the richness of methylated
CpGs in the evaluated stretch of genome, the higher T↔C
transitions could likely be a result of frequent deaminations of
the methylated cytosines into thymines during the evolution of
four buffalo breeds.
Keywords: buffalo, oxidized low density lipoprotein
receptor 1, transitions.
References
1. Brown, W.M., Prager, E.M., Wang, A. and Wilson, A.C. (1982)
Mitochondrial DNA sequences of primates, tempo and mode of
evolution. J. Mol. Evol., 18: 225–239.
http://dx.doi.org/10.1007/BF01734101
PMid:6284948 |
|
2. Yang, Z. and Yoder, A.D. (1999) Estimation of the
transition/ transversion rate bias and species sampling. J.
Mol. Evol., 48: 274–283.
http://dx.doi.org/10.1007/PL00006470
PMid:10093216 |
|
3. Hughes, A.L. (2002) Natural selection and the
diversification of vertebrate immune effectors. Immunol. Rev.,
190: 161–168.
http://dx.doi.org/10.1034/j.1600-065X.2002.19012.x
PMid:12493013 |
|
4. Pakendorf, B. and Stoneking, M. (2005) Mitochondrial DNA
and Human Evolution. Annu. Rev. Genomics. Hum. Genet., 6:
165–83.
http://dx.doi.org/10.1146/annurev.genom.6.080604.162249
PMid:16124858 |
|
5. Garcia-Espana, A., Mares, R., Sun, T.T. and Desalle, R.
(2009) Intron evolution: testing hypotheses of intron
evolution using the phylogenomics of tetraspanins. PLoS One,
4:e4680.
http://dx.doi.org/10.1371/journal.pone.0004680
PMid:19262691 PMCid:PMC2650405 |
|
6. Jiang, Z., Wu, X.L., Zhang, M., Michal, J.J. and Wright,
R.W. Jr. (2008) The complementary neighborhood patterns and
methylation-to-mutation likelihood structures of 15,110
single-nucleotide polymorphisms in the bovine genome. Genetics
180: 639-47.
http://dx.doi.org/10.1534/genetics.108.090860
PMid:18716328 PMCid:PMC2535713 |
|
7 Shabir, N., Jawale, C.V., Bhong, C.D., Kurkute, A.S., Patel,
T.B., Rank, D.N. and Joshi, C.G. (2011a) SNP exploration in
the Oxidised Low Density Lipoprotein Receptor 1 (OLR1) gene in
Bubalus Bubalis. Buffalo Bulletin., 30: 267-271. |
|
8. Jawale, C.V. (2009) Identification of SNPs in OLR1 gene of
Mehsana and Banni buffalo by cloning and sequencing. An MVSc
dissertation submitted to AAU, Anand, India. |
|
8. Kimura, M. (1980) A simple method for estimating
evolutionary rate of base substitutions through comparative
studies of nucleotide sequences. J. Mol. Evol., 16:111-120.
http://dx.doi.org/10.1007/BF01731581
PMid:7463489 |
|
9. Tamura, K., Nei, M., Kumar, S. (2004) Prospects for
inferring very large phylogenies by using the neighbor-
joining method. Proc. Natl. Acad. Sci. USA, 101: 11030-11035.
http://dx.doi.org/10.1073/pnas.0404206101
PMid:15258291 PMCid:PMC491989 |
|
10. Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007). MEGA4:
Molecular Evolutionary Genetics Analysis (MEGA) software
version 4.0. Mol. Biol. Evol., 24:1596- 1599.
http://dx.doi.org/10.1093/molbev/msm092
PMid:17488738 |
|
11. Shabir, N., Jawale, C.V., Bhong, C.D., Naikoo,N., Rank,
D.N., Joshi, C.G. (2011b). Haplotype and phylogenetic analysis
of OLR1 (Intron I) gene in Jaffarabadi and Surti buffalo. Vet.
World., 4:396-398.
http://dx.doi.org/10.5455/vetworld.2011.396-398 |
|
12. Cargill, M., Altshuler, D., Ireland, J., Sklar, P., Ardlie,
K., Patil, N., Shaw, N., Lane, C.R., Lim, E.P., Kalyanaraman,
N., Nemesh, J., Ziaugra, L., Friedland, L., Rolfe, A.,
Warrington, J., Lipshutz, R., Daley, G.Q., Lander, E.S. (1999)
Characterization of single-nucleotide polymorphisms in coding
regions of human genes. Nat. Genet., 22: 231-238.
http://dx.doi.org/10.1038/10290
PMid:10391209 |
|
13. Lindblad-Toh, K., Winchester, E., Daly, M.J., Wang, D.G.,
Hirschhorn, J.N., Laviolette, J.P., Ardlie, K., Reich, D.E.,
Robinson, E., Sklar, P., Shah, N., Thomas, D., Fan, J.B.,
Gingeras, T., Warrington, J., Patil, N., Hudson, T.J., Lander,
E.S. (2000) Large-scale discovery and genotyping of single-
nucleotide polymorphisms in the mouse. Nat. Genet.,24:
381–386.
http://dx.doi.org/10.1038/74215
PMid:10742102 |
|
14. Jukes, T.H. and Cantor, C.R. (1969) Evolution of Protein
Molecules. New York, NY, USA: Academic Press. |
|
15. Zemojtel, T., Kielbasa, S.M., Arndt, P.F., Behrens, S.,
Bourque, G. and Vingron, M. (2011) CpG deamination creates
transcription factor-binding sites with high efficiency.
Genome. Biol. Evol., 3:1304-11.
http://dx.doi.org/10.1093/gbe/evr107
PMid:22016335 PMCid:PMC3228489 |
|
16. Miranda, T. B. and Jones, P. A. (2007) DNA methylation:
The nuts and bolts of repression. J.Cell. Physiol. 213:
384-390.
http://dx.doi.org/10.1002/jcp.21224
PMid:17708532 |
|
17. Xia, J., Han, L. and Zhao, Z. (2012) Investigating the
relationship of DNA methylation with mutation rate and allele
frequency in the human genome. BMC Genom. 13 (Suppl) 8:S7. doi:
10.1186/1471-2164-13-S8-S7. |
|
18. Mugal, C.F. and Ellegren, H. (2011) Substitution rate
variation at human CpG sites correlates with non-CpG
divergence, methylation level and GC content. Genome Biol. 12:
R58. doi: 10.1186/gb-2011-12-6-r58.
http://dx.doi.org/10.1186/gb-2011-12-6-r58 |
|
19. Nevarez, P.A., DeBoever, C.M., Freeland, B.J., Quitt, M.A.
and Bush, E.C. (2010) Context dependent substitution biases
vary within the human genome. BMC Bioinformatics. 11: 462.
http://dx.doi.org/10.1186/1471-2105-11-462
PMid:20843365 PMCid:PMC2945941 |
|
20. Freudenberg, J., Gregersen, P.K. and Freudenberg-Hua, Y.
(2012) A simple method for analyzing exome sequencing data
shows distinct levels of nonsynonymous variation for human
immune and nervous system genes. PLoS One. 7: e38087.
http://dx.doi.org/10.1371/journal.pone.0038087
PMid:22701602 PMCid:PMC3368947 |
|
|
|
|
|
Editorial
office: Veterinary World, 101-C, Pooja
Complex, Nr.GPO., Rajkot 360 001
(Gujarat) India
|
|
|
|
|
|
|