Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published
online: 18-03-2014)
8. Assessment of hemato-biochemical
parameters on exposure to low level of deltamethrin in mouse model
- Anita Tewari and J.P.S. Gill
Veterinary World, 7(3): 152-157
doi:
10.14202/vetworld.2014.152-157
Abstract
Aim: In this study, sub-acute
toxicity of deltamethrin on hematological and biochemical blood
parameters of male albino Swiss mice was evaluated.
Materials and Methods: Generally, the maximum permissible
residue level (MRL) of deltamethrin for food products lies between
0.01 to 0.5 mg/kg body weight. So the mice were exposed orally
with two doses of pesticide i.e. 0.1 and 0.5 mg/kg body weight.
The doses were given on a daily basis for a period of 15 days and
30 days respectively. Ground nut oil was used as control
treatment. Samples of blood were collected at the end of the
treatment. Hepatotoxicity was evaluated by quantitative analysis
of the serum enzymes alanine transaminase (ALT), aspartate
transaminase (AST), alkaline phosphatase (ALKP), total bilirubin (TBIL)
and serum urea. Alterations of hematological parameters were
analysed by total leukocyte, differential leukocyte count and
hemoglobin levels.
Results: Significant increase in the levels of hepatic
enzymes (ALT, AST, ALKP) were observed for both doses, but no
considerable differences were found by histological analysis. The
hematological parameters showed significant alterations for 0.5
mg/kg body weight dose which is indicated by leukocytosis,
lymphocytosis and neutropenia in long duration study.
Conclusions: The results indicated that even very low dose
of deltamethrin can promote hematological and hepatic alterations.
Thus it is imperative to do further studies on the detrimental
effect of the low levels of pyrethroid commonly present in our
food, which further necessitate the reduction of maximum
permissible levels of residual synthetic pyrethroid levels in
foods and feed.
Keywords: biochemical, deltamethrin, enzymes,
hematological, mice, serum
References
1. United States Environmental Protection Agency. (2010)
Deltamethrin. Human Health Assessment Scoping Document in
Support of Registration Review washington, d.c. 20460. Office
of prevention, pesticides and toxic substances. Pp 1 - 27. |
|
2. Elliott, M. (1977) Synthetic insecticides designed from
natural pyrethrins. Path. Acad. Sci. Sor. Varia., 41:154
184. |
|
3. Imamura, L., Yasuda, M., Kuramitsu, K., Hara, D., Tabuchi,
A. and Tsuda, M. (2006) Deltamethrin, a pyrethroid
insecticide, is a potent inducer for the activity-dependent
gene expression of brain-derived neurotrophic factor in
neurons, J. Pharmacol. Exp. Ther., 316:136-43.
http://dx.doi.org/10.1124/jpet.105.092478 |
|
4. Aldridge, W. N. (1990) An assessment of the toxicological
properties of pyrethroids and their neurotoxicity. Crit. Rev.
Toxicol., 21:89104.
http://dx.doi.org/10.3109/10408449009089874 |
|
5. Parvez, S. and Raisuddin, S. (2006) Copper modulates non-
enzymatic antioxidants in the freshwater Wash Channa punctata
(Bloch) exposed to deltamethrin. Chemosphere., 62 (8):1324
1332.
http://dx.doi.org/10.1016/j.chemosphere.2005.07.025 |
|
6. Yousif, E. H., Emmanuel, A. T. and Eliningaya, J. K. (2012)
Insecticides for vector-borne disease: Current use, benefits,
hazard and resistance. In: Farzana Perveen, editor.
Insecticides - Advances in Integrated Pest Management. http://www.intechopen.com/
Accessed on 23rd December 2013. |
|
7. WHO. (2001) WHO Recommended Insecticides for Indoor
Residual Spraying against Malaria Vectors. Geneva: World
Health Organization. |
|
8. Barlow, S. M., Sullivan, F. M. and Lines, J. (2001) Risk
assessment of the use of deltamethrin on bednets for the
prevention of malaria. Food Chem. Toxicol., 32(2):11-120. |
|
9. Mittal, P. K., Adak, T. and Sharma, V. P. (1994)
Comparative toxicity of certain mosquitocidal compounds to
larvivorous Wsh, Poecilia reticulate. Indian J. Malariol., 31:
4347. |
|
10. Issam, C., Intissar, G., Fatma, B., Yahia, H. M., Samir,
H., Zohra, H. and Hassen, B. (2012) Oxidative Stress,
Biochemical and Histopathological Alterations in the Liver and
Kidney of Female Rats Exposed to Low Doses of Deltamethrin
(DM): A Molecular Assessment. Biomed. Environ. Sci., 25(6):
672-683. |
|
11. Shahzadi, N., Imran, M., Sarwar, M., Hashmi, A.S. and
Wasim, M. (2013). Identification of pesticides residues in
different samples of milk. J. Agroaliment. Proc. Technol.,
19(2): 167-172. |
|
12. Swarnam T. P. and Velmurugan A. (2013) Pesticide residues
in vegetable samples from the Andaman Islands, India. Environ.
Monit. Assess., 185:61196127.
http://dx.doi.org/10.1007/s10661-012-3012-3 |
|
13. Kumar, P., Kumar, P., Nigam, R. C. and Mishra, P. K.
(2012) Monitoring and Surveillance of Synthetic Pyrethroids
and Organophosphate in Different Brands of Soft Drinks. J.
Chem. Pharm. Res., 4(8):3939-3943. |
|
14. Manna, S., Bhattacharyya, D., Mandal, T. K. and Das, S.
(2004) Repeated dose toxicity of deltamethrin in rats. J. Vet.
Sci., 5: 241245. |
|
15. Sayeed, I., Parvez, S. and Pandey, S. (2003) Oxidative
stress biomarkers of exposure to deltamethrin in freshwater
fish, Channa punctatus Bloch. Ecotoxicol. Environ. Saf., 56:
295- 301.
http://dx.doi.org/10.1016/S0147-6513(03)00009-5 |
|
16. Benjamin, M. M. (1985) Outline of Veterinary Clinical
Pathology.3rd ed. Kalyani Publishers, New Delhi, 351 p. |
|
17. FAO & WHO Food Standards. (2013) Pesticide Residues in
Food and Feed. Codex Pesticides Residues in Food Online
DATABASE. Accessed on 11th Dec. 2013. |
|
18. Le Doux, M. (2011) Analytical methods applied to the
determination of pesticide residues in foods of animal origin.
A review of the past two decades. J. Chromatogr. A., 1218
(8):1021-1036.
http://dx.doi.org/10.1016/j.chroma.2010.12.097 |
|
19. Abbassy, M. A. and Mossa, A. H. (2012) Haemato-
biochemical effects of formulated and technical Cypermethrin
and deltamethrin insecticides in male rats. J. Pharmacol.
Toxicol., 7(7): 312-321.
http://dx.doi.org/10.3923/jpt.2012.312.321 |
|
20. Yousef, M. I., El-Demerdash, F. M., Kamel, K. I. and Al-
Salhin K. S. (2003) Changes in some haematological and
biochemical indices of rabbit induced by isoflavenes and
cypermethrin. Toxicology., 189:223234.
http://dx.doi.org/10.1016/S0300-483X(03)00145-8 |
|
21. Yousef, M. I., Awad, T. I. and Mohamed, E. H. (2006)
Deltamethrin-induced oxidative damage and biochemical
alterations in rat and its attenuation by Vitamin E.
Toxicology., 227:240247.
http://dx.doi.org/10.1016/j.tox.2006.08.008 |
|
22. Vijayavel, K. and Balasubramanian, M. P. (2007)
Interaction of potash and decis in the ecophysiology of a
freshwater fish Oreochromis mossambicus, Ecotoxicol Environ
Saf., 66: 1548.
http://dx.doi.org/10.1016/j.ecoenv.2005.12.005 |
|
23. Nayak, A. K., Das, B. K., Kohli, M. P. S. and Mukherjee,
S. C. (2004) The immunosuppressive effect of α-permethrin on
Indian major carp, rohu (Labeo rohita Ham). Fish Shellfish
Immunol., 16:4150.
http://dx.doi.org/10.1016/S1050-4648(03)00029-9 |
|
24. Rao, V. J. (2006) Biochemical alterations in euryhaline
fish, Oreochromis mossambicus exposed to sublethal
concentrations of an organophosphorus insecticide,
monocrotophos. Chemosphere., 65:181420.
http://dx.doi.org/10.1016/j.chemosphere.2006.04.015 |
|
25. Mossa, A. H., Rafaie, A. A. and Ramadan, A. (2011) Effect
of exposure to mixture of four organophosphate insecticides at
no observed adverse effect level dose on rat liver: the
protective role of vitamin C. Res. J. Environ. Toxicol., 5:
323-335.
http://dx.doi.org/10.3923/rjet.2011.323.335 |
|
26. Mansour, S. A. and Mossa, A. H. (2011) Adverse effects of
exposure to low doses of chlorpyrifos in lactating rats. Hum.
Exp. Toxicol., 92: 77-92. |
|
27. Ambali, S., Akanbi D., Igbokwe N., Shitttu M., Kawu M. and
Ayo, J. (2007) Evaluation of subchronic chlorpyrifos poisoning
on hematological and serum biochemical change in mice and
protective effect of vitamin C. J. Toxicol. Sci., 32 (2):
11-120.
http://dx.doi.org/10.2131/jts.32.111 |
|
28. Burtis, C.A., Ashwood, E.R. and Bruns, D. E., (eds.).
2006. Tietz Textbook of Clinical Chemistry and Molecular
Diagnostics. 4th edition, Elsevier Saunders, St. Louis, 24:
801-803. |
|
29. Neuzil, J. and Stocker, R. (1993) Bilirubin attenuates
radical- mediated damage to serum albumin. FEBS Lett., 331:
281284.
http://dx.doi.org/10.1016/0014-5793(93)80353-V |
|
30. Ollinger, R., Bilban, M., Erat, A., Froio, A., McDaid, J.,
Tyagi, S., Csizmadia, E., Gracธa-Souza, A. V., Liloia, A.,
Soares, M. P., Otterbein, L. E., Usheva, A., Yamashita, K. and
Bach, F. H. (2005) Bilirubin: a natural inhibitor of vascular
smooth muscle cell proliferation. Circulation., 112: 1030
1039.
http://dx.doi.org/10.1161/CIRCULATIONAHA.104.528802 |
|
31. Schwertner, H. A. and Vitek, L. (2008) Gilbert syndrome,
UGT1A1*28 allele, and cardiovascular disease risk: possible
protective effects and therapeutic applications of Bilirubin.
Atherosclerosis., 198:111.
http://dx.doi.org/10.1016/j.atherosclerosis.2008.01.001 |
|
32. Kimm, H., Yun, J. E., Jo J. and Jee, S. H. (2009) Low
Serum Bilirubin Level as an Independent Predictor of Stroke
Incidence: A Prospective Study in Korean Men and Women.
Stroke. 40:3422-27.
http://dx.doi.org/10.1161/STROKEAHA.109.560649 |
|
33. Barna-Lloyd, T., Szabo J. R. and Davis N. L. (1990) TXT.
K-046193-026. Dow Chemical, Tex, USA, submitted to WHO by Dow
Elanco, Ind, USA; Chlorpyrifos-methyl (Reldan R) rat
subchronic dietary toxicity and recovery study. |
|
34. Singh, R. L., Khanna, S. K. and Singh, G. B. (1988) Acute
and short term toxicity of a popular blend of yellow and
orange II in Albino rats, Ind. J. Exp. Biol., 26 (2): 105111. |
|
35. El-Sayed Y. S. and Saad T.T. (2007) Subacute Intoxication
of a Deltamethrin-Based Preparation (Butox ฎ5% EC) in Monosex
Nile Tilapia, Oreochromis niloticus L. Basic Clin. Pharmacol.
Toxicol., 102: 293299.
http://dx.doi.org/10.1111/j.1742-7843.2007.00157.x |
|
36. Santoni, G., Cantalamessa, F., Spreghini, E., Sagretti,
O., Staffolani, M. and Piccoli, M. (1999) Alterations of T
cell distribution and functions in prenatally cypermethrin-
exposed rats: possible involvement of catecholamines.
Toxicology., 138: 175-87.
http://dx.doi.org/10.1016/S0300-483X(99)00103-1 |
|
37. McCord, J. M., Gao B., Leff, J. and Flores, S. C. (1994)
Neutrophil- generated free radicals: possible mechanisms of
injury in adult respiratory distress syndrome. Environ. Health
Perspect., 102 (suppl 10): 57-60. |
|
38. Abbassy, M. and Mossa, A. H. (2012) Haemato-biochemical
effects of formulated and technical cypermethrin and
deltamethrin insecticides in male rats. J. Pharmacol. Toxicol.
7: 312-321.
http://dx.doi.org/10.3923/jpt.2012.312.321 |
|
39. Jasper, R., Locatelli, G. O., Pilati, C. and Locatelli, C.
(2012) Evaluation of biochemical, hematological and oxidative
parameters in mice exposed to the herbicide glyphosate-
Roundup(ฎ). Interdisciplinary Toxicol., 5(3): 13340.
http://dx.doi.org/10.2478/v10102-012-0022-5 |
|