Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published
online: 04-11-2014)
2. Effect of higher temperature exposure on
physicochemical properties of frozen buffalo meat - M.
R. Vishnuraj, G. Kandeepan and Vivek Shukla
Veterinary World, 7(11): 909-915
doi:
10.14202/vetworld.2014.909-915
M. R.
Vishnuraj:
Division of Livestock Products Technology, Indian Veterinary
Research Institute, Izatnagar, Bareilly - 243 122,
Uttar Pradesh, India;
vishnurajmr@gmail.com
G.
Kandeepan:
Division of Livestock Products Technology, Indian Veterinary
Research Institute, Izatnagar, Bareilly - 243 122,
Uttar
Pradesh, India;
drkandee@gmail.com
Vivek
Shukla: Division of Livestock Products Technology, Indian
Veterinary Research Institute, Izatnagar, Bareilly - 243 122,
Uttar
Pradesh, India;
drvivekivri@gmail.com
Received:
15-07-2014, Revised: 03-10-2014, Accepted: 08-10-2014, Published
online: 04-11-2014
Corresponding author:
M. R. Vishnuraj, e-mail: vishnurajmr@gmail.com
Abstract
Aim:
The aim was to study the changes in various physicochemical
parameters of frozen buffalo meat undergone temperature abuse at
two different isothermal storage temperatures (37±1°C, 25±1°C)
using a simulated model.
Materials and Methods: Frozen buffalo meat was evaluated after
exposing to various temperature abuse conditions over selected
durations for different meat quality parameters including pH,
extract release volume (ERV), flourescein diacetate (FDA)
hydrolysis, free amino acid (FAA), total volatile basic nitrogen (TVBN)
and D-glucose value and compared against a control sample
maintained at 4±1°C.
Results: Of the various meat quality parameters evaluated pH,
FDA hydrolysis, FAA content and TVBN content showed a significant
(p<0.05) increase in temperature abused samples after temperature
abuse and on subsequent refrigerated storage. However, ERV and
D-glucose content decreased significantly (p<0.05) in temperature
abused buffalo meat during the same period of study.
Conclusions: The present study featured the influence of
exposure temperature and duration in various physicochemical
parameters and the rate of spoilage development in frozen buffalo
meat after temperature abuse.
Keywords: buffalo meat, physicochemical parameters, spoilage,
temperature abuse.
References
1. APEDA. (2012) Export of agro and processed food products
including meat and meat products. Agricultural and Processed
Food Products Export Development Authority, Ministry of
Commerce, Government of India, New Delhi. |
|
2. Nychas, G.J.E., Skandamis, P.N., Tassou, C.C. and
Koutsoumanis, K.P. (2008) Meat spoilage during distribution.
Meat Sci., 78(1-2): 77-89.
http://dx.doi.org/10.1016/j.meatsci.2007.06.020
PMid:22062098 |
|
3. Ingham, S.C., Fanslau, M.A., Burnham, G.M., Ingham, B.H.,
Norback, J.P. and Shafner, D.W. (2007) Predicting pathogen
growth during short term temperature abuse of raw pork, beef,
and poultry products: Use of an isothermal based predictive
model. J. Food Prot., 70(6): 1445-1454. |
|
4. Singhal, R.S., Kulkarni, P.R. and Rege, D.V. (1997)
Handbook of Indices of Food Quality and Authenticity. Woodhead
Publishing Ltd., Cambridge.
http://dx.doi.org/10.1533/9781855736474 |
|
5. Nychas, G.J.E., Marshall, D. and Sofos, J. (2007). Meat
poultry and seafood. In: Doyle, M.P. Beuchat, L.R. and
Montville, T.J., editors. Food Microbiology: Fundamentals and
Frontiers. Washington DC: ASM Press. |
|
6. Jay, J.M., Loessner, M.J. and Golden, D.A. (2005) Modern
Food Microbiology. 7th ed. Springer, New York. |
|
7. Kandeepan, G. and Biswas, S. (2007) Effect of domestic
refrigeration on keeping quality of buffalo meat. J. Food
Technol., 5(1): 29-35. |
|
8. Venkitanarayanan, K.S., Faustman, C., Hoagland, T. and
Berry, B.W. (1997) Estimation of spoilage bacterial load on
meat by fluorescein diacetate hydrolysis or resazurin
reduction. J. Food Sci., 62: 601-604.
http://dx.doi.org/10.1111/j.1365-2621.1997.tb04440.x |
|
9. Byun, J.S., Min, J.S., Kim, I.S., Kim, J.W., Chung, M.S.
and Lee, M. (2003) Comparison of Indicators of microbial
quality of meat during aerobic cold storage. J. Food Prot.,
66: 1733-1737.
PMid:14503737 |
|
10. Strange, E.D., Benedict, R.C., Smith, J.L. and Swift, C.E.
(1977) Evaluation of rapid tests for monitoring alterations in
meat quality during storage. I. Intact meat. J. Food Prot.,
40: 843-847. |
|
11. Rosen, H. (1957) A modified ninhydrin colourimetric
analysis for amino acids. Arch. Biochem. Biophys., 67(9):
10-15.
http://dx.doi.org/10.1016/0003-9861(57)90241-2 |
|
12. Pearson, D. (1968) Application of chemicals methods for
the assessment of beef quality II. Methods related to protein
breakdown. J. Sci. Food Agric., 19: 366-369.
http://dx.doi.org/10.1002/jsfa.2740190703 |
|
13. Galgano, F., Favati, F., Bonadio, M., Lorusso. V. and
Romano, P. (2009) Role of biogenic amines as index of
freshness in beef meat packed with different biopolymeric
material. Food Res. Int., 42: 1147-1152.
http://dx.doi.org/10.1016/j.foodres.2009.05.012 |
|
14. Kandeepan, G., Anjaneyulu, A.S.R., Kondaiah, N. and
Mendiratta, S.K. (2010) Quality of buffalo meat keema at
different storage temperature. Afr. J. Food Sci., 4(6):
410-417. |
|
15. Kandeepan, G., Anjaneyulu, A.S.R., Kondaiah, N. and
Mendiratta, S.K. (2011) Comparison of quality attributes of
buffalo meat curry at different storage temperature. Acta. Sci.
Pol. Technol. Aliment., 10(1): 83-95. |
|
16. Yang, X., Balamurugau, S. and Gill, C.O. (2011) Effectes
on the development of blown pack spoilage of the initial
numbers of Clostridium estertheticum spores and Leuconostoc
mesenteroides on vakuum packed beef. Meat Sci., 88: 361-367.
http://dx.doi.org/10.1016/j.meatsci.2011.01.010
PMid:21316870 |
|
17. Clemens, R.M., Adam, K.H., Brightwell, G. (2010)
Contamination levels of Clostridium estertheticum spores that
result in gaseous spoilage of vakuum-packaged chilled beef and
lamb meat. Appl. Microbiol., 50: 591-596.
http://dx.doi.org/10.1111/j.1472-765X.2010.02838.x
PMid:20406381 |
|
18. Silva, A.R., Tahara, A.C.C., Chaves, R.D., Sant’Ana, A.S.,
Faria, J.A.F. and Massaguer, P.R. (2012) Influence of
different shrinking temperatures and vakuum conditions on the
ability of psychrotrophic Clostridium to cause "blown pack"
spoilage in chilled vakuum-packed beef. Meat Sci., 92:
498-505.
http://dx.doi.org/10.1016/j.meatsci.2012.05.017
PMid:22721639 |
|
19. Shelef, L.A., and Jay, J.M. (1970) Use of a titrimetric
method to assess the bacterial spoilage of fresh beef. Appl.
Microbiol., 19: 902-905.
PMid:4917189 PMCid:PMC376820 |
|
20. Pearson, D. (1976) The Chemical Analysis of Foods. 7th ed.
Churchill Livingston, Edinburgh. |
|
21. David, I.E., and Goodacre, R. (2001) Rapid and
quantitative detection of the microbial spoilage of muscle
foods: Current status and future trends. Trends. Food Sci.
Tech., 12: 414-424.
http://dx.doi.org/10.1016/S0924-2244(02)00019-5 |
|
22. Gill, C.O. and Newton, K.G. (1977) The development of
aerobic spoilage flora on meat stored at chill temperatures.
J. Appl. Bacteriol., 43(2): 189-195.
http://dx.doi.org/10.1111/j.1365-2672.1977.tb00742.x
PMid:22531 |
|
23. Doulgeraki, A.I. and Nychas, G.J.E. (2013) Monitoring the
succession of the biota grown on a selective medium for
pseudomonads during storage of minced beef with
molecular-based methods. Food Microbiol., 34: 62-69.
http://dx.doi.org/10.1016/j.fm.2012.11.017
PMid:23498179 |
|
24. Bruckner, S., Albrecht, A., Petersen. B. and Kreyenschmidt,
J. (2012) Characterization and comparison of spoilage
processes in fresh pork and poultry. J. Food Qual., 35:
372-382.
http://dx.doi.org/10.1111/j.1745-4557.2012.00456.x |
|
25. Ercolini, D., Russo, F., Nasi, A., Ferranti, P. and
Villani, F. (2009) Mesophilic and psychrotrophic bacteria from
meat and their spoilage potential in vitro and in beef. Appl.
Environ. Microbiol., 75(7): 1990-2001.
http://dx.doi.org/10.1128/AEM.02762-08
PMid:19201980 PMCid:PMC2663181 |
|
26. Anbalagan, M., GaneshPrabu, P., Krishnaveni, R.E. and
Manivannan, S. (2014) Effect of low temperature on the
bacterial load in chicken, mutton and beef meat in relation to
meat spoilage. Int. J. Res. Pure. Appl. Microbiol., 4(1): 1-6. |
|