Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published
online: 30-11-2014)
2 2.
Bone marrow derived cell-seeded
extracellular matrix: A novel biomaterial in the field of wound
management - V. Remya, Naveen Kumar, A. K. Sharma,
Dayamon D. Mathew, Mamta Negi, S. K. Maiti, Sameer Shrivastava, Sonal and N. P. Kurade
Veterinary World, 7(11): 1019-1025
doi:
10.14202/vetworld.2014.1019-1025
V.
Remya:
Division of Surgery, Indian Veterinary Research Institute,
Izatnagar, Uttar Pradesh, India;
remyamukund04vet@gmail.com
Naveen
Kumar:
Division of Surgery, Indian Veterinary Research Institute,
Izatnagar, Uttar Pradesh, India;
naveen.ivri1961@gmail.com
A. K.
Sharma:
Division of Surgery, Indian Veterinary Research Institute,
Izatnagar, Uttar Pradesh, India;
ashok.sharma1010@gmail.com
Dayamon
D. Mathew:
Division of Surgery, Indian Veterinary Research Institute,
Izatnagar, Uttar Pradesh, India;
dayamon@gmail.com
Mamta
Negi:
Division of Surgery, Indian Veterinary Research Institute,
Izatnagar, Uttar Pradesh, India;
mamtaanegi@gmailcom
S. K.
Maiti:
Division of Surgery, Indian Veterinary Research Institute,
Izatnagar, Uttar Pradesh, India;
maiti_62@rediffmail.com
Sameer
Shrivastava:
Division of Veterinary Biotechnology, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India;
sameer_vet@rediffmail.com
Sonal:
Division of Veterinary Biotechnology, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India;
sonalvet@gmail.com
N. P.
Kurade: Division of Pathology, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India;
npkurade@yahoo.co.in
Received:
04-06-2014, Revised: 19-10-2014, Accepted: 24-10-2014, Published
online: 30-11-2014
Corresponding author:
V. Remya: e-mail: remyamukund04vet@gmail.com
Abstract
Aim:
Extensive or irreversible damage to the skin often requires
additional skin substitutes for reconstruction. Biomaterials have
become critical components in the development of effective new
medical therapies for wound care.
Materials and Methods: In the present study, a cell matrix
construct (bone marrow-derived cells (BMdc) seeded extracellular
matrix [ECM]) was used as a biological substitute for the repair
of full-thickness skin wound. ECM was developed by decellularizing
fish swim bladder (FSB). Goat bone marrow-derived cells (G-BMdc)
were seeded over this decellularized matrix. Efficacy of this cell
matrix construct in wound repair was tested by implanting it over
20 mm2 × 20 mm2 size fullthickness skin wound
created over the dorsum of rat. The study was conducted in 16
clinically healthy adult rats of either sex. The animals were
randomly divided into 2 equal groups of 8 animals each. In Group
I, animal’s wounds were repaired with a cellular FSB matrix. In
Group II, wounds were repaired with G-BMdc seeded a cellular FSB
matrix. Immune response and efficacy of healing were analyzed.
Results: Quality of healing and immuno tolerance to the
biological substitute was significantly better in Group II than
Group I.
Conclusion: Seeding with BMdc increases the wound healing
potency and modulates the immune response to a significantly
negligible level. The BMdc seeded acellular FSB matrix was found
to be a novel biomaterial for wound management.
Keywords: biomaterial, decellular, extra cellular matrix,
wound.
References
1. Clark, R.A.F., Ghosh, K. and Tonnesen, M.G. (2007) Tissue
engineering for cutaneous wounds. J. Invest. Dermatol., 127:
1018-1029.
http://dx.doi.org/10.1038/sj.jid.5700715
PMid:17435787 |
|
2. Badylak, S.F. (2002) The extracellular matrix as a scaffold
for tissue reconstruction. Semin. Cell. Dev. Biol., 13(5):
377-383.
http://dx.doi.org/10.1016/S1084952102000940
PMid:12324220 |
|
3. Bellows, C.F., Albo, D., Berger, D.H. and Awad, S.S. (2007)
Abdominal wall repair using human acellular dermis. Am. J.
Surg., 194(2): 192-198.
http://dx.doi.org/10.1016/j.amjsurg.2006.11.012
PMid:17618803 |
|
4. Harth, K.C. and Rosen, M.J. (2009) Major complications
associated with xenograft biologic mesh implantation in
abdominal wall reconstruction. Surg. Innov., 16: 324-329.
http://dx.doi.org/10.1177/1553350609353609
PMid:20031943 |
|
5. Pascual, G., Sotomayor, S., Rodriguez, M., Kohler, B.P. and
Bellon, J.M. (2012) Repair of abdominal wall defects with
biodegradable laminar prostheses: Polymeric or biological.
Plos One, 7(12): 1-11.
http://dx.doi.org/10.1371/journal.pone.0052628
PMid:23285119 PMCid:PMC3528658 |
|
6. Gulati, A.K. and Cole, G.P. (1994) Immunogenicity and
regenerative potential of acellular nerve allograft to repair
peripheral nerve in rats and rabbits. Acta Neurochir.,
126(2-4): 158-164.
http://dx.doi.org/10.1007/BF01476427 |
|
7. Kumar, N., Gangwar, A.K., Sharma, A.K., Negi, M.,
Shrivastava, S., Mathew, D.D., Remya, V., Sonal, S, Maiti, S.K.,
Devi, K.S., Kumar, V., Ramteke, P.W., Kaarthick, D.T. and
Kurade, N.P. (2013) Extraction techniques for the
decellularization of rat dermal constructs. Trends Biomater.
Artif. Organs., 27: 102-103. |
|
8. Gilbert, T.W., Sellaro, T.L. and Badylak, S.F. (2006)
Decellularization of tissues and organs. Biomaterials, 27:
3675-3683.
PMid:16519932 |
|
9. Lee, C.H., Singla, A. and Lee, Y. (2001) Biomedical
application of collagen. Int. J. Pharm., 221: 21-22.
http://dx.doi.org/10.1016/S0378-5173(01)00691-3 |
|
10. Van der Laan, J.S., Lopez, G.P., Van, P.B., Nieuwenhuis,
P., Ratner, B.D., Bleichrodt, R.P. and Schakenraad, J.M.
(1991) TFE-plasma polymerized dermal sheep collagen for the
repair of abdominal wall defects. Int. J. Artif. Organs,
14(10): 661-666.
PMid:1836203 |
|
11. Dong, S.W., Ying, D.J., Duan, X.J., Xie, Z. and Yu, Z.J.,
Zhu, C.H., Yang, B and Sun, J.S. (2009) Bone regeneration
using an acellular extracellular matrix and bone marrow
mesenchymal stem cells expressing C bfa1. Biosci. Biotechnol.
Biochem., 73(10): 2226-2233.
http://dx.doi.org/10.1271/bbb.90329
PMid:19809195 |
|
12. Cheng, H.L., Loai, Y., Beaumont, M. and Farhat, W.A (2010)
The acellular matrix (ACM) for bladder tissue engineering: A
quantitative magnetic resonance imaging study. Magn. Reson.
Med., 64(2): 341-348.
PMid:20665777 |
|
13. Boer, U., Lohrenz, A., Klingenberg, M., Pich, A., Haverich,
A. and Wilhelmi, M. (2011) The effect of detergent based
decellularization procedures on cellular proteins and
immunogenicity in equine carotid artery grafts. Biomaterials,
32(36): 9730-9737.
http://dx.doi.org/10.1016/j.biomaterials.2011.09.015
PMid:21944468 |
|
14. Kheir, E., Stapleton, T., Shaw, D., Jin, Z., Fisher, J.
and Ingham, E. (2011) Development and characterization of an
acellular porcine cartilage bone matrix for use in tissue
engineering. J. Biomed. Mater. Res. A., 99(2): 283-294.
http://dx.doi.org/10.1002/jbm.a.33171
PMid:21858917 |
|
15. Stapleton, T.W., Ingram, J., Fisher, J. and Ingham, E.
(2011) Investigation of the regenerative capacity of an
acellular porcine medial meniscus for tissue engineering
applications. Tissue Eng. Part. A., 17(1-2): 231-242.
http://dx.doi.org/10.1089/ten.tea.2009.0807
PMid:20695759 PMCid:PMC3011925 |
|
16. Zhao, Y., Zhang, Z., Wang, J., Yin, P., Zhou, J., Zhen,
M., Cui, W., Xu, G., Yang, D. and Liu, Z. (2012) Abdominal
hernia repair with a decellularized dermal scaffold seeded
with autologous bone marrow derived mesenchymal stem cells.
Artif. Organs., 36(3): 247-255.
http://dx.doi.org/10.1111/j.1525-1594.2011.01343.x
PMid:21899574 |
|
17. Kumar, V., Kumar, N., Sharma, A.K., Maiti, S.K., Gangwar,
A.K., Singh, H., Shrivastava, S., Sonal, S and Rai, R.B.
(2012) Acellular buffalo small intestinal submucosa and fish
swim bladder for repair of full-thickness skin wounds in
rabbit. In proceeding of: 9th World Biomaterials Congress,
Chengdu, China. Abstract No.:52. p104. |
|
18. Gangwar, A.K., Kumar, N., Sharma, A.K. Devi, S., Negi, M.,
Shrivastava, S., Mathew, D.D., Remya, V., Sonal, S., Arundeep,
P.S., Maiti, S.K., Kumar, V., Kaarthick, D.T., Kurade, N.P.
and Singh, R. (2013) Bioengineered acellular dermal matrix for
the repair of full thickness skin wounds in rats. Trends
Biomater. Artif. Org., 27: 67-80. |
|
19. Rose, C., Mandal, A.B. and Joseph, K.T. (1998)
Characterization of collagen from the swim bladder of catfish
(Tachysurus maculates). Asian Fish Sci., 11: 1-10. |
|
20. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S.E.
and Ringdén, O. (2003) Mesenchymal stem cells inhibit and
stimulate mixed lymphocyte cultures and mitogenic responses
independently of the major histocompatibility complex. Scand.
J. Immunol., 57(1): 11-20.
http://dx.doi.org/10.1046/j.1365-3083.2003.01176.x
PMid:12542793 |
|
21. Kumar, V. (2010) Acellular buffalo small intestinal
submucosa and fish swim bladder for the repair of full
thickness skin wounds in rabbits. M. V. Sc. Thesis Submitted
to Indian Veterinary Research Institute, Deemed University,
Izatnagar, Bareilly, Uttar Pradesh, India. |
|
22. Boyum, A. (1968) Isolation of mononuclear cells and
granulocytes from human blood. Scand. J. Clin. Lab. Invest.,
21: 77-89. |
|
23. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall,
R.J. (1951) Protein measurement with the folin phenol reagent.
J. Biol. Chem., 193(1): 265-275.
PMid:14907713 |
|
24. Kruisbeek, A.M. and Shevach, E.M. (2004) Proliferative
assays for T cell function. In: Coligan, E., Margulies, D.H.,
Shevach, E.M. and Strober, W., editors. Current Protocols in
Immunology. Unit 3.12. John Wiley, New York. p1-3.
http://dx.doi.org/10.1002/0471142735.im0312s60
PMid:18432927 |
|
25. Seddon, A.M., Curnow, P. and Booth, P.J. (2004) Membrane
proteins, lipids and detergents: Not just a soap opera.
Biochim. Biophys. Acta, 1666(1-2): 105-117.
http://dx.doi.org/10.1016/j.bbamem.2004.04.011
PMid:15519311 |
|
26. Woods, T. and Gratzer, P.F. (2005) Effectiveness of three
extraction techniques in the development of a decellularized
bone-anterior cruciate ligament-bone graft. Biomaterials,
26(35): 7339-7349.
http://dx.doi.org/10.1016/j.biomaterials.2005.05.066
PMid:16023194 |
|
27. Gangwar, A.K., Sharma, A.K., Kumar, N. Maiti, S.K. Gupta,
O.P. Goswami T.K. and Singh, R. (2006) Acellular dermal graft
for repair of abdominal wall defects in rabbits. J. S. Afr.
Vet. Assoc., 77(2): 79-85.
http://dx.doi.org/10.4102/jsava.v77i2.349
PMid:17120624 |
|
28. Purohit, S. (2008) Biocompatibility testing of acellular
dermal grafts in a rabbit model: An in-vitro and in-vivo
study. Ph.D. Thesis Submitted to Deemed University, I.V.R.I.,
Izatnagar, Bareilly (UP). |
|
29. Kaarthick, D.T. (2011) Repair of cutaneous wounds using
acellular diaphragm and pericardium of buffalo origin seeded
with in-vitro cultured mouse embryonic fibroblasts cells in
rat model. M.V.Sc. Thesis Submitted to Deemed University,
I.V.R.I., Izatnagar, Bareilly (UP). |
|
30. Yannas, I.V. (2005) Similarities and differences between
induced organ regeneration in adults and early fetal
regeneration. J. R. Soc. Interface, 2(5): 403-417.
http://dx.doi.org/10.1098/rsif.2005.0062
PMid:16849201 PMCid:PMC1618502 |
|
31. Blanc, K.L., Fibbe, W., Frassoni, F., Locatelli, F. and
Ringdén, O. (2004) Treatment of severe acute graft-versus-host
disease with third party haploidentical mesenchymal stem
cells. Lancet, 363(9419): 1439-1444.
http://dx.doi.org/10.1016/S0140-6736(04)16104-7 |
|
32. Ryan, M. Barry, P.F., Murphy, M.J. and Mahon, P.B. (2005)
Mesenchymal stem cells avoid allogeneic rejection. J. Inflamm.,
2: 8.
http://dx.doi.org/10.1186/1476-9255-2-8
PMid:16045800 PMCid:PMC1215510 |
|