Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published
online: 31-10-2014)
24.
Variations in free radical scavenging
activities and antioxidant responses in salivary glands of
Hyalomma anatolicum anatolicum and Hyalomma dromedarii
(Acari: Ixodidae) ticks -
Mayukh Ghosh, Nirmal Sangwan and Arun K. Sangwan
Veterinary World, 7(10): 876-881
doi:
10.14202/vetworld.2014.876-881
Mayukh
Ghosh: Department
of Veterinary Physiology and Biochemistry, College of Veterinary
Sciences, Lala Lajpat Rai University of
Veterinary
and Animal Sciences, Hisar, Haryana, India;
ghosh.mayukh87@gmail.com
Nirmal
Sangwan:
Department of Veterinary Physiology and Biochemistry, College of
Veterinary Sciences, Lala Lajpat Rai University of
Veterinary
and Animal Sciences, Hisar, Haryana, India;
nirmalsangwan@gmail.com
Arun K.
Sangwan: Department of Veterinary Parasitology, College of
Veterinary Sciences, Lala Lajpat Rai University of Veterinary and
Animal Sciences, Hisar, Haryana, India;
sangwan_arun@hotmail.com
Received:
21-06-2014, Revised: 15-09-2014, Accepted: 22-09-2014, Published
online: 31-10-2014
Corresponding author:
Nirmal Sangwan, e-mail: nirmalsangwan@gmail.com
Abstract
Aim:
Hyalomma anatolicum anatolicum and Hyalomma
dromedarii ticks are of major economic importance in the
livestock sector as the vector of tropical theileriosis causing
huge production loss, mostly in tropical countries. The release of
different reactive oxygen and nitrogen species by exogenous and
endogenous means can potentially induce oxidative damage to the
ticks during their prolonged feeding on their vertebrate hosts.
Hence, ticks need an effective free radical scavenging and
antioxidant defense system for their successful feeding of a blood
meal. Therefore, the present study was undertaken to evaluate the
interspecies variations in antioxidant response, free radical
scavenging, and anti-inflammatory activities in salivary gland
extracts (SGE) of the two species as they differ considerably in
relation to feeding behavior and host specificity.
Materials and Methods: Tick salivary glands were dissected out
under ice from semi-fed female ticks of both the species and
homogenized at low temperature to prepare SGE. SGE was stored at
−40°C for analysis of free radical scavenging activities and
antioxidant status.
Results: Significant depletion in reduced glutathione
concentrations, malondialdehyde level and elevation in free
radical scavenging activity, superoxide dismutase,
anti-inflammatory activity were found in SGE of engorging female
H. dromedarii ticks as compared to H. a. anatolicum.
Conclusion: Higher antioxidant status and free radical
scavenging activities in H. dromedarii might have enabled
these ticks to suck more blood from the host in spite of
continuous host’s immune responses. These findings about tick
biology will help in improving tick control strategies.
Keywords: anti-inflammatory, antioxidants, free radicals,
Hyalomma anatolicum anatolicum, Hyalomma dromedarii.
References
1. Halliwell, B. and Gutteridge, J.M.C. (1989) In: Free
Radical in Biology and Medicine. 2nd ed. Clarendon Press,
Oxford. |
|
2. Halliwell, B., Cross, C.E. and Gutteridge, J.M.C. (1992)
Free radicals, antioxidants, and human disease: Where are we
now? J. Clin. Lab. Med., 119: 598-620. |
|
3. Kemp, D.H., Stone, B.F. and Binnington, K.C. (1982) Tick
attachment and feeding: Role of the mouthparts, feeding
apparatus, salivary gland secretions and host response. In:
Obenchain, F.D. and Galun, R., editors. Physiology of Ticks.
Pergamon Press, Oxford. p119-168.
http://dx.doi.org/10.1016/B978-0-08-024937-7.50009-3
PMid:7161125 |
|
4. Francischetti, I.M., Sa-Nunes, A., Mans, B.J., Santos, I.M.
and Ribeiro, J.M. (2009) The role of saliva in tick feeding.
Front. Biosci (Landmark Ed)., 14: 2051-2088.
http://dx.doi.org/10.2741/3363 |
|
5. Diaz-Albiter, H., Mitford, V., Genta, F.A., Sant-Anna,
M.R.V. and Dillon, R.J. (2011) Reactive oxygen species
scavenging by catalase is important for female Lutzomyia
longipalpis fecundity and mortality. PLoS One, 6(3): e17486.
http://dx.doi.org/10.1371/journal.pone.0017486
PMid:21408075 PMCid:PMC3052318 |
|
6. Ribeiro, J.M.C. and Francischetti, I.M. (2003) Role of
arthropod saliva in blood feeding: Sialome and post-sialome
perspectives. Annu. Rev. Entomol., 48: 73-88.
http://dx.doi.org/10.1146/annurev.ento.48.060402.102812
PMid:12194906 |
|
7. Wu, J., Wang, Y., Liu, H., Yang, H., Ma, D., Li, J., Li,
D., Lai, R. and Yu, H. (2010) Two immunoregulatory peptides
with antioxidant activity from tick salivary glands. J. Biol.
Chem., 285(22): 1-19.
http://dx.doi.org/10.1074/jbc.M109.094615
PMid:20178988 PMCid:PMC2878058 |
|
8. Sreejayan, N. and Rao, M.N.A. (1997) Nitric oxide
scavenging by curcuminoids, J. Pharm. Pharmacol., 49(1):
105-107.
http://dx.doi.org/10.1111/j.2042-7158.1997.tb06761.x
PMid:9120760 |
|
9. Halliwell, B., Gutteridge, J. and Aruoma, O.I. (1987) The
deoxyribose method: A simple "test tube" assay for
determination of rate constants for reactions of hydroxyl
radicals. Anal. Biochem., 165 (1): 215-219.
http://dx.doi.org/10.1016/0003-2697(87)90222-3 |
|
10. Madesh, M. and Balasubramanian, K.A. (1998) Microtiter
plate assay for superoxide dismutase using MTT reduction by
superoxide. Indian J. Biochem. Biophys., 35(3): 184-188.
PMid:9803669 |
|
11. Beutler, E. editor. (1971) Red Cell Metabolism Manual of
Biochemical Methods. Academic Press, London. p68-70. |
|
12. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid
peroxides in animal tissues by thiobarbituric acid reaction.
Anal. Biochem., 95(2): 351-358.
http://dx.doi.org/10.1016/0003-2697(79)90738-3 |
|
13. Shinde, U.A., Phadke, A.S., Nair, A.M., Mungantiwar, A.A.,
Dikshit, V.J. and Saraf, V.O. (1999) Membrane stabilizing
activity – A possible mechanism of action for the
anti-inflammatory activity of Cedrus deodara wood oil.
Fitoterapia, 70: 251-257.
http://dx.doi.org/10.1016/S0367-326X(99)00030-1 |
|
14. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall,
R.J. (1951) Protein measurement with the Folin Phenol Reagent.
J. Biol. Chem., 193 (1): 265-275.
PMid:14907713 |
|
15. Snedecor, G.W. and Cochran, W.J. (1967) In: Statistical
Methods. 7th ed. Oxford and IBG Publishing Co., New Delhi.
PMid:6027619 |
|
16. Halliwell, B and Gutteridge, J.M.C. (1984) Oxygen
toxicity, oxygen radicals, transition metals and disease.
Biochem. J., 219(1): 1-14.
PMid:6326753 PMCid:PMC1153442 |
|
17. Lipinski, B. and Pretorius, E. (2012) Hydroxyl
radical-modified fibrinogen as a marker of thrombosis: the
role of iron. Hematology, 17(4): 241-247.
http://dx.doi.org/10.1179/1607845412Y.0000000004
PMid:22889519 |
|
18. Dizdaroglu, M. and Jaruga, P. (2012) Mechanisms of free
radical induced damage to DNA. Free Radic. Res., 46(4):
382-419.
http://dx.doi.org/10.3109/10715762.2011.653969
PMid:22276778 |
|
19. Kanno, T., Nakamura, K., Ikai, H., Kikuchi, K., Sasaki, K.
and Niwano, Y. (2012) Literature review of the role of
hydroxyl radicals in chemically-induced mutagenicity and
carcinogenicity for the risk assessment of a disinfection
system utilizing photolysis of hydrogen peroxide. J. Clin.
Biochem. Nutr., 51(1): 9-14.
http://dx.doi.org/10.3164/jcbn.11-105
PMid:22798706 PMCid:PMC3391867 |
|
20. Fridovich, I. (1995) Superoxide radical and superoxide
dismutases. Annu. Rev. Biochem., 64: 97-112.
http://dx.doi.org/10.1146/annurev.bi.64.070195.000525
PMid:7574505 |
|
21. Aon, M.A., Stanley, B.A., Sivakumaran, V., Kembro, J.M.,
O'Rourke, B., Paolocci, N. and Cortassa, S. (2012)
Glutathione/thioredoxin systems modulate mitochondrial H2O2
emission: An experimental-computational study. J. Gen. Physiol.,
139(6): 479-491.
http://dx.doi.org/10.1085/jgp.201210772
PMid:22585969 PMCid:PMC3362521 |
|
22. Kowaltowski, A.J., de Souza-Pinto, N.C., Castilho, R.F.
and Vercesi, A.E. (2009) Mitochondria and reactive oxygen
species. Free Radic. Biol. Med., 47: 333-343.
http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.004
PMid:19427899 |
|
23. Murphy, M.P. (2009) How mitochondria produce reactive
oxygen species. Biochem. J., 417(1): 1-13.
http://dx.doi.org/10.1042/BJ20081386
PMid:19061483 PMCid:PMC2605959 |
|
24. Stowe, D.F. and Camara, A.K. (2009) Mitochondrial reactive
oxygen species production in excitable cells: Modulators of
mitochondrial and cell function. Antioxid. Redox Signal,
11(6): 1373-1414.
http://dx.doi.org/10.1089/ars.2008.2331
PMid:19187004 PMCid:PMC2842133 |
|
25. Saeaue, L., Morales, N.P., Komalamisra, N. and Vargas,
R.E.M. (2011) Antioxidative systems defense against oxidative
stress induced by blood meal in Aedes aegypti. Southeast Asian
J. Trop. Med. Public Health, 42(3): 542-549.
PMid:21706932 |
|
26. Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada,
J., Brenke, R., Chapple, S., Cohen, G., Feher, J., Grune, T.,
Lengyel, G., Mann, G. E., Pamplona, R., Poli, G., Portero-Otin,
M., Riahi, Y., Salvayre, R., Sasson, S., Serrano, J., Shamni,
O., Siems, W., Siow, R.C.M., Wiswedel, I., Zarkovic, K. and
Zarkovic, N. (2010) Pathological aspects of lipid peroxidation.
Free Radic. Res., 44(10): 1125-1171.
http://dx.doi.org/10.3109/10715762.2010.498478
PMid:20836660 |
|
27. Zarkovic, N., Cipak, A., Jaganjac, M., Borovic, S. and
Zarkovic, K. (2013) Pathophysiological relevance of aldehydic
protein modifications. J. Proteomics, 92: 239-247.
http://dx.doi.org/10.1016/j.jprot.2013.02.004
PMid:23438936 |
|
28. Garcia, S.C., Grotto, D., Bulcão, R.P., Moro, A.M., Roehrs,
M., Valentini, J., de Freitas, F.A., Panizo, C. and Charai,
G.B.M.F. (2013) Evaluation of lipid damage related to
pathological and physiological conditions. Drug Chem. Toxicol.,
36(3): 306-312.
http://dx.doi.org/10.3109/01480545.2012.720989
PMid:23030235 |
|
29. Li, G., Chen, Y., Hu, H., Liu, L., Hu, X., Wang, J., Shi,
W. and Yin, D. (2012) Association between age-related decline
of kidney function and plasma malondialdehyde, Rejuvenation
Res., 15(3): 257-264.
http://dx.doi.org/10.1089/rej.2011.1259
PMid:22530729 PMCid:PMC3388493 |
|
30. Sanyal, J., Bandyopadhyay, S.K., Banerjee, T.K., Mukherjee,
S.C., Chakraborty, D.P., Ray, B.C. and Rao, V.R. (2009) Plasma
levels of lipid peroxides in patients with Parkinson's
disease, Eur. Rev. Med. Pharmacol. Sci., 13(2): 129-132.
PMid:19499848 |
|
31. Bartoli, M.L., Novelli, F., Costa, F., Malagrinò, L.,
Melosini, L., Bacci, E., Cianchetti, S., Dente, F.L., Di
Franco, A., Vagaggini, B. and Paggiaro, P.L. (2011)
Malondialdehyde in exhaled breath condensate as a marker of
oxidative stress in different pulmonary diseases. Mediat.
Inflamm., 2011: 891752.
http://dx.doi.org/10.1155/2011/891752
PMid:21772668 PMCid:PMC3136125 |
|