Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

ISSN (Print): 0972-8988

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.


Research (Published online: 31-10-2014)

24. Variations in free radical scavenging activities and antioxidant responses in salivary glands of Hyalomma anatolicum anatolicum and Hyalomma dromedarii (Acari: Ixodidae) ticks - Mayukh Ghosh, Nirmal Sangwan and Arun K. Sangwan

Veterinary World, 7(10): 876-881

 

 

   doi: 10.14202/vetworld.2014.876-881

 

 

Mayukh Ghosh: Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Lala Lajpat Rai University of

Veterinary and Animal Sciences, Hisar, Haryana, India; ghosh.mayukh87@gmail.com

Nirmal Sangwan: Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Lala Lajpat Rai University of

Veterinary and Animal Sciences, Hisar, Haryana, India; nirmalsangwan@gmail.com

Arun K. Sangwan: Department of Veterinary Parasitology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India; sangwan_arun@hotmail.com

 

Received: 21-06-2014, Revised: 15-09-2014, Accepted: 22-09-2014, Published online: 31-10-2014

 

Corresponding author: Nirmal Sangwan, e-mail: nirmalsangwan@gmail.com



Aim: Hyalomma anatolicum anatolicum and Hyalomma dromedarii ticks are of major economic importance in the livestock sector as the vector of tropical theileriosis causing huge production loss, mostly in tropical countries. The release of different reactive oxygen and nitrogen species by exogenous and endogenous means can potentially induce oxidative damage to the ticks during their prolonged feeding on their vertebrate hosts. Hence, ticks need an effective free radical scavenging and antioxidant defense system for their successful feeding of a blood meal. Therefore, the present study was undertaken to evaluate the interspecies variations in antioxidant response, free radical scavenging, and anti-inflammatory activities in salivary gland extracts (SGE) of the two species as they differ considerably in relation to feeding behavior and host specificity.

Materials and Methods: Tick salivary glands were dissected out under ice from semi-fed female ticks of both the species and homogenized at low temperature to prepare SGE. SGE was stored at −40°C for analysis of free radical scavenging activities and antioxidant status.

Results: Significant depletion in reduced glutathione concentrations, malondialdehyde level and elevation in free radical scavenging activity, superoxide dismutase, anti-inflammatory activity were found in SGE of engorging female H. dromedarii ticks as compared to H. a. anatolicum.

Conclusion: Higher antioxidant status and free radical scavenging activities in H. dromedarii might have enabled these ticks to suck more blood from the host in spite of continuous host’s immune responses. These findings about tick biology will help in improving tick control strategies.

Keywords: anti-inflammatory, antioxidants, free radicals, Hyalomma anatolicum anatolicum, Hyalomma dromedarii.



1. Halliwell, B. and Gutteridge, J.M.C. (1989) In: Free Radical in Biology and Medicine. 2nd ed. Clarendon Press, Oxford.
 
2. Halliwell, B., Cross, C.E. and Gutteridge, J.M.C. (1992) Free radicals, antioxidants, and human disease: Where are we now? J. Clin. Lab. Med., 119: 598-620.
 
3. Kemp, D.H., Stone, B.F. and Binnington, K.C. (1982) Tick attachment and feeding: Role of the mouthparts, feeding apparatus, salivary gland secretions and host response. In: Obenchain, F.D. and Galun, R., editors. Physiology of Ticks. Pergamon Press, Oxford. p119-168.
http://dx.doi.org/10.1016/B978-0-08-024937-7.50009-3
PMid:7161125
 
4. Francischetti, I.M., Sa-Nunes, A., Mans, B.J., Santos, I.M. and Ribeiro, J.M. (2009) The role of saliva in tick feeding. Front. Biosci (Landmark Ed)., 14: 2051-2088.
http://dx.doi.org/10.2741/3363
 
5. Diaz-Albiter, H., Mitford, V., Genta, F.A., Sant-Anna, M.R.V. and Dillon, R.J. (2011) Reactive oxygen species scavenging by catalase is important for female Lutzomyia longipalpis fecundity and mortality. PLoS One, 6(3): e17486.
http://dx.doi.org/10.1371/journal.pone.0017486
PMid:21408075 PMCid:PMC3052318
 
6. Ribeiro, J.M.C. and Francischetti, I.M. (2003) Role of arthropod saliva in blood feeding: Sialome and post-sialome perspectives. Annu. Rev. Entomol., 48: 73-88.
http://dx.doi.org/10.1146/annurev.ento.48.060402.102812
PMid:12194906
 
7. Wu, J., Wang, Y., Liu, H., Yang, H., Ma, D., Li, J., Li, D., Lai, R. and Yu, H. (2010) Two immunoregulatory peptides with antioxidant activity from tick salivary glands. J. Biol. Chem., 285(22): 1-19.
http://dx.doi.org/10.1074/jbc.M109.094615
PMid:20178988 PMCid:PMC2878058
 
8. Sreejayan, N. and Rao, M.N.A. (1997) Nitric oxide scavenging by curcuminoids, J. Pharm. Pharmacol., 49(1): 105-107.
http://dx.doi.org/10.1111/j.2042-7158.1997.tb06761.x
PMid:9120760
 
9. Halliwell, B., Gutteridge, J. and Aruoma, O.I. (1987) The deoxyribose method: A simple "test tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem., 165 (1): 215-219.
http://dx.doi.org/10.1016/0003-2697(87)90222-3
 
10. Madesh, M. and Balasubramanian, K.A. (1998) Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian J. Biochem. Biophys., 35(3): 184-188.
PMid:9803669
 
11. Beutler, E. editor. (1971) Red Cell Metabolism Manual of Biochemical Methods. Academic Press, London. p68-70.
 
12. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 95(2): 351-358.
http://dx.doi.org/10.1016/0003-2697(79)90738-3
 
13. Shinde, U.A., Phadke, A.S., Nair, A.M., Mungantiwar, A.A., Dikshit, V.J. and Saraf, V.O. (1999) Membrane stabilizing activity – A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia, 70: 251-257.
http://dx.doi.org/10.1016/S0367-326X(99)00030-1
 
14. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the Folin Phenol Reagent. J. Biol. Chem., 193 (1): 265-275.
PMid:14907713
 
15. Snedecor, G.W. and Cochran, W.J. (1967) In: Statistical Methods. 7th ed. Oxford and IBG Publishing Co., New Delhi.
PMid:6027619
 
16. Halliwell, B and Gutteridge, J.M.C. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219(1): 1-14.
PMid:6326753 PMCid:PMC1153442
 
17. Lipinski, B. and Pretorius, E. (2012) Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron. Hematology, 17(4): 241-247.
http://dx.doi.org/10.1179/1607845412Y.0000000004
PMid:22889519
 
18. Dizdaroglu, M. and Jaruga, P. (2012) Mechanisms of free radical induced damage to DNA. Free Radic. Res., 46(4): 382-419.
http://dx.doi.org/10.3109/10715762.2011.653969
PMid:22276778
 
19. Kanno, T., Nakamura, K., Ikai, H., Kikuchi, K., Sasaki, K. and Niwano, Y. (2012) Literature review of the role of hydroxyl radicals in chemically-induced mutagenicity and carcinogenicity for the risk assessment of a disinfection system utilizing photolysis of hydrogen peroxide. J. Clin. Biochem. Nutr., 51(1): 9-14.
http://dx.doi.org/10.3164/jcbn.11-105
PMid:22798706 PMCid:PMC3391867
 
20. Fridovich, I. (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem., 64: 97-112.
http://dx.doi.org/10.1146/annurev.bi.64.070195.000525
PMid:7574505
 
21. Aon, M.A., Stanley, B.A., Sivakumaran, V., Kembro, J.M., O'Rourke, B., Paolocci, N. and Cortassa, S. (2012) Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study. J. Gen. Physiol., 139(6): 479-491.
http://dx.doi.org/10.1085/jgp.201210772
PMid:22585969 PMCid:PMC3362521
 
22. Kowaltowski, A.J., de Souza-Pinto, N.C., Castilho, R.F. and Vercesi, A.E. (2009) Mitochondria and reactive oxygen species. Free Radic. Biol. Med., 47: 333-343.
http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.004
PMid:19427899
 
23. Murphy, M.P. (2009) How mitochondria produce reactive oxygen species. Biochem. J., 417(1): 1-13.
http://dx.doi.org/10.1042/BJ20081386
PMid:19061483 PMCid:PMC2605959
 
24. Stowe, D.F. and Camara, A.K. (2009) Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function. Antioxid. Redox Signal, 11(6): 1373-1414.
http://dx.doi.org/10.1089/ars.2008.2331
PMid:19187004 PMCid:PMC2842133
 
25. Saeaue, L., Morales, N.P., Komalamisra, N. and Vargas, R.E.M. (2011) Antioxidative systems defense against oxidative stress induced by blood meal in Aedes aegypti. Southeast Asian J. Trop. Med. Public Health, 42(3): 542-549.
PMid:21706932
 
26. Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., Chapple, S., Cohen, G., Feher, J., Grune, T., Lengyel, G., Mann, G. E., Pamplona, R., Poli, G., Portero-Otin, M., Riahi, Y., Salvayre, R., Sasson, S., Serrano, J., Shamni, O., Siems, W., Siow, R.C.M., Wiswedel, I., Zarkovic, K. and Zarkovic, N. (2010) Pathological aspects of lipid peroxidation. Free Radic. Res., 44(10): 1125-1171.
http://dx.doi.org/10.3109/10715762.2010.498478
PMid:20836660
 
27. Zarkovic, N., Cipak, A., Jaganjac, M., Borovic, S. and Zarkovic, K. (2013) Pathophysiological relevance of aldehydic protein modifications. J. Proteomics, 92: 239-247.
http://dx.doi.org/10.1016/j.jprot.2013.02.004
PMid:23438936
 
28. Garcia, S.C., Grotto, D., Bulcão, R.P., Moro, A.M., Roehrs, M., Valentini, J., de Freitas, F.A., Panizo, C. and Charai, G.B.M.F. (2013) Evaluation of lipid damage related to pathological and physiological conditions. Drug Chem. Toxicol., 36(3): 306-312.
http://dx.doi.org/10.3109/01480545.2012.720989
PMid:23030235
 
29. Li, G., Chen, Y., Hu, H., Liu, L., Hu, X., Wang, J., Shi, W. and Yin, D. (2012) Association between age-related decline of kidney function and plasma malondialdehyde, Rejuvenation Res., 15(3): 257-264.
http://dx.doi.org/10.1089/rej.2011.1259
PMid:22530729 PMCid:PMC3388493
 
30. Sanyal, J., Bandyopadhyay, S.K., Banerjee, T.K., Mukherjee, S.C., Chakraborty, D.P., Ray, B.C. and Rao, V.R. (2009) Plasma levels of lipid peroxides in patients with Parkinson's disease, Eur. Rev. Med. Pharmacol. Sci., 13(2): 129-132.
PMid:19499848
 
31. Bartoli, M.L., Novelli, F., Costa, F., Malagrinò, L., Melosini, L., Bacci, E., Cianchetti, S., Dente, F.L., Di Franco, A., Vagaggini, B. and Paggiaro, P.L. (2011) Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediat. Inflamm., 2011: 891752.
http://dx.doi.org/10.1155/2011/891752
PMid:21772668 PMCid:PMC3136125