Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published
online: 09-02-2015)
1. Comparison of immunochromatographic
diagnostic test with heminested reverse transcriptase polymerase
chain reaction for detection of rabies virus from brain samples of
various species -
Pranoti Sharma, C. K. Singh and Deepti
Narang
Veterinary World, 8(2): 135-138
doi:
10.14202/vetworld.2015.135-138
Pranoti Sharma: Department of
Veterinary Pathology, Guru Angad Dev Veterinary and Animal
Sciences University, Ludhiana - 141 004, Punjab, India;
pranoti.sharma22@gmail.com
C. K. Singh: Department of Veterinary
Pathology, Guru Angad Dev Veterinary and Animal Sciences
University, Ludhiana - 141 004, Punjab, India; rabiesck@gmail.com
Deepti Narang: Department of
Veterinary Microbiology, Guru Angad Dev Veterinary and Animal
Sciences University, Ludhiana - 141 004, Punjab, India; deeptivet@rediffmail.com
Received:
09-09-2014, Revised: 20-12-2014, Accepted: 30-12-2014, Published
online: 09-02-2015
Corresponding author:
Pranoti Sharma, email: pranoti.sharma22@gmail.com
Citation:
Sharma P, Singh CK, Narang D (2015) Comparison of
immunochromatographic diagnostic test with heminested
reverse
transcriptase polymerase chain reaction
for
detection of rabies virus from brain samples of various species,
Veterinary World, 8(2): 135-138.
Abstract
Aim: Detection of rabies is
a cause of serious concern in developing countries, where dearth
of highly equipped laboratories and trained personnel to handle
sophisticated investigations is felt. The availability of a
diagnostic kit, which can be used in the field, is essential for
diagnosis and control programs as well as for epidemiological
surveillance of the prevalence of the disease. This study was
planned to evaluate anigen rabies Ag test kit for its efficacy to
be used for rapid diagnosis of rabies under field conditions. The
test results were compared with hemi-nested reverse transcriptase
polymerase chain reaction and with a gold standard fluorescent
antibody test.
Materials and Methods: A total of 34 brain samples from
different rabies suspected animals including dogs, buffaloes, cow,
horse, and cat were examined in this study.
Results: Sensitivity of the kit was found to be 91.66%,
specificity 100%, and accuracy was 94.11%.
Conclusion: The study implies that the immunochromatographic
diagnostic test kit may be employed for diagnosis of rabies in
field conditions.
Keywords: antigen, heminested, immunochromatographic, rabies
References
1. Pringle, C.R. (1991) The order mononegavirales. Arch. Virol.,
117: 137-140.
http://dx.doi.org/10.1007/BF01310499 |
|
2. Knobel, D.L., Cleaveland, S., Coleman, P.G., Fe`vre, E.M.,
and Meltzer, M.I. (2005) Reevaluating the burden of rabies in
Africa and Asia. Bull. World. Health. Organ., 83(5): 360-368.
PMid:15976877 PMCid:PMC2626230 |
|
3. Last, R.D., Jardine, J.E., Smit, M.M.E., and Van Der Lugt,
J.J. (1994) Application of immunoperoxidase techniques to
formalin-fixed brain tissue for the diagnosis of rabies in
southern Africa. Onderstepoort. J. Vet. Res., 61(2): 183-187.
PMid:7541123 |
|
4. Jogai, S., Radotra, B.D., and Banerjee, A.K. (2000)
Immunohistochemical study of human rabies. Neuropathology.,
20: 197-203.
http://dx.doi.org/10.1046/j.1440-1789.2000.00332.x
PMid:11132935 |
|
5. .Arslan, A., Saglan, Y.S., and Temur, A. (2004) Detection
of rabies viral antigens in non-autolysed and autolysed
tissues by using an immunoperoxidase technique. Vet. Rec.,
155(18): 550-552.
http://dx.doi.org/10.1136/vr.155.18.550
PMid:15559421 |
|
6. Heaton, P.R., Johnstone, P., Mcelhinney, L.M., Cowley, R.,
O'sullivan, E. and Whitby, J.E. (1997) Heminested PCR assay
for detection of six genotypes of rabies and rabies-related
viruses. J. Clin. Microbiol., 135(11): 2762-2766. |
|
7. Picard-Meyer, E., Bruyére, V., Barrat, J., Tissot, E.,
Barrat, M.J., and Cliquet, F. (2004) Development of a
hemi-nested RT-PCR method for the specific determination of
European Bat Lyssavirus. Comparison with other rabies
diagnostic methods. Vaccine., 22(15-16): 1921-1929.
http://dx.doi.org/10.1016/j.vaccine.2003.11.015
PMid:15121304 |
|
8. Dacheux, L., Reynes, J.M., Buchy, P., Sivuth, O., Diop,
B.M., Rousset, D., Rathat, C., Jolly, N., Dufourcq, J.B.,
Nareth, C., Diop, S., Rajerison, I.C.R., Sadorge, C. and
Bourhy, H. (2008) A reliable diagnosis of human rabies based
on analysis of skin biopsy specimens. Clin. Infect. Dis.,
47(11): 1410-1417.
http://dx.doi.org/10.1086/592969
PMid:18937576 |
|
9. .Altman, D.G., (1991) Practical Statistics for Medical
Research. London, Chapman and Hall, London. |
|
10. Kang, B., Oh, J., Lee, C., Park, B.K., Park, Y., Hong, K.,
Lee, K., Cho, B., and Song, D. (2007) Evaluation of a rapid
immunodiagnostic test kit for rabies virus. J. Virol.
Methods., 145(1): 30-36.
http://dx.doi.org/10.1016/j.jviromet.2007.05.005
PMid:17628707 |
|
11. Servat, A., Picard-Meyer, E., Robardet, E., Muzniece, Z.,
Must, K., and Cliquet, F. (2012) Evaluation of a rapid
immunochromatographic diagnostic test for the detection of
rabies from brain material of European mammals. Biologicals.,
40(1): 61-66.
http://dx.doi.org/10.1016/j.biologicals.2011.12.011
PMid:22245544 |
|
12. Nishizono, A., Khawplod, P., Ahmed, K., Goto, K., Shiota,
S., Mifune, K., Yasui, T., Takayama, K., Kobayashi, Y., Mannen,
K., Tepsumethanon, V., Mitmoonpitak, C., Inoue, S. and
Morimoto, K. (2008) A simple and rapid immunochromatographic
test kit for rabies diagnosis. Microbiol. Immunol., 52(4):
243-249.
http://dx.doi.org/10.1111/j.1348-0421.2008.00031.x
PMid:18426399 |
|
13. Ahmed, K., Wimalaratne, O., Dahal, N., Khawplod, P.,
Nanayakkara, S., Rinzin, K., Perera, D., Karunanayake, D.,
Matsumoto, T. and Nishizono, A. (2012) Evaluation of a
monoclonal antibody–based rapid immunochromatographic test for
direct detection of rabies virus in the brain of humans and
animals. Am. J. Trop. Med. Hyg., 86(4): 736-740.
http://dx.doi.org/10.4269/ajtmh.2012.11-0332
PMid:22492163 PMCid:PMC3403755 |
|
14. De Benedictis, P., De Battisti, C., Dacheux, L., Marciano,
S., Ormelli, S., Salomoni, A., Caenazz, S.T., Lepelletier A.,
Bourhy, H., Capua, I., and Cattoli, G. (2011) Lyssavirus
detection and typing using pyrosequencing. J. Clin. Microbiol.,
49(5): 1932-1938.
http://dx.doi.org/10.1128/JCM.02015-10
PMid:21389152 PMCid:PMC3122702 |
|
15. Nagarajan, T., Mohanasubramanian, B., Seshagiri, E.V.,
Nagendrakumar, S.B., Saseendranath, M.R., Satyanarayana, M.L.,
Thiagarajan, D., Rangarajan, P.N. and Srinivasan, V.A. (2006)
Molecular epidemiology of rabies virus isolates in India. J.
Clin. Microbiol., 44(9): 3218-3224.
http://dx.doi.org/10.1128/JCM.00801-06
PMid:16954251 PMCid:PMC1594703 |
|
16. Araújo, D., Langoni, H., Almeida, M. and Megid, J. (2008)
Heminested reverse-transcriptase polymerase chain reaction (hnRT-PCR)
as a tool for rabies virus detection in stored and decomposed
samples. BMC. Res. Notes., 1: 17-25.
http://dx.doi.org/10.1186/1756-0500-1-17
PMid:18710536 PMCid:PMC2518274 |
|