Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published online:
10-02-2015)
4. Construction and characterization of
recombinant human adenovirus type 5 expressing foot-and-mouth
disease virus capsid proteins of Indian vaccine strain, O/IND/R2/75
- Ramesh Kumar, B. P. Sreenivasa and R.
P. Tamilselvan
Veterinary World, 8(2): 147-155
doi:
10.14202/vetworld.2015.147-155
Ramesh
Kumar:
FMD Research Centre, Indian Veterinary Research Institute,
Bangalore - 560 024, Karnataka, India; drrkvet13@gmail.com
B. P.
Sreenivasa:
FMD Research Centre, Indian Veterinary Research Institute,
Bangalore - 560 024, Karnataka, India; bpsrini@gmail.com
R. P.
Tamilselvan: FMD Research Centre, Indian Veterinary Research
Institute, Bangalore - 560 024, Karnataka, India;
mukthitamil@gmail.com
Received: 20-10-2014, Revised: 18-12-2014, Accepted: 27-12-2014,
Published online: 10-02-2015
Corresponding author:
B. P. Sreenivasa, e-mail: bpsrini@gmail.com
Citation:
Kumar R,
Sreenivasa BP, Tamilselvan RP (2015) Construction and
characterization of recombinant human adenovirus type 5 expressing
foot-and-mouth disease virus capsid proteins of Indian vaccine
strain, O/IND/R2/75, Veterinary World, 8(2):
147-155.
Abstract
Aim:
Generation of recombinant human adenovirus type 5 expressing
foot-and-mouth disease virus (FMDV) capsid protein genes along
with full-length 2B, 3B and 3C pro and its
characterization.
Materials and Methods: FMD viral RNA isolation, cDNA
synthesis, and polymerase chain reaction were performed to
synthesize expression cassettes (P1-2AB3BC wt
and P1-2AB3BCm) followed by cloning in
pShuttle-CMV vector. Chemically competent BJ5183-AD-1 cells were
transformed with the recombinant pShuttle-CMV to produce
recombinant adenoviral plasmids. HEK-293 cells were transfected
with the recombinant adenoviral plasmids to generate recombinant
adenoviruses (hAd5/P1-2AB3BCwt and
hAd5/P1-2AB3BCm). Expression of the target
proteins was analyzed by sandwich ELISA and indirect
immunofluorescence assay. The recombinant adenoviruses were
purified and concentrated by CsCl density gradient
ultracentrifugation. Growth kinetics and thermostability of the
recombinant adenoviruses were compared with that of
non-recombinant replication-defective adenovirus (dAd5).
Results: The recombinant adenoviruses containing capsid
protein genes of the FMDV O/IND/R2/75 were generated and amplified
in HEK-293 cells. The titer of the recombinant adenoviruses was
approximately 10 8, 109.5
and 1011 TCID50/ml
in supernatant media, cell lysate and CsCl purified preparation,
respectively. Expression of the FMDV capsid protein was detectable
in sandwich ELISA and confirmed by immunofluorescence assay.
Growth kinetics of the recombinant adenoviruses did not reveal a
significant difference when compared with that of dAd5. A
decrement of up to 10-fold at 4°C and 21-fold at 37°C was recorded
in the virus titers during 60 h incubation period and found to be
statistically significant (p<0.01).
Conclusion: Recombinant adenoviruses expressing capsid
proteins of the FMDV O/IND/R2/75 were constructed and produced in
high titers. In vitro expression of the target proteins in
the adenovirus vector system was detected by sandwich ELISA and
immunofluorescence assay.
Keywords: foot-and-mouth disease, growth
kinetics, recombinant hAd5, thermostability, virus-like particles.
References
1. Grubman, M.J. and Baxt, B. (2004) Foot- and- mouth disease.
Clin. Microbiol. Rev., 17: 465-493.
http://dx.doi.org/10.1128/CMR.17.2.465-493.2004
PMid:15084510 PMCid:PMC387408 |
|
2. Sobrino, F., Saiz, M., Jimmenez-Clavero, M.A., Nunez, J.I.,
Rosas, M.F., Baranowsky, E. and Ley, V. (2001) Foot- and-
mouth disease virus: A long known virus, but a current threat.
Vet. Res., 32(1): 1-30.
http://dx.doi.org/10.1051/vetres:2001106
PMid:11254174 |
|
3. FAO. (2012) Foot- and- Mmouth Ddisease. OIE Manual of
Diagnostic Tests and Vaccines for Terrestrial Animals. 6th ed
Paris, FranceOIE Terrestrial Manual. ???, FAO(2012) Foot and
Mouth Disease. |
|
4. Charleston, B., Bankowski, B., Gubbins, S., Chase-Topping,
M.E., Schley, D., Howey, R., Barnett, P.V., Gibson, D., Juleff,
N.D. and Woolhouse, M.E.J. (2011) Relationship between
clinical symptoms and transmission of an infectious disease
and the implications for control. Science., 332(6030):
726-729.
http://dx.doi.org/10.1126/science.1199884
PMid:21551063 |
|
5. Rueckert, R.R. (1996) Picornaviridae: The viruses and their
replication. In: Fields, B.N., Knipe, D.M., Howley, P.H.,
Chanock, R.M., Melnick, J.L., Monath, T.P., Roizman, B. and
Straus S.E. editors. Fields Virology. 3rd ed., Philadelphia,
PA, Lippincott-Raven. p609-654. |
|
6. Pilipenko, E.V., Maslova, S.V., Sinyakov, A.N. and Agol,
V.I. (1992a) Towards identification of cis-acting elements
involved in the replication of enterovirus and rhinovirus
RNAs: a proposal for the existence of tRNA-like terminal
structures. Nucleic. Acids. Res., 20(7): 1739-1745.
http://dx.doi.org/10.1093/nar/20.7.1739
PMid:1315956 PMCid:PMC312265 |
|
7. Anon (2010) Annual Report (2009-2010). Project Directorate
on Foot and Mouth Disease. Mukteswar, India. |
|
8. Geale, D.W., Barnett, P.V., Clarke, G.W., Davis, J. and
Kasar, T.R. (2013) A review of OIE country status recovery
using vaccinate to live versus vaccinate to die foot- and-
mouth disease response policies II: Waiting periods after
emergency vaccination in FMD free countries. Transbound.
Emerg. Dis., doi:10.1111/tbed.12165.
http://dx.doi.org/10.1111/tbed.12165 |
|
9. Jennings, G.T. and Bachmann, M.F. (2008) The coming of age
of virus-like particle vaccines. Biol. Chem., 389(5): 521-536.
http://dx.doi.org/10.1515/BC.2008.064
PMid:18953718 |
|
10. Plummer, E.M. and Manchester, M. (2011) Viral
nanoparticles and virus-like particles: platforms for
contemporary vaccine design. Wiley. Interdiscip. Rev. Nanomed.
Nanobiotechnol., 3(2): 174-196.
http://dx.doi.org/10.1002/wnan.119
PMid:20872839 |
|
11. Abrams, C.C., King, A.M, and Belsham, G.J. (1995) Assembly
of foot- and- mouth disease virus empty capsids synthesized by
a vaccinia virus expression system. J. Gen. Virol., 76:
3089-3098.
http://dx.doi.org/10.1099/0022-1317-76-12-3089
PMid:8847514 |
|
12. Mason, P.W., Chinsangaram, J., Moraes, M.P., Mayr, G.A.
and Grubman, M.J. (2003) Engineering better vaccines for foot-
and- mouth disease. Dev. Biol., 114: 79-88. |
|
13. Lewis, S.A., Morgan, D.O. and Grubman, M.J. (1991)
Expression, processing, and assembly of foot- and- mouth
disease virus capsid structures in heterologous systems:
induction of a neutralizing antibody response in guinea pigs.
J. Virol., 65(12): 6572-6580.
PMid:1658362 PMCid:PMC250715 |
|
14. Li, Z., Yi, Y., Yin, X., Zhang, Z. and Liu, J. (2008)
Expression of foot-and-mouth disease virus capsid proteins in
silkworm-baculovirus expression system and its utilization as
a subunit vaccine. PloS One., 3(5): e2273.
http://dx.doi.org/10.1371/journal.pone.0002273
PMid:18509464 PMCid:PMC2386233 |
|
15. Rweyemamu, M.M., Terry, G. and Pay, T.W. (1979) Stability
and immunogenicity of empty particles of foot- and- mouth
disease virus. Arch. Virol., 59(1-2): 69-79.
http://dx.doi.org/10.1007/BF01317896
PMid:218538 |
|
16. Guo, C., Zhang, C., Zheng, H. and Huang, Y. (2013)
Recombinant adenovirus expression of FMDV P1-2A and 3C protein
and its immune response in mice. Res. Vet. Sci., 95(2):
736-741.
http://dx.doi.org/10.1016/j.rvsc.2013.05.001
PMid:23722010 |
|
17. Mayr, G.A., Chinsangaram, J. and Grubman, M.J. (1999)
Development of replication-deficient adenovirus serotype 5
containing the capsid and 3C protease coding regions of
foot-and-mouth disease virus as a vaccine candidate.
Virology., 263(2): 496-506.
http://dx.doi.org/10.1006/viro.1999.9940
PMid:10544121 |
|
18. Kushnir, N., Streatfield, S. and Yusibov, V. (2012)
Virus-like particles as a highly efficient vaccine platform:
Diversity of targets and production systems and advances in
clinical development. Vaccine., 31(1): 58-83.
http://dx.doi.org/10.1016/j.vaccine.2012.10.083
PMid:23142589 |
|
19. Silva, A.C., Fernades, P., Sousa, M.F. and Alves, P.M.
(2014) Scalable production of adenovirus vectors. Methods.
Mol. Biol., 1089: 175-196.
http://dx.doi.org/10.1007/978-1-62703-679-5_13
PMid:24132486 |
|
20. Wald, W.S. and Toth, K. (2014) Adenovirus vectors for gene
therapy, vaccination and cancer gene therapy. Curr. Gene.
Ther., 13(6): 421-433.
http://dx.doi.org/10.2174/1566523213666131125095046 |
|
21. Luo, J., Deng, Z.L., Luo, X., Tang, N., Song, W.X., Chen,
J., Sharff, KA., Luu, HH., Haydon, RC., Kinzler, KW.,
Vogelstein, B., He, TC. (2007) A protocol for rapid generation
of recombinant adenoviruses using the AdEasy system. Nat.
Protoc., 2(5): 1236-1247.
http://dx.doi.org/10.1038/nprot.2007.135
PMid:17546019 |
|
22. Deal, C., Pekosz, A. and Ketner, G. (2013) Prospects for
oral replicating adenovirus-vectored vaccines. Vaccine,
31(32): 3236-3243.
http://dx.doi.org/10.1016/j.vaccine.2013.05.016
PMid:23707160 PMCid:PMC3750733 |
|
23. Odondo, B.O. (2014) The influence of delivery vectors on
HIV vaccine efficacy. Front. Microbiol., 5: 439. |
|
24. Brake, D.A., McIlhaney, M., Miller, T., Christianson, K.,
Keene, A., Lohnas, G., Purcell, C., Neilan, J., Schutta, C.,
Barrera, J., Burrage, T., Brough, DE. and Butman, BT. (2012)
Human adenovirus vectored foot- and- mouth disease vaccines:
establishment of a vaccine product profile through in vitro
testing. Dev. Biol., 134: 123-133. |
|
25. Romanutti, C., D'Antuono, A., Palacios, C., Quattrocchi,
V., Zamorano, P., La Torre, J. and, Mattion, N. (2013)
Evaluation of the immune response elicited by vaccination with
viral vectors encoding FMDV capsid proteins and boosted with
inactivated virus. Vet. Microbiol., 165(3-4): 333-340.
http://dx.doi.org/10.1016/j.vetmic.2013.04.017
PMid:23683999 |
|
26. Lu, Z., Bao, H., Cao, Y., Sun, P., Guo, J., Li, P., Bai,
X., Chen, Y., Xie, B., Li, D., Liu, Z., and Xie, Q. (2008)
Protection of guinea pigs and swine by a recombinant
adenovirus expressing O serotype of foot- and- mouth disease
virus whole capsid and 3C protease. Vaccine, 26 (Suppl 6):
G48-53.
http://dx.doi.org/10.1016/j.vaccine.2008.09.066
PMid:19178894 |
|
27. Pacheco, J.M., Brum, M.C., Moraes, M.P., Golde, W.T. and
Grubman, M.J. (2005) Rapid protection of cattle from direct
challenge with foot- and- mouth disease virus (FMDV) by a
single inoculation with an adenovirus-vectored FMDV subunit
vaccine. Virology., 337(2): 205-209.
http://dx.doi.org/10.1016/j.virol.2005.04.014
PMid:15893355 |
|
28. Pena, L., Moraes, M.P., Koster, M., Burrage, T., Pacheco,
J.M., Segundo, F.D. and Grubman, M.J. (2008) Delivery of a
foot- and- mouth disease virus empty capsid subunit antigen
with nonstructural protein 2B improves protection of swine.
Vaccine, 26(45): 5689-5699.
http://dx.doi.org/10.1016/j.vaccine.2008.08.022
PMid:18762225 |
|
29. Moraes, M.P., Segundo, F.D., Dias, C.C., Pena, L. and
Grubman, M.J. (2011) Increased efficacy of an
adenovirus-vectored foot-and-mouth disease capsid subunit
vaccine expressing nonstructural protein 2B is associated with
a specific T cell response. Vaccine, 29(51): 9431-9440.
http://dx.doi.org/10.1016/j.vaccine.2011.10.037
PMid:22027486 |
|
30. Sambrook J. and Russel D.W. (2001) Molecular Cloning: A
Laboratory Manual. 3rd ed. New York, Cold Spring Harbor.
p1.-117. |
|
31. Reed, L.J. and Muench, H. (1938) A simple method for
estimation of fifty percent end point. Am. J. Hyg., 27(3):
493-497. |
|
32. Golde, W.T., Pacheco, J.M., Duque, H., Doel, T., Penfold,
B., Ferman, G.S., Gregg, D.R. and Rodriguez, L.L. (2005)
Vaccination against foot- and- mouth disease virus confers
complete clinical protection in 7 days and partial protection
in 4 days: Use in emergency outbreak response. Vaccine.,
23(50): 5775-5782.
http://dx.doi.org/10.1016/j.vaccine.2005.07.043
PMid:16153756 |
|
33. Sanz-Parra, A., Jimenez-Clavero, M.A., Garcia-Briones,
M.M., Blanco, E., Sobrino, F. and Ley, V. (1999) Recombinant
viruses expressing the foot- and- mouth disease virus capsid
precursor polypeptide (P1) induce cellular but not humoral
antiviral immunity and partial protection in pigs. Virology.,
259(1): 129-134.
http://dx.doi.org/10.1006/viro.1999.9717
PMid:10364496 |
|
34. Korrapati, A.B., Swaminathan, G., Singh, A., Khanna, N.
and Swaminathan, S. (2012) Adenovirus delivered short hairpin
RNA targeting a conserved site in the 5' non-translated region
inhibits all four serotypes of dengue viruses. PLoS. Negl.
Trop. Dis., 6(7): e1735. |
|
35. Barouch, D.H. and Picker, L.J. (2014) Novel vaccine
vectors for HIV-1. Nat. Rev. Microbiol., 12(11): 765-771. doi:
10.1038/nrmicro3360.
http://dx.doi.org/10.1038/nrmicro3360 |
|
36. Bette, A., Prevec, L. and Graham, F. (1993) Packaging
capacity and stability of human adenovirus type 5 vectors. J.
Virol., 67(10): 5911-5921. |
|
37. Saha, B., Wong, C.M. and Parks, R.J. (2014) The Adenovirus
genome contributes to the structural stability of the virion.
Viruses, 6(9): 3563-3583.
http://dx.doi.org/10.3390/v6093563
PMid:25254384 PMCid:PMC4189039 |
|
38. Porta, C., Xu, X., Loureiro, S., Paramasivam, S., Ren, J.,
Al-Khalil, T., Burman, A., Jackson, T., Belsham, GJ., Curry,
S., Lomonossoff, GP., Parida, S., Paton, D., Li, Y., Wilsden,
G., Ferris, N., Owens, R., Kotecha, A., Fry, E., Stuart, DI.,
Charleston, B. and Jones, IM. (2013) Efficient production of
foot-and-mouth disease virus empty capsids in insect cells
following down regulation of 3C protease activity. J. Virol.
Methods., 187(2): 406-412.
http://dx.doi.org/10.1016/j.jviromet.2012.11.011
PMid:23174161 PMCid:PMC3558679 |
|
39. Torres, J.M., Alonso, C., Ortega, A., Mittal, S., Graham,
F. and Enjuanes, L. (1996) Tropism of human adenovirus type
5-based vectors in swine and their ability to protect against
transmissible gastroenteritis coronavirus. J. Virol., 70(6):
3770-3780.
PMid:8648712 PMCid:PMC190253 |
|
40. Xue, C., Tian, X., Li, X., Zhou, Z., Su, X. and Zhou, R.
(2014) Construction and characterization of a recombinant
adenovirus type 3 vector containing two foreign neutralizing
epitopes in hexon. Virus. Res., 183: 67-74.
http://dx.doi.org/10.1016/j.virusres.2014.01.027
PMid:24518297 |
|
41. Hehir, K.M., Armentano, D., Cardoza, L.M., Choquette,
T.L., Berthelette, P.B., White, G.A., Couture, L.A., Everton,
M.B., Keegan, J., Martin, J.M., Pratt, D.A., Smith, M.P.,
Smith, A.E., Wadsworth, S.C. (1996) Molecular characterization
of replication-competent variants of adenovirus vectors and
genome modifications to prevent their occurrence. J. Virol.,
70(12): 8459-8467.
PMid:8970968 PMCid:PMC190936 |
|
42. Liu, J., Nian, QG., Zhang, Y., Xu, LJ., Hu, Y., Li, J.,
Deng, YQ., Zhu, SY., Wu, XY., Qin, ED., Jiang, T. and, Qin,
CF. (2014) In vitro characterization of human adenovirus type
55 in comparison with its parental adenoviruses, types 11 and
14. PLoS One, 9(6): e100665.
http://dx.doi.org/10.1371/journal.pone.0100665
PMid:24956280 PMCid:PMC4067339 |
|