Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published online:
13-02-2015)
7 .
Isolation and in vitro selection of actinomycetes strains
as potential probiotics for aquaculture
- Milagro García Bernal, Ángel
Isidro Campa-Córdova, Pedro Enrique Saucedo, Marlen Casanova
González, Ricardo Medina Marrero and José Manuel Mazón-Suástegui
Veterinary World, 8(2): 170-176
doi:
10.14202/vetworld.2015.170-176
Milagro García Bernal: Department of
Microbiology, Center for the Study of Bioactive Chemicals (CBQ),
Central University "Marta Abreu" of Las Villas. Road to Camajuaní
Km 5½. Santa Clara 54830. Villa Clara. Cuba.;
mrgarcia@uclv.edu.cu
Ángel Isidro Campa-Córdova: Centro de
Investigaciones Biológicas del Noroeste (CIBNOR), Instituto
Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita Sur,
C.P. 23090. La Paz, Baja California Sur, México;
angcamp04@cibnor.mx
Pedro Enrique Saucedo:
Centro de Investigaciones
Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional
No. 195, Col. Playa Palo de Santa Rita Sur, C.P. 23090. La Paz,
Baja California Sur, México;
psaucedo04@cibnor.mx
Marlen Casanova González: Department
of Microbiology, Center for the Study of Bioactive Chemicals (CBQ),
Central University "Marta Abreu" of Las Villas. Road to Camajuaní
Km 5½. Santa Clara 54830. Villa Clara. Cuba.;
marlencg@uclv.edu.cu
Ricardo Medina Marrero: Department of
Microbiology, Center for the Study of Bioactive Chemicals (CBQ),
Central University "Marta Abreu" of Las Villas. Road to Camajuaní
Km 5½. Santa Clara 54830. Villa Clara. Cuba.;
rpmedina@uclv.edu.cu
José Manuel Mazón-Suástegui: Centro de
Investigaciones Biológicas del Noroeste (CIBNOR), Instituto
Politécnico Nacional No. 195, Col. Playa Palo de Santa Rita Sur,
C.P. 23090. La Paz, Baja California Sur, México;
jmazon04@cibnor.mx
Received:
01-10-2014,
Revised:
25-12-2014, Accepted:
03-01-2015,
Published online: 13-02-2015
Corresponding author:
José Manuel
Mazón-Suástegui, email: jmazon04@cibnor.mx
Citation:
Garcia-Bernal
M, Campa-Córdova AI, Saucedo PE, Casanova-Gonzalez M,
Medina-Marrero R, Mazón-Suástegui JM (2015) Isolation and in vitro
selection of actinomycetes strains as potential probiotics for
aquaculture, Veterinary World 8(2);170-176.
Abstract
Aim: This study was designed to describe a
series of in vitro tests that may aid the discovery of
probiotic strains from actinomycetes.
Materials and Methods: Actinomycetes were isolated from marine
sediments using four different isolation media, followed by
antimicrobial activity and toxicity assessment by the agar
diffusion method and the hemolysis of human blood cells,
respectively. Extracellular enzymatic production was monitored by
the hydrolysis of proteins, lipids and carbohydrates. Tolerance to
different pH values and salt concentrations was also determined,
followed by hydrophobicity analysis and genetic identification of
the most promising strains.
Results: Five out of 31 isolated strains showed antimicrobial
activity against three Vibrio species. Three non-hemolytic
strains (N7, RL8 and V4) among these active isolates yielded
positive results in hydrophobicity tests and exhibited good growth
at salt concentrations ranging from 0% to 10%, except strain RL8,
which required a salt concentration >0.6%. Although these strains
did not grow at pH<3, they showed different enzymatic activities.
Phylogenetic analysis revealed that strains N7 and V4 have more
than 99% identity with several Streptomyces species,
whereas the closest matches to strain RL8 are Streptomyces
panacagri and Streptomyces flocculus, with 98% and
98.2% similarity, respectively.
Conclusion: Three actinomycetes strains showing probiotic-like
properties were discovered using several in vitro tests
that can be easily implemented in different institutions around
the world.
Keywords: aquaculture, marine actinomycetes, probiotics,
Vibrio.
References
1. Bostock, J., McAndrew, B., Richards, R., Jauncey, K.,
Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde, N.,
Gatward, I. and Corner, R. (2010) Aquaculture: Global status
and trends. Philos. Trans. R. Soc. Lond B. Biol. Sci.,
365(1554): 2897-2912.
http://dx.doi.org/10.1098/rstb.2010.0170
PMid:20713392 PMCid:PMC2935128 |
|
2. Balcázar, J.L., Blas, I.D., Ruiz-Zarzuela, I., Cunningham,
D., Vendrell, D. and Múzquiz, J.L. (2006) The role of
probiotics in aquaculture. Vet. Microbiol., 114(3-4): 173-186.
http://dx.doi.org/10.1016/j.vetmic.2006.01.009
PMid:16490324 |
|
3. Rollo, A., Sulpizio, R., Nardi, M., Silvi, S., Orpianesi,
C., Caggiano, M., Cresci, A. and Carnevali, O. (2006) Live
microbial feed supplement in aquaculture for improvement of
stress tolerance. Fish Physiol. Biochem., 32: 167-177.
http://dx.doi.org/10.1007/s10695-006-0009-2 |
|
4. Beaz-Hidalgo, R., Balboa, S., Romalde, J.L. and Figueras,
M.J. (2010) Diversity and pathogenecity of Vibrio species in
cultured bivalve molluscs. Environ. Microbiol. Rep., 2: 34-43.
http://dx.doi.org/10.1111/j.1758-2229.2010.00135.x
PMid:23765996 |
|
5. Paillard, C., Le Roux, F. and Borrego, J.J. (2004)
Bacterial disease in marine bivalves, a review of recent
studies: Trends and evolution. Aquat. Living Resour., 17:
477-498.
http://dx.doi.org/10.1051/alr:2004054 |
|
6. Pruzzo, C., Gallo, G. and Canesi, L. (2005) Persistence of
vibrios in marine bivalves: the role of interactions with
haemolymph components. Environ. Microbiol., 7(6): 761-772.
http://dx.doi.org/10.1111/j.1462-2920.2005.00792.x
PMid:15892695 |
|
7. Cabello, F.C., Godfrey, H.P., Tomova, A., Ivanova, L.,
Dolz, H., Millanao, A. and Buschmann, A.H. (2013)
Antimicrobial use in aquaculture re-examined: its relevance to
antimicrobial resistance and to animal and human health.
Environ. Microbiol., 15(7): 1917-1942.
http://dx.doi.org/10.1111/1462-2920.12134
PMid:23711078 |
|
8. Labella, A., Gennari, M., Ghidini, V., Trento, I., Manfrin,
A., Borrego, J.J. and Lleo, M.M. (2013) High incidence of
antibiotic multi-resistant bacteria in coastal areas dedicated
to fish farming. Mar. Pollut. Bull., 70(1-2): 197-203.
http://dx.doi.org/10.1016/j.marpolbul.2013.02.037
PMid:23518445 |
|
9. Perry, J.A. and Wright, G.D. (2013) The antibiotic
resistance "mobilome": searching for the link between
environment and clinic. Front. Microbiol., 4: 138.
http://dx.doi.org/10.3389/fmicb.2013.00138
PMid:23755047 PMCid:PMC3667243 |
|
10. Rolain, J.M. (2013) Food and human gut as reservoirs of
transferable antibiotic resistance encoding genes. Front.
Microbiol., 4: 173.
http://dx.doi.org/10.3389/fmicb.2013.00173
PMid:23805136 PMCid:PMC3690338 |
|
11. Campa-Córdova, A.I., Luna-González, A., Mazón-Suástegui,
J.M., Aguirre-Guzmán, G., Ascencio, F. and González-Ocampo,
H.A. (2011) Effect of probiotic bacteria on survival and
growth of Cortez oyster larvae, Crassostrea corteziensis
(Bivalvia: Ostreidae). Rev. Biol. Trop., 59(1): 183-191.
PMid:21516645 |
|
12. Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J. and
Gibson, L. (2008) Probiotics in aquaculture: The need,
principles and mechanisms of action and screening processes.
Aquaculture, 274: 1-14.
http://dx.doi.org/10.1016/j.aquaculture.2007.11.019 |
|
13. Luis-Villase-or, I.E., Campa-Córdova, A.I., Huerta-Aldáz,
N., Luna-González, A., Mazón-Suástegui, J.M. and
Flores-Higuera, F. (2013) Effect of beneficial bacteria in
larval culture of Pacific white leg shrimp, Litopenaeus
vannamei. Afr. J. Microbiol. Res., 7: 3471-3478. |
|
14. Dharmaraj, S. (2011) Antagonistic potential of marine
actinobacteria against fish and shellfish pathogens. Turk. J.
Biol., 35: 303-311. |
|
15. Dharmaraj, S. and Kandasamy, D. (2010) Evaluation of
Streptomyces as probiotic feed for growth of ornamental fish
Xiphophorus helleri. Food Technol. Biotechnol., 48: 497-504. |
|
16. Das, S., Ward, L.R. and Burke, C. (2010) Screening of
marine Streptomyces spp. for potential use as probiotics in
aquaculture. Aquaculture, 305: 32-41.
http://dx.doi.org/10.1016/j.aquaculture.2010.04.001 |
|
17. Tuong, N.T.C., Nguyen Xuan, H., Le Thi Nam, T., Masaru, M.
and Ikuo, M. (2011) Identification and characterization of
actinomycetes antagonistic to pathogenic Vibrio spp. isolated
from shrimp culture pond sediments in Thua Thien Hue–Viet Nam.
J. Fac. Agric Kyushu Univ., 56: 15-20. |
|
18. You, J.L., Cao, L.X., Liu, G.F., Zhou, S.N., Tan, H.M. and
Lin, Y.C. (2005) Isolation and characterization of
actinomycetes antagonistic to pathogenic Vibrio spp. from near
shore marine sediments. World J. Microbial. Biotechnol., 21:
679-682.
http://dx.doi.org/10.1007/s11274-004-3851-3 |
|
19. Pisano, M., Sommer, M. and Lopez, M. (1986) Application of
pretreatments for the isolation of bioactive actinomycetes
from marine sediments. Appl. Microbiol. Biotechnol., 25:
285-288.
http://dx.doi.org/10.1007/BF00253664 |
|
20. Jensen, P.R., Gontang, E., Mafnas, C., Mincer, T.J. and
Fenical, W. (2005) Culturable marine actinomycete diversity
from tropical Pacific Ocean sediments. Environ. Microbiol.,
7(7): 1039-1048.
http://dx.doi.org/10.1111/j.1462-2920.2005.00785.x
PMid:15946301 |
|
21. Gonzalez, I., Ayuso-Sacido, A., Anderson, A. and
Genilloud, O. (2005) Actinomycetes isolated from lichens:
Evaluation of their diversity and detection of biosynthetic
gene sequences. FEMS Microbiol. Ecol., 54(3): 401-415.
http://dx.doi.org/10.1016/j.femsec.2005.05.004
PMid:16332338 |
|
22. Cowan, S.T. (1993) In: Barrow, G.I. and Feltham, R.K.A.
editors. Cowan and Steel's Manual for the Identification of
Medical Bacteria. University Press, Cambridge. p317. |
|
23. Berkhoff, H.A. and Vinal, A.C. (1986) Congo red medium to
distinguish between invasive and non-invasive Escherichia coli
pathogenic for poultry. Avian Dis., 30(1): 117-121.
http://dx.doi.org/10.2307/1590621
PMid:3524540 |
|
24. Sweet, S.P., MacFarlane, T.W. and Samaranayake, L.P.
(1987) Determination of the cell surface hydrophobicity of
oral bacteria using a modified hydrocarbon adherence method.
FEMS Microbiol. Lett., 48: 159-163.
http://dx.doi.org/10.1111/j.1574-6968.1987.tb02534.x |
|
25. Mattos-Guaraldi, A.L., Formiga, L.C. and Andrade, A.F.
(1999) Cell surface hydrophobicity of sucrose fermenting and
nonfermenting Corynebacterium diphtheria strains evaluated by
different methods. Curr. Microbiol., 38(1): 37-42.
http://dx.doi.org/10.1007/PL00006769
PMid:9841780 |
|
26. Tresner, H.D., Hayes, J.A. and Backus, E.J. (1968)
Differential tolerance of streptomycetes to sodium chloride as
a taxonomic aid. Appl. Microbiol., 16(8): 1134-1136.
PMid:5675504 PMCid:PMC547607 |
|
27. León, J., Pellón, F., Unda, V., David, J., Anaya, C. and
Mendoza, V. (2000) Producción de enzimas extracelulares por
bacterias aisladas de invertebrados marinos. Rev. Peru. Biol.,
7: 202-210. |
|
28. Harley, J.P. and Prescott L.M. (2002) Laboratory Exercises
in Microbiology. 5th ed. The McGraw-Hill Companies, New York. |
|
29. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and
Lipman D.J. (1990) Basic local alignment search tool. J. Mol.
Biol., 215(3): 403-410.
http://dx.doi.org/10.1016/S0022-2836(05)80360-2 |
|
30. Cole, J.R., Chai, B., Farris, R.J., Wang, Q., Kulam, S.A.,
McGarrell, D.M., Garrity, G.M. and Tiedje, J.M. (2005) The
Ribosomal Database Project (RDP-II): Sequences and tools for
high-throughput rRNA analysis. Nucl. Acids Res., 33: D294-296.
http://dx.doi.org/10.1093/nar/gki038
PMid:15608200 PMCid:PMC539992 |
|
31. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and
Kumar, S. (2013) MEGA6: Molecular evolutionary genetics
analysis version 6.0. Mol. Biol. Evol., 30, 2725-2729.
http://dx.doi.org/10.1093/molbev/mst197
PMid:24132122 PMCid:PMC3840312 |
|
32. Saitou, N. and Nei, M. (1987) The neighbor-joining method:
A new method for reconstructing phylogenetic trees. Mol. Biol.
Evol., 4(4): 406-425.
PMid:3447015 |
|
33. Kimura, M. (1980) A simple method for estimating
evolutionary rates of base substitutions through comparative
studies of nucleotide sequences. J. Mol. Evol., 16(2):
111-120.
http://dx.doi.org/10.1007/BF01731581
PMid:7463489 |
|
34. Kwon, H.C., Kauffman, C.A., Jensen, P.R. and Fenical, W.
(2006) Marinomycins A-D, antitumor-antibiotics of a new
structure class from a marine actinomycete of the recently
discovered genus "marinispora". J. Am. Chem. Soc., 128(5):
1622-1632.
http://dx.doi.org/10.1021/ja0558948
PMid:16448135 |
|
35. Mincer, T.J., Fenical, W. and Jensen, P.R. (2005)
Culture-dependent and culture-independent diversity within the
obligate marine actinomycete genus Salinispora. Appl. Environ.
Microbiol., 71(11): 7019-7028.
http://dx.doi.org/10.1128/AEM.71.11.7019-7028.2005
PMid:16269737 PMCid:PMC1287694 |
|
36. Hawas, U.W., Shaaban, M., Shaaban, K.A., Speitling, M.,
Maier, A., Kelter, G., Fiebig, H.H., Meiners, M., Helmke, E.
and Laatsch, H. (2009) Mansouramycins A-D, cytotoxic
isoquinoline quinones from a marine streptomycete. J. Nat.
Prod., 72: 2120-2124.
http://dx.doi.org/10.1021/np900160g
PMid:19921834 |
|
37. Heindl, H., Thiel, V., Wiese, J. and Imhoff, J.F. (2012)
Bacterial isolates from the bryozoan Membranipora membranacea:
Influence of culture media on isolation and antimicrobial
activity. Int. Microbiol., 15(1): 17-32.
PMid:22837149 |
|
38. Hodges, T.W., Slattery, M. and Olson, J.B. (2012) Unique
actinomycetes from marine caves and coral reef sediments
provide novel PKS and NRPS biosynthetic gene clusters. Mar.
Biotechnol. (NY), 14(3): 270-280.
http://dx.doi.org/10.1007/s10126-011-9410-7
PMid:22002467 |
|
39. Nithyanand P. and Pandian S.K. (2009) Phylogenetic
characterization of culturable bacterial diversity associated
with the mucus and tissue of the coral Acropora digitifera
from the Gulf of Mannar. FEMS Microbiol. Ecol., 69(3):
384-394.
http://dx.doi.org/10.1111/j.1574-6941.2009.00723.x
PMid:19619231 |
|
40. Schneemann, I., Nagel, K., Kajahn, I., Labes, A., Wiese,
J. and Imhoff, J.F. (2010) Comprehensive investigation of
marine actinobacteria associated with the sponge Halichondria
panicea. Appl. Environ. Microbiol., 76(11): 3702-3714.
http://dx.doi.org/10.1128/AEM.00780-10
PMid:20382810 PMCid:PMC2876447 |
|
41. Sun, P., Maloney, K.N., Nam, S.J., Haste, N.M., Raju, R.,
Aalbersberg, W., Jensen, P.R., Nizet, V., Hensler, M.E. and
Fenical, W. (2011) Fijimycins A-C, three antibacterial
etamycin-class depsipeptides from a marine-derived
Streptomyces sp. Bioorgan. Med. Chem., 19(22): 6557-6562.
http://dx.doi.org/10.1016/j.bmc.2011.06.053
PMid:21745747 PMCid:PMC3205191 |
|
42. Sun, W., Peng, C., Zhao, Y. and Li, Z. (2012) Functional
gene-guided discovery of type II polyketides from culturable
actinomycetes associated with soft coral Scleronephthya sp.
PLoS One, 7(8): e42847.
http://dx.doi.org/10.1371/journal.pone.0042847
PMid:22880121 PMCid:PMC3413676 |
|
43. Xi, L., Ruan J. and Huang, Y. (2012) Diversity and
biosynthetic potential of culturable actinomycetes associated
with marine sponges in the china seas. Int. J. Mol. Sci.,
13(5): 5917-5932.
http://dx.doi.org/10.3390/ijms13055917
PMid:22754340 PMCid:PMC3382808 |
|
44. Sanchez, L.M., Wong, W.R., Riener, R.M., Schulze, C.J. and
Linington, R.G. (2012) Examining the fish microbiome:
Vertebrate-derived bacteria as an environmental niche for the
discovery of unique marine natural products. PLoS One, 7(5):
e35398.
http://dx.doi.org/10.1371/journal.pone.0035398
PMid:22574119 PMCid:PMC3344833 |
|
45. Sheeja, M.S., Selvakumar, D. and Dhevendaran, K. (2011)
Antagonistic potential of Streptomyces associated with the gut
of marine ornamental fishes. Middle East J. Sci. Res., 7:
327-334. |
|
46. Wu, S., Wang, G., Angert, E.R., Wang, W., Li, W. and Zou,
H. (2012) Composition, diversity, and origin of the bacterial
community in grass carp intestine. PLoS One, 7(2): e30440.
http://dx.doi.org/10.1371/journal.pone.0030440
PMid:22363439 PMCid:PMC3282688 |
|
47. Zheng, Z, Zeng, W, Huang, Y, Yang, Z, Li, J, Cai, H and
Su, W (2000) Detection of antitumor and antimicrobial
activities in marine organism associated actinomycetes
isolated from the Taiwan Strait, China. FEMS Microbiol. Lett.,
188(1): 87-91.
http://dx.doi.org/10.1111/j.1574-6968.2000.tb09173.x
PMid:10867239 |
|
48. Arafah, S., Kicka, S., Trofimov, V., Hagedorn, M., Andreu,
N., Wiles, S., Robertson, B. and Soldati, T. (2013) Setting up
and monitoring an infection of dictyosteliumdiscoideum with
mycobacteria. In: Eichinger, L. and Rivero, F. editors.
Dictyostelium Discoideum Protocols, Humana Press, New York.
p403-417.
http://dx.doi.org/10.1007/978-1-62703-302-2_22
PMid:23494320 |
|
49. Wang, G.L., Yuan, S.P. and Jin, S. (2005) Nocardiosis in
large yellow croaker, Larimichthys crocea (Richardson). J.
Fish Dis., 28(6): 339-345.
http://dx.doi.org/10.1111/j.1365-2761.2005.00637.x
PMid:15960657 |
|
50. Bermudez-Brito, M., Plaza-Diaz, J., Munoz-Quezada, S.,
Gomez-Llorente, C. and Gil, A. (2012) Probiotic mechanisms of
action. Ann. Nutr. Metab., 61: 160-174.
http://dx.doi.org/10.1159/000342079
PMid:23037511 |
|
51. Bezkorovainy, A. (2001) Probiotics: Determinants of
survival and growth in the gut. Am. J. Clin. Nutr., 73:
399S-405S.
PMid:11157348 |
|
52. Jensen, P.R., Mincer, T.J., Williams, P.G. and Fenical, W.
(2005) Marine actinomycete diversity and natural product
discovery. Antonie van Leeuwenhoek, 87(1): 43-48.
http://dx.doi.org/10.1007/s10482-004-6540-1
PMid:15726290 |
|
53. Chater, K.F., Biro, S., Lee, K.J., Palmer, T. and
Schrempf, H. (2010) The complex extracellular biology of
Streptomyces. FEMS Microbiol. Rev., 34(2): 171-198.
http://dx.doi.org/10.1111/j.1574-6976.2009.00206.x
PMid:20088961 |
|
54. Prakash, D., Nawani, N., Prakash, M., Bodas, M., Mandal,
A., Khetmalas, M., Kapadnis, B. (2013) Actinomycetes: A
repertory of green catalysts with a potential revenue
resource. Biomed. Res. Int., 2013: 264020.
http://dx.doi.org/10.1155/2013/264020
PMid:23691495 PMCid:PMC3652136 |
|
55. Das, S., Ward, L.R., Burke, C. and Moriarty, D.J.W. (2008)
Prospects of using marine actinobacteria as probiotics in
aquaculture. Appl. Microbiol. Biot., 81(3): 419-429.
http://dx.doi.org/10.1007/s00253-008-1731-8
PMid:18841358 |
|
56. Berdy, J. (2005) Bioactive microbial metabolites. J.
Antibiot. (Tokyo), 58: 1-26.
http://dx.doi.org/10.1038/ja.2005.1
PMid:15813176 |
|