Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Review
(Published
online: 13-01-2015)
10.
Heat shock
proteins: a therapeutic target worth to consider -
Amita Dubey, K. S. Prajapati,
Madhu Swamy and V. Pachauri
Veterinary World, 8(1): 46-51
doi:
10.14202/vetworld.2015.46-51
Amita
Dubey:
Department of Pathology, College of veterinary science & AH, NDVSU,
Jabalpur, Madhya Pradesh, India; amiabhishek@rediffmail.com
K. S.
Prajapati:
Department of Pathology, College of veterinary science & AH, AAU,
Anand, Gujarat, India; kanti_prajapati@yahoo.com
Madhu
Swamy:
Department of Pathology, College of veterinary science & AH, NDVSU,
Jabalpur, Madhya Pradesh, India; vetpath@rediffmail.com
V.
Pachauri:
Krishi Vigyan Kendra, Jawaharlal Nehru Agricultural University,
Sagar, Madhya Pradesh, India; dr.vivekinpachauri@gmail.com
Received: 08-09-2014, Revised: 20-11-2014, Accepted: 28-11-2014,
Published online: 13-01-2015
Corresponding author:
Amita Dubey, e-mail: amiabhishek@rediffmail.com
Abstract
Heat
shock proteins (HSPs) are the molecular chaperones, that are not
only expressed during the normal growth process of cell cycle
consecutively, but also get induced in cells during various stress
conditions produced by cellular insult, environmental changes,
temperature, infections, tumors etc. According to their molecular
weight and functions, HSPs are divided into five major families.
HSP90, HSP70, HSP60 and HSP100 are the most studied members of the
family. Experimental studies have proved that overexpression
and/or inhibition of HSPs play an important role in maintaining
the tolerance and cell viability under above-described stress
conditions. HSP90 is found to be a promising candidate for the
diagnosis, prognosis and treatment of cancer. Similarly, HSP70,
HSP60 and small HSPs experimentally and clinically have potential
for the treatment of neurodegenerative disease, ischemia, cell
death, autoimmunity, graft rejection, etc. In a way, exploring,
the cytoprotective and immunoregulatory role of HSPs can open a
new avenue for the drug discovery and treatment of critical
diseases.
Keywords: heat shock protein, heat shock
protein 70, heat shock protein 90, stress protein, small heat
shock proteins.
References
1. Ritossa, F. (1962) A new puffing pattern induced by
temperature and DNP in Drosophila., Experientia, 18: 571–-573.
http://dx.doi.org/10.1007/BF02172188 |
|
2. Schlesinger, M. J. (1990) Heat shock proteins., J. Biol.
Chem., 265(21): 12111-12114.
PMid:2197269 |
|
3. Hendrick, J.P. and Hartl, F.U. (1993) Molecular chaperone
functions of heat-shock proteins., Annu. Rev. Biochem., 62:
349-384.
http://dx.doi.org/10.1146/annurev.bi.62.070193.002025
PMid:8102520 |
|
4. Millar, L.N. and Murrell, G.A.C. (2012) Heat shock proteins
in tendinopathy: Novel molecular regulators., Mediators.
Inflamm., 2012: 436203.
http://dx.doi.org/10.1155/2012/436203
PMid:23258952 PMCid:PMC3507314 |
|
5. Bellmann, K., Jaattela, M., Wissing, D., Burkart, V. and
Kolb, H. (1996) Heat shock protein Hsp70 over expression
confers resistance against nitric oxide., FEBS Lett.,
391(1-2):185–-188.
http://dx.doi.org/10.1016/0014-5793(96)00730-2 |
|
6. Calabrese, V., Cornelius, C., Maiolino, L., Luca, M.,
Chiaramonte, R., Toscano, M.A., Serra, A. (2010) Oxidative
stress redox homeostasis and cellular stress response in
Ménière's disease: Role of vitagenes., Neurochem. Res.,
35(12): 2208-2217.
http://dx.doi.org/10.1007/s11064-010-0304-2
PMid:21042850 |
|
7. Choi, Y.J., Kim, N.H., Lim, M.S., Lee, H.J., Kim, S.S. and
Chun, W. (2014) Geldanamycin attenuates 3 Nitropropionic acid
Induced apoptosis and JNK activation through the expression of
HSP 70 in striatal cells., Int. J. Mol. Med., 34(1): 24-34.
PMid:24756698 PMCid:PMC4072345 |
|
8. Parsell, D.A. and Lindquist, S. (1994) Heat shock proteins
and stress tolerance. In: Morimoto, R.I., Tissières, A. and
Georgopoulos, C., editors. The Biology of Heat Shock Proteins
and Molecular Chaperones., Vol. 26. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, New York. p457-494. |
|
9. Pathan, M.M., Latif, A., Das, H., Siddiquee, G.M. and Khan,
J.Z. (2010) Heat Shock Proteins and their clinical
Implications., Vet. World, 3: 558-560. |
|
10. Coelho, V., and Faria, A.M. (2012) HSP60: Issues and
insights on its therapeutic use as an immunoregulatory agent.,
Front. Immunol., 12(2): 97. |
|
11. O'Neill, S., Ingman, T.G., Wigmore, S.J., Harrison, E.M.
and Bellamy, C.O. (2013) Differential expression of heat shock
proteins in healthy and diseased human renal allografts, Ann.
Transplant, 18: 550-7.
http://dx.doi.org/10.12659/AOT.889599
PMid:24113772 |
|
12. Morimoto, R.I. (1998) Regulation of the heat shock
transcriptional response: Cross talk between a family of heat
shock factors molecular chaperones and negative regulators.,
Gene Dev., 12: 3788-3796.
http://dx.doi.org/10.1101/gad.12.24.3788
PMid:9869631 |
|
13. Pratt, W.B. and Toft, D.O. (2003) Regulation of signaling
protein function and trafficking by the hsp90/hsp70-based
chaperone machinery., Exp. Biol. Med., 228(2): 111-33. |
|
14. De Thonel, A., Le Mouël, A. and Mezger, V. (2012)
Transcriptional regulation of small HSP-HSF1 and beyond., Int.
J. Biochem. Cell B., 44(10): 1593-1612.
http://dx.doi.org/10.1016/j.biocel.2012.06.012
PMid:22750029 |
|
15. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. and
Nardai, G. (1998) The 90-kDa molecular chaperone family:
Structure function and clinical applications: A comprehensive
review., Pharmacol. Therapeut., 79: 129–-168.
http://dx.doi.org/10.1016/S0163-7258(98)00013-8 |
|
16. Csermely, P., Agoston, V. and Pongor, S. (2005) The
efficiency of multi-target drugs: The network approach might
help drug design., Trends Pharmacol. Sci., 26(4): 178–-182.
http://dx.doi.org/10.1016/j.tips.2005.02.007
PMid:15808341 |
|
17. Garnier, C., Lafitte, D., Tsvetkov, P.O., Barbier, P.,
Leclerc-Devin, J., Millot, J.M., Briand, C., Makarov, A.A.,
Catelli, M.G. and Peyrot, V. (2002) Binding of ATP to heat
shock protein 90: Evidence for an ATP-binding site in the
C-terminal domain., J. Biol. Chem., 277(14): 12208–-12214.
http://dx.doi.org/10.1074/jbc.M111874200
PMid:11805114 |
|
18. Jego, G., Hazoumé, A., Seigneuric, R. and Garrido, C.
(2013) Targeting heat shock proteins in cancer., Cancer Lett.,
332(2): 275-85.
http://dx.doi.org/10.1016/j.canlet.2010.10.014
PMid:21078542 |
|
19. Richardson, P.G., Mitsiades, C.S., Laubach, J.P., Lonial,
S., Chanan-Khan, A.A. and Anderson, K.C. (2011) Inhibition of
heat shock protein 90 (HSP90) as a therapeutic strategy for
the treatment of myeloma and other cancers., Br. J. Haematol.,
152 (4): 367-379.
http://dx.doi.org/10.1111/j.1365-2141.2010.08360.x
PMid:21219297 |
|
20. Okayama, S., Kopelovich, L., Balmus, G., Weiss, R.S.,
Herbert, B.S., Dannenberg, A.J. and Subbaramaiah, K. (2014)
p53 protein regulates Hsp90 ATPase activity and thereby Wnt
signaling by modulating Aha1 expression., J. Biol. Chem.,
289(10): 6513-6525.
PMid:24451373 |
|
21. Banerji, U., O'donnell, A., Scurr, M., Pacey, S.,
Stapleton, S., Asad, Y., Simmons, L., Malone, Y. A., Raynaud
F., Campbel L.M., Walton M., Lakhani S., Kaye S., Workman P.,
and Judson, I. (2005) Phase I pharmacokinetic and
pharmacodynamic study of 17-allylamino
17-demethoxygeldanamycin in patients with advanced
malignancies., J. Clin. Oncol., 23(18): 4152–-4161.
http://dx.doi.org/10.1200/JCO.2005.00.612
PMid:15961763 |
|
22. Tavernier, E., Flandrin-Gresta, P., Solly, F., Rigollet,
L., Cornillon, J., Augeul-Meunier, K., Stephan, J.L.,
Montmartin, A., Viallet, A., Guyotat, D. and Campos, L. (2012)
HSP90 inhibition results in apoptosis of Philadelphia acute
lymphoblastic leukaemia cells: An attractive prospect of new
targeted agents., J. Cancer Res. Clin., 138(10): 1753-1758.
http://dx.doi.org/10.1007/s00432-012-1247-6
PMid:22706881 |
|
23. Giubellino, A., Sourbier, C., Lee, M.J., Scroggins, B.,
Bullova, P., Landau, M., Ying, W., Neckers, L., Trepel, J.B.
and Pacak, K. (2013) Targeting heat shock protein 90 for the
treatment of malignant pheochromocytoma., PLoS One., 8(2):
e56083.
http://dx.doi.org/10.1371/journal.pone.0056083
PMid:23457505 PMCid:PMC3573066 |
|
24. Tosti, G., Cocorocchio, E., Pennacchioli, E., Ferrucci,
P.F., Testori, A. and Martinoli, C. (2014) Heat-shock
proteins-based immunotherapy for advanced melanoma in the era
of target therapies and immunomodulating agents., Expert Opin.
Biol. Ther., 14(7): 955-967. doi:10.1517/14712598.2014.902928.
http://dx.doi.org/10.1517/14712598.2014.902928 |
|
25. Paul, S. and Mahanta, S. (2014) Association of heat-shock
proteins in various neurodegenerative disorders: Is it a
master key to open the therapeutic door? Mol. Cell. Biochem.,
386(1-2): 45-61.
http://dx.doi.org/10.1007/s11010-013-1844-y
PMid:24096700 |
|
26. Di Domenico, F., Sultana, R., Tiu, G.F., Scheff, N.N.,
Perluigi, M., Cini, C. and Butterfield, D.A. (2010) Protein
levels of heat shock proteins 27, 32, 60, 70, 90 and
thioredoxin-1 in amnestic mild cognitive impairment: An
investigation on the role of cellular stress response in the
progression of Alzheimer disease., Brain Res., 1333: 72-81.
http://dx.doi.org/10.1016/j.brainres.2010.03.085
PMid:20362559 PMCid:PMC2871982 |
|
27. Cornelius, C., Trovato Salinaro, A., Scuto, M., Fronte,
V., Cambria, M.T., Pennisi, M., Bella, R., Milone, P.,
Graziano, A., Crupi, R., Cuzzocrea, S., Pennisi, G. and
Calabrese, V. (2013) Cellular stress response sirtuins and UCP
proteins in Alzheimer disease: Role of vitagenes., Immun.
Ageing, 17: ;10 (1): 41. |
|
28. Wang, X., Cattaneo, F., Ryno, L., Hulleman, J., Reixach,
N. and Buxbaum, J.N. (2014) The systemic amyloid precursor
transthyretin (TTR) behaves as a neuronal stress protein
regulated by HSF1 in SH-SY5Y human neuroblastoma cells and
APP23 Alzheimer's disease model mice., J. Neurosci., 34(21):
7253-7265.
http://dx.doi.org/10.1523/JNEUROSCI.4936-13.2014
PMid:24849358 PMCid:PMC4028500 |
|
29. Ebrahimi-Fakhari, D., Saidi, L.J. and Wahlster, L. (2013)
Molecular chaperones and protein folding as therapeutic
targets in Parkinson's disease and other synucleinopathies.,
Acta Neuropathol. Commun., 5(1): 1-79. |
|
30. Bobkova, N.V., Garbuz, D.G., Nesterova, I., Medvinskaya,
N., Samokhin, A., Alexandrova, I., Yashin, V., Karpov, V.,
Kukharsky, M.S., Ninkina, N.N., Smirnov, A.A., Nudler, E. and
Evgenev, M. (2014) Therapeutic effect of exogenous hsp70 in
mouse models of Alzheimer's disease., J. Alzheimers Dis.,
38(2): 425-435.
PMid:23985416 |
|
31. Suzuki, Y., Ogawa, S. and Sakakibara, Y. (2009) Chaperone
therapy for neuronopathic lysosomal diseases: Competitive
inhibitors as chemical chaperones for enhancement of mutant
enzyme activities., Perspect. Medicin. Chem., 3: 7-19. |
|
32. Shukla, A.K., Pragya, P., Chaouhan, H.S., Tiwari, A.K.,
Patel, D.K., Abdin, M.Z. and Chowdhuri, D.K. (2014) Heat shock
protein-70 (Hsp-70) suppresses paraquat-induced
neurodegeneration by inhibiting JNK and caspase-3 activation
in drosophila model of Parkinson's disease., PLoS One, 9(6):
e98886.
http://dx.doi.org/10.1371/journal.pone.0098886
PMid:24887138 PMCid:PMC4041817 |
|
33. Yenari, M.A., Giffard, R.G., Sapolsky, R.M. and Steinberg,
G.K. (1999) The neuroprotective potential of heat shock
protein 70 (HSP70)., Mol. Med. Today, 5(12): 525-531.
http://dx.doi.org/10.1016/S1357-4310(99)01599-3 |
|
34. Sharp, F.R., Zhan, X., and Liu, D.Z., (2013) Heat shock
proteins in the brain: Role of Hsp70 Hsp 27 and HO-1 (Hsp32)
and their therapeutic potential., Transl. Stroke Res., 4(6):
685-692.
http://dx.doi.org/10.1007/s12975-013-0271-4
PMid:24323422 PMCid:PMC3858824 |
|
35. Marber, M.S., Mestril, R. and Chi, S.H. (1995)
Overexpression of the rat inducible 70-kD heat stress protein
in a transgenic mouse increases the resistance of the heart to
ischemic injury., J. Clin. Invest., 95(4): 1446–-1456.
http://dx.doi.org/10.1172/JCI117815
PMid:7706448 PMCid:PMC295626 |
|
36. Rajdev, S., Hara, K., Kokubo, Y., Mestril, R., Dillmann,
W., Weinstein, P.R. and Sharp, F.R. (2000) Mice overexpressing
rat heat shock protein 70 are protected against cerebral
infarction., Ann. Neurol., 47(6): 782–-791.
http://dx.doi.org/10.1002/1531-8249(200006)47:6<782::AID-ANA11>3.0.CO;2-3 |
|
37. Zhang, J., Lu, W., Lei, O., Tao, X., You, H. and Xie, P.
(2013) Salvianolate increases heat shock protein expression in
a cerebral ischemia-reperfusion injury model., Neural Regen.
Res., 8(25): 2327–-2335.
PMid:25206542 PMCid:PMC4146039 |
|
38. Xia, D.Y., Li, W., Qian, H.R., Yao, S., Liu, J.G. and Qi,
X.K. (2013) Ischemia preconditioning is neuroprotective in a
rat cerebral ischemic injury model through autophagy
activation and apoptosis inhibition., Braz. J. Med. Biol.
Res., 46(7): 580-588.
http://dx.doi.org/10.1590/1414-431X20133161
PMid:23903681 PMCid:PMC3859329 |
|
39. Galdiero, M., Del'Ero, G.C. and Marcatili, A. (1997)
Cytokine and adhesion molecule expression in human monocytes
and endothelial cells stimulated with bacterial heat shock
proteins., Infect. Immun., 65(2): 699-707.
PMid:9009333 PMCid:PMC176116 |
|
40. Yadav, A.K., Kumar, V. and Jha, V. (2013). Heat shock
proteins 60 and 70 specific proinflammatory and cytotoxic
response of CD4+CD28 null cells in chronic kidney disease.,
Mediators. Inflamm., 2013: 384807.
http://dx.doi.org/10.1155/2013/384807
PMid:24347824 PMCid:PMC3857845 |
|
41. Lovett, M.C., Coates, J.R., Shu, Y., Oglesbee, M.J.,
Fenner, W. and Moore, S.A. (2014) Quantitative assessment of
hsp70 IL-1β and TNF-α in the spinal cord of dogs with E40K
SOD1-associated degenerative myelopathy., Vet. J., 200(2):
312-317.
http://dx.doi.org/10.1016/j.tvjl.2014.03.003
PMid:24662024 |
|
42. Grundtman, C., Kreutmayer, S.B., Almanzar, G., Wick, M.C.
and Wick, G. (2011) Heat shock protein 60 and immune
inflammatory responses in atherosclerosis., Arterioscler.
Thromb. Vasc. Biol., 31(5): 960-968.
http://dx.doi.org/10.1161/ATVBAHA.110.217877
PMid:21508342 PMCid:PMC3212728 |
|
43. Wang, J., Li, Y. and Li, J. (2013) Cell stress response in
rat chronic small bowel allograft rejection., Transplant.
Proc., 45(6): 2539-2542.
http://dx.doi.org/10.1016/j.transproceed.2013.02.120
PMid:23953577 |
|
44. Van Eden, W., Bonorino, C. and Van Der Zee, R. (2013) The
immunology of cellular stress proteins., Front. Immunol., 4:
153.
http://dx.doi.org/10.3389/fimmu.2013.00153
PMid:23785370 PMCid:PMC3684847 |
|
45. Pockley, A.G. and Muthana, M. (2005) Heat shock proteins
and allograft rejection., Contrib. Nephrol., 148:122-34.
http://dx.doi.org/10.1159/000086057
PMid:15912031 |
|
46. Seemampillai, B., Germack, R., Felkin, L.E., McCormack,
A., and Rose, M.L. (2014) Heat shock protein-27 delays acute
rejection after cardiac transplantation: An experimental
model., Transplantation, May 2998(1): 29-38. |
|
47. Neuer, A., Spandorfer, S.D., Giraldo, P., Dieterle, S.,
Rosenwaks, Z. and Witkin, S.S. (2000) The role of heat shock
proteins in reproduction., Hum. Reprod. Update, 6(2): 149-159.
http://dx.doi.org/10.1093/humupd/6.2.149
PMid:10782573 |
|
48. Linhares, I.M. and Witkin, S.S. (2010) Immunopathogenic
consequences of Chlamydia trachomatis 60 kDa heat shock
protein expression in the female reproductive tract., Cell
Stress Chaperone, 15 (5): 467-473.
http://dx.doi.org/10.1007/s12192-010-0171-4
PMid:20182835 PMCid:PMC3006632 |
|
49. Ji, Z., Duan, Y., Mou, L., Allam, J., Haidl, G., and Cai,
Z. (2012) Association of heat shock proteins, heat shock
factors and male infertility., Asian Pac. J. Reprod., 1(1):
76-84.
http://dx.doi.org/10.1016/S2305-0500(13)60053-6 |
|
50. Acunzo, J., Katsogiannou, M. and Rocchi, P. (2012) Small
heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and
HSP22 (HspB8) as regulators of cell death., Int. J. Biochem.
Cell B., 44(10): 1622-1631.
http://dx.doi.org/10.1016/j.biocel.2012.04.002
PMid:22521623 |
|
51. Reddy, P.S., Kavi Kishor, P.B., Seiler, C., Kuhlmann, M.,
Eschen-Lippold, L., Lee, J., Reddy, M.K. and Sreenivasulu, N.
(2014) Unraveling regulation of the small heat shock proteins
by the heat shock factor HvHsfB2c in barley: Its implications
in drought stress response and seed development., PLoS One.,
9(3): e89125.
http://dx.doi.org/10.1371/journal.pone.0089125
PMid:24594978 PMCid:PMC3942355 |
|
52. Wood, K.L., Nunley, D.R., Moffatt-Bruce, S., Pope-Harman,
A., Huang, Q., Shamo, E.N., Phillips, G.S., Baran, C., Batra,
S., Marsh, C.B. and Doseff, A.I. (2010) The role of heat shock
protein 27 in bronchiolitis obliterans syndrome after lung
transplantation., J. Heart Lung Transpl., 29(7): 786-791.
http://dx.doi.org/10.1016/j.healun.2010.03.004
PMid:20456980 PMCid:PMC2902709 |
|
53. Shemetov, A.A., Seit-Nebi, A.S. and Gusev, N.B. (2008)
Structure, properties, and functions of the human small
heat-shock protein HSP22 (HspB8, H11, E2IG1): A critical
review., J. Neurosci. Res., 86(2): 264-269.
http://dx.doi.org/10.1002/jnr.21441
PMid:17722063 |
|
54. Tang, S., Lv, Y., Chen, H., Adam, A., Cheng, Y., Hartung,
J. and Bao, E. (2014) Comparative analysis of αB-crystallin
expression in heat-stressed myocardial cells in vivo and in
vitro., PLoS One, 9(1): e86937.
http://dx.doi.org/10.1371/journal.pone.0086937
PMid:24466295 PMCid:PMC3899361 |
|
55. Xu, F., Yu, H., Liu, J., and Cheng, L. (2013)
αB-crystallin regulates oxidative stress-induced apoptosis in
cardiac H9c2 cells via the PI3K/AKT pathway., Mol. Biol. Rep.,
40(3): 2517-2526.
http://dx.doi.org/10.1007/s11033-012-2332-2
PMid:23212619 |
|
56. Parfitt, D.A., Aguila, M., McCulley, C.H., Bevilacqua, D.,
Mendes, H.F., Athanasiou, D., Novoselov, S.S., Kanuga, N.,
Munro, P.M., Coffey, P.J., Kalmar, B., Greensmith, L. and
Cheetham, M.E. (2014) The heat-shock response co-inducer
arimoclomol protects against retinal degeneration in rhodopsin
retinitis pigmentosa., Cell Death Dis., 5: e1236.
http://dx.doi.org/10.1038/cddis.2014.214
PMid:24853414 PMCid:PMC4047904 |
|
57. Romanucci, M., Marinelli1, A., Sarli, G. and Salda, L. G.
(2006) Heat shock protein expression in canine malignant
mammary tumors., BMC Cancer, 6: 1471-2407.
http://dx.doi.org/10.1186/1471-2407-6-171
PMid:16803633 PMCid:PMC1525201 |
|
58. Chu, R.M., Sun, T.J., Yang, H.Y., Wang, D.G., Liao, K.W.,
Chuang, T.F., Li, C.H. and Lee, W.C. (2001) Heat shock
proteins in canine transmissible venereal tumor., Vet. Immunol.
Immunopathol., 82(1-2): 9–-21.
http://dx.doi.org/10.1016/S0165-2427(01)00327-0 |
|
59. Selvarajah, G.T., Bonestroo, F.A., Kirpensteijn, J., Kik,
M.J., Van der Zee, R., Van Eden, W., Timmermans-Sprang, E.P.,
Slob, A. and Mol, J.A. (2013) Heat shock protein expression
analysis in canine osteosarcoma reveals HSP60 as a potentially
relevant therapeutic target., Cell Stress Chaperon, 18(5):
607-622.
http://dx.doi.org/10.1007/s12192-013-0414-2
PMid:23463150 PMCid:PMC3745254 |
|
60. Unger-Waron, H., Brenner, J., Paz, R., Moalem, U., and
Trainin Z. (1996) gamma delta T-lymphocytes and anti-heat
shock protein reactivity in bovine leukemia virus infected
cattle., Vet. Immunol. Immunopathol., 51(1-2): 79-87.
http://dx.doi.org/10.1016/0165-2427(95)05495-2 |
|
61. Serrano, C., Bolea, R., Lyahyai, J., Filali, H., Varona,
L., Marcos-Carcavilla, A., Cristina, A., Calvo, J.H., Serrano,
M., Badiola, J.J., Zaragoza, P. and Martín-Burriel, I. (2011)
Changes in HSP gene and protein expression in natural scrapie
with brain damage., Vet. Res., 42(1): 13.
http://dx.doi.org/10.1186/1297-9716-42-13
PMid:21314976 PMCid:PMC3037893 |
|