Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

ISSN (Print): 0972-8988

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.


Review (Published online: 13-01-2015)

10. Heat shock proteins: a therapeutic target worth to consider - Amita Dubey, K. S. Prajapati, Madhu Swamy and V. Pachauri

Veterinary World, 8(1): 46-51

 

 

   doi: 10.14202/vetworld.2015.46-51

 

 

Amita Dubey: Department of Pathology, College of veterinary science & AH, NDVSU, Jabalpur, Madhya Pradesh, India; amiabhishek@rediffmail.com

K. S. Prajapati: Department of Pathology, College of veterinary science & AH, AAU, Anand, Gujarat, India; kanti_prajapati@yahoo.com

Madhu Swamy: Department of Pathology, College of veterinary science & AH, NDVSU, Jabalpur, Madhya Pradesh, India; vetpath@rediffmail.com

V. Pachauri: Krishi Vigyan Kendra, Jawaharlal Nehru Agricultural University, Sagar, Madhya Pradesh, India; dr.vivekinpachauri@gmail.com

 

Received: 08-09-2014, Revised: 20-11-2014, Accepted: 28-11-2014, Published online: 13-01-2015

 

Corresponding author: Amita Dubey, e-mail: amiabhishek@rediffmail.com



Heat shock proteins (HSPs) are the molecular chaperones, that are not only expressed during the normal growth process of cell cycle consecutively, but also get induced in cells during various stress conditions produced by cellular insult, environmental changes, temperature, infections, tumors etc. According to their molecular weight and functions, HSPs are divided into five major families. HSP90, HSP70, HSP60 and HSP100 are the most studied members of the family. Experimental studies have proved that overexpression and/or inhibition of HSPs play an important role in maintaining the tolerance and cell viability under above-described stress conditions. HSP90 is found to be a promising candidate for the diagnosis, prognosis and treatment of cancer. Similarly, HSP70, HSP60 and small HSPs experimentally and clinically have potential for the treatment of neurodegenerative disease, ischemia, cell death, autoimmunity, graft rejection, etc. In a way, exploring, the cytoprotective and immunoregulatory role of HSPs can open a new avenue for the drug discovery and treatment of critical diseases.

Keywords: heat shock protein, heat shock protein 70, heat shock protein 90, stress protein, small heat shock proteins.



1. Ritossa, F. (1962) A new puffing pattern induced by temperature and DNP in Drosophila., Experientia, 18: 571–-573.
http://dx.doi.org/10.1007/BF02172188
 
2. Schlesinger, M. J. (1990) Heat shock proteins., J. Biol. Chem., 265(21): 12111-12114.
PMid:2197269
 
3. Hendrick, J.P. and Hartl, F.U. (1993) Molecular chaperone functions of heat-shock proteins., Annu. Rev. Biochem., 62: 349-384.
http://dx.doi.org/10.1146/annurev.bi.62.070193.002025
PMid:8102520
 
4. Millar, L.N. and Murrell, G.A.C. (2012) Heat shock proteins in tendinopathy: Novel molecular regulators., Mediators. Inflamm., 2012: 436203.
http://dx.doi.org/10.1155/2012/436203
PMid:23258952 PMCid:PMC3507314
 
5. Bellmann, K., Jaattela, M., Wissing, D., Burkart, V. and Kolb, H. (1996) Heat shock protein Hsp70 over expression confers resistance against nitric oxide., FEBS Lett., 391(1-2):185–-188.
http://dx.doi.org/10.1016/0014-5793(96)00730-2
 
6. Calabrese, V., Cornelius, C., Maiolino, L., Luca, M., Chiaramonte, R., Toscano, M.A., Serra, A. (2010) Oxidative stress redox homeostasis and cellular stress response in Ménière's disease: Role of vitagenes., Neurochem. Res., 35(12): 2208-2217.
http://dx.doi.org/10.1007/s11064-010-0304-2
PMid:21042850
 
7. Choi, Y.J., Kim, N.H., Lim, M.S., Lee, H.J., Kim, S.S. and Chun, W. (2014) Geldanamycin attenuates 3 Nitropropionic acid Induced apoptosis and JNK activation through the expression of HSP 70 in striatal cells., Int. J. Mol. Med., 34(1): 24-34.
PMid:24756698 PMCid:PMC4072345
 
8. Parsell, D.A. and Lindquist, S. (1994) Heat shock proteins and stress tolerance. In: Morimoto, R.I., Tissières, A. and Georgopoulos, C., editors. The Biology of Heat Shock Proteins and Molecular Chaperones., Vol. 26. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. p457-494.
 
9. Pathan, M.M., Latif, A., Das, H., Siddiquee, G.M. and Khan, J.Z. (2010) Heat Shock Proteins and their clinical Implications., Vet. World, 3: 558-560.
 
10. Coelho, V., and Faria, A.M. (2012) HSP60: Issues and insights on its therapeutic use as an immunoregulatory agent., Front. Immunol., 12(2): 97.
 
11. O'Neill, S., Ingman, T.G., Wigmore, S.J., Harrison, E.M. and Bellamy, C.O. (2013) Differential expression of heat shock proteins in healthy and diseased human renal allografts, Ann. Transplant, 18: 550-7.
http://dx.doi.org/10.12659/AOT.889599
PMid:24113772
 
12. Morimoto, R.I. (1998) Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors molecular chaperones and negative regulators., Gene Dev., 12: 3788-3796.
http://dx.doi.org/10.1101/gad.12.24.3788
PMid:9869631
 
13. Pratt, W.B. and Toft, D.O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery., Exp. Biol. Med., 228(2): 111-33.
 
14. De Thonel, A., Le Mouël, A. and Mezger, V. (2012) Transcriptional regulation of small HSP-HSF1 and beyond., Int. J. Biochem. Cell B., 44(10): 1593-1612.
http://dx.doi.org/10.1016/j.biocel.2012.06.012
PMid:22750029
 
15. Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. and Nardai, G. (1998) The 90-kDa molecular chaperone family: Structure function and clinical applications: A comprehensive review., Pharmacol. Therapeut., 79: 129–-168.
http://dx.doi.org/10.1016/S0163-7258(98)00013-8
 
16. Csermely, P., Agoston, V. and Pongor, S. (2005) The efficiency of multi-target drugs: The network approach might help drug design., Trends Pharmacol. Sci., 26(4): 178–-182.
http://dx.doi.org/10.1016/j.tips.2005.02.007
PMid:15808341
 
17. Garnier, C., Lafitte, D., Tsvetkov, P.O., Barbier, P., Leclerc-Devin, J., Millot, J.M., Briand, C., Makarov, A.A., Catelli, M.G. and Peyrot, V. (2002) Binding of ATP to heat shock protein 90: Evidence for an ATP-binding site in the C-terminal domain., J. Biol. Chem., 277(14): 12208–-12214.
http://dx.doi.org/10.1074/jbc.M111874200
PMid:11805114
 
18. Jego, G., Hazoumé, A., Seigneuric, R. and Garrido, C. (2013) Targeting heat shock proteins in cancer., Cancer Lett., 332(2): 275-85.
http://dx.doi.org/10.1016/j.canlet.2010.10.014
PMid:21078542
 
19. Richardson, P.G., Mitsiades, C.S., Laubach, J.P., Lonial, S., Chanan-Khan, A.A. and Anderson, K.C. (2011) Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers., Br. J. Haematol., 152 (4): 367-379.
http://dx.doi.org/10.1111/j.1365-2141.2010.08360.x
PMid:21219297
 
20. Okayama, S., Kopelovich, L., Balmus, G., Weiss, R.S., Herbert, B.S., Dannenberg, A.J. and Subbaramaiah, K. (2014) p53 protein regulates Hsp90 ATPase activity and thereby Wnt signaling by modulating Aha1 expression., J. Biol. Chem., 289(10): 6513-6525.
PMid:24451373
 
21. Banerji, U., O'donnell, A., Scurr, M., Pacey, S., Stapleton, S., Asad, Y., Simmons, L., Malone, Y. A., Raynaud F., Campbel L.M., Walton M., Lakhani S., Kaye S., Workman P., and Judson, I. (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino 17-demethoxygeldanamycin in patients with advanced malignancies., J. Clin. Oncol., 23(18): 4152–-4161.
http://dx.doi.org/10.1200/JCO.2005.00.612
PMid:15961763
 
22. Tavernier, E., Flandrin-Gresta, P., Solly, F., Rigollet, L., Cornillon, J., Augeul-Meunier, K., Stephan, J.L., Montmartin, A., Viallet, A., Guyotat, D. and Campos, L. (2012) HSP90 inhibition results in apoptosis of Philadelphia acute lymphoblastic leukaemia cells: An attractive prospect of new targeted agents., J. Cancer Res. Clin., 138(10): 1753-1758.
http://dx.doi.org/10.1007/s00432-012-1247-6
PMid:22706881
 
23. Giubellino, A., Sourbier, C., Lee, M.J., Scroggins, B., Bullova, P., Landau, M., Ying, W., Neckers, L., Trepel, J.B. and Pacak, K. (2013) Targeting heat shock protein 90 for the treatment of malignant pheochromocytoma., PLoS One., 8(2): e56083.
http://dx.doi.org/10.1371/journal.pone.0056083
PMid:23457505 PMCid:PMC3573066
 
24. Tosti, G., Cocorocchio, E., Pennacchioli, E., Ferrucci, P.F., Testori, A. and Martinoli, C. (2014) Heat-shock proteins-based immunotherapy for advanced melanoma in the era of target therapies and immunomodulating agents., Expert Opin. Biol. Ther., 14(7): 955-967. doi:10.1517/14712598.2014.902928.
http://dx.doi.org/10.1517/14712598.2014.902928
 
25. Paul, S. and Mahanta, S. (2014) Association of heat-shock proteins in various neurodegenerative disorders: Is it a master key to open the therapeutic door? Mol. Cell. Biochem., 386(1-2): 45-61.
http://dx.doi.org/10.1007/s11010-013-1844-y
PMid:24096700
 
26. Di Domenico, F., Sultana, R., Tiu, G.F., Scheff, N.N., Perluigi, M., Cini, C. and Butterfield, D.A. (2010) Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: An investigation on the role of cellular stress response in the progression of Alzheimer disease., Brain Res., 1333: 72-81.
http://dx.doi.org/10.1016/j.brainres.2010.03.085
PMid:20362559 PMCid:PMC2871982
 
27. Cornelius, C., Trovato Salinaro, A., Scuto, M., Fronte, V., Cambria, M.T., Pennisi, M., Bella, R., Milone, P., Graziano, A., Crupi, R., Cuzzocrea, S., Pennisi, G. and Calabrese, V. (2013) Cellular stress response sirtuins and UCP proteins in Alzheimer disease: Role of vitagenes., Immun. Ageing, 17: ;10 (1): 41.
 
28. Wang, X., Cattaneo, F., Ryno, L., Hulleman, J., Reixach, N. and Buxbaum, J.N. (2014) The systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer's disease model mice., J. Neurosci., 34(21): 7253-7265.
http://dx.doi.org/10.1523/JNEUROSCI.4936-13.2014
PMid:24849358 PMCid:PMC4028500
 
29. Ebrahimi-Fakhari, D., Saidi, L.J. and Wahlster, L. (2013) Molecular chaperones and protein folding as therapeutic targets in Parkinson's disease and other synucleinopathies., Acta Neuropathol. Commun., 5(1): 1-79.
 
30. Bobkova, N.V., Garbuz, D.G., Nesterova, I., Medvinskaya, N., Samokhin, A., Alexandrova, I., Yashin, V., Karpov, V., Kukharsky, M.S., Ninkina, N.N., Smirnov, A.A., Nudler, E. and Evgenev, M. (2014) Therapeutic effect of exogenous hsp70 in mouse models of Alzheimer's disease., J. Alzheimers Dis., 38(2): 425-435.
PMid:23985416
 
31. Suzuki, Y., Ogawa, S. and Sakakibara, Y. (2009) Chaperone therapy for neuronopathic lysosomal diseases: Competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activities., Perspect. Medicin. Chem., 3: 7-19.
 
32. Shukla, A.K., Pragya, P., Chaouhan, H.S., Tiwari, A.K., Patel, D.K., Abdin, M.Z. and Chowdhuri, D.K. (2014) Heat shock protein-70 (Hsp-70) suppresses paraquat-induced neurodegeneration by inhibiting JNK and caspase-3 activation in drosophila model of Parkinson's disease., PLoS One, 9(6): e98886.
http://dx.doi.org/10.1371/journal.pone.0098886
PMid:24887138 PMCid:PMC4041817
 
33. Yenari, M.A., Giffard, R.G., Sapolsky, R.M. and Steinberg, G.K. (1999) The neuroprotective potential of heat shock protein 70 (HSP70)., Mol. Med. Today, 5(12): 525-531.
http://dx.doi.org/10.1016/S1357-4310(99)01599-3
 
34. Sharp, F.R., Zhan, X., and Liu, D.Z., (2013) Heat shock proteins in the brain: Role of Hsp70 Hsp 27 and HO-1 (Hsp32) and their therapeutic potential., Transl. Stroke Res., 4(6): 685-692.
http://dx.doi.org/10.1007/s12975-013-0271-4
PMid:24323422 PMCid:PMC3858824
 
35. Marber, M.S., Mestril, R. and Chi, S.H. (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury., J. Clin. Invest., 95(4): 1446–-1456.
http://dx.doi.org/10.1172/JCI117815
PMid:7706448 PMCid:PMC295626
 
36. Rajdev, S., Hara, K., Kokubo, Y., Mestril, R., Dillmann, W., Weinstein, P.R. and Sharp, F.R. (2000) Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction., Ann. Neurol., 47(6): 782–-791.
http://dx.doi.org/10.1002/1531-8249(200006)47:6<782::AID-ANA11>3.0.CO;2-3
 
37. Zhang, J., Lu, W., Lei, O., Tao, X., You, H. and Xie, P. (2013) Salvianolate increases heat shock protein expression in a cerebral ischemia-reperfusion injury model., Neural Regen. Res., 8(25): 2327–-2335.
PMid:25206542 PMCid:PMC4146039
 
38. Xia, D.Y., Li, W., Qian, H.R., Yao, S., Liu, J.G. and Qi, X.K. (2013) Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition., Braz. J. Med. Biol. Res., 46(7): 580-588.
http://dx.doi.org/10.1590/1414-431X20133161
PMid:23903681 PMCid:PMC3859329
 
39. Galdiero, M., Del'Ero, G.C. and Marcatili, A. (1997) Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins., Infect. Immun., 65(2): 699-707.
PMid:9009333 PMCid:PMC176116
 
40. Yadav, A.K., Kumar, V. and Jha, V. (2013). Heat shock proteins 60 and 70 specific proinflammatory and cytotoxic response of CD4+CD28 null cells in chronic kidney disease., Mediators. Inflamm., 2013: 384807.
http://dx.doi.org/10.1155/2013/384807
PMid:24347824 PMCid:PMC3857845
 
41. Lovett, M.C., Coates, J.R., Shu, Y., Oglesbee, M.J., Fenner, W. and Moore, S.A. (2014) Quantitative assessment of hsp70 IL-1β and TNF-α in the spinal cord of dogs with E40K SOD1-associated degenerative myelopathy., Vet. J., 200(2): 312-317.
http://dx.doi.org/10.1016/j.tvjl.2014.03.003
PMid:24662024
 
42. Grundtman, C., Kreutmayer, S.B., Almanzar, G., Wick, M.C. and Wick, G. (2011) Heat shock protein 60 and immune inflammatory responses in atherosclerosis., Arterioscler. Thromb. Vasc. Biol., 31(5): 960-968.
http://dx.doi.org/10.1161/ATVBAHA.110.217877
PMid:21508342 PMCid:PMC3212728
 
43. Wang, J., Li, Y. and Li, J. (2013) Cell stress response in rat chronic small bowel allograft rejection., Transplant. Proc., 45(6): 2539-2542.
http://dx.doi.org/10.1016/j.transproceed.2013.02.120
PMid:23953577
 
44. Van Eden, W., Bonorino, C. and Van Der Zee, R. (2013) The immunology of cellular stress proteins., Front. Immunol., 4: 153.
http://dx.doi.org/10.3389/fimmu.2013.00153
PMid:23785370 PMCid:PMC3684847
 
45. Pockley, A.G. and Muthana, M. (2005) Heat shock proteins and allograft rejection., Contrib. Nephrol., 148:122-34.
http://dx.doi.org/10.1159/000086057
PMid:15912031
 
46. Seemampillai, B., Germack, R., Felkin, L.E., McCormack, A., and Rose, M.L. (2014) Heat shock protein-27 delays acute rejection after cardiac transplantation: An experimental model., Transplantation, May 2998(1): 29-38.
 
47. Neuer, A., Spandorfer, S.D., Giraldo, P., Dieterle, S., Rosenwaks, Z. and Witkin, S.S. (2000) The role of heat shock proteins in reproduction., Hum. Reprod. Update, 6(2): 149-159.
http://dx.doi.org/10.1093/humupd/6.2.149
PMid:10782573
 
48. Linhares, I.M. and Witkin, S.S. (2010) Immunopathogenic consequences of Chlamydia trachomatis 60 kDa heat shock protein expression in the female reproductive tract., Cell Stress Chaperone, 15 (5): 467-473.
http://dx.doi.org/10.1007/s12192-010-0171-4
PMid:20182835 PMCid:PMC3006632
 
49. Ji, Z., Duan, Y., Mou, L., Allam, J., Haidl, G., and Cai, Z. (2012) Association of heat shock proteins, heat shock factors and male infertility., Asian Pac. J. Reprod., 1(1): 76-84.
http://dx.doi.org/10.1016/S2305-0500(13)60053-6
 
50. Acunzo, J., Katsogiannou, M. and Rocchi, P. (2012) Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death., Int. J. Biochem. Cell B., 44(10): 1622-1631.
http://dx.doi.org/10.1016/j.biocel.2012.04.002
PMid:22521623
 
51. Reddy, P.S., Kavi Kishor, P.B., Seiler, C., Kuhlmann, M., Eschen-Lippold, L., Lee, J., Reddy, M.K. and Sreenivasulu, N. (2014) Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: Its implications in drought stress response and seed development., PLoS One., 9(3): e89125.
http://dx.doi.org/10.1371/journal.pone.0089125
PMid:24594978 PMCid:PMC3942355
 
52. Wood, K.L., Nunley, D.R., Moffatt-Bruce, S., Pope-Harman, A., Huang, Q., Shamo, E.N., Phillips, G.S., Baran, C., Batra, S., Marsh, C.B. and Doseff, A.I. (2010) The role of heat shock protein 27 in bronchiolitis obliterans syndrome after lung transplantation., J. Heart Lung Transpl., 29(7): 786-791.
http://dx.doi.org/10.1016/j.healun.2010.03.004
PMid:20456980 PMCid:PMC2902709
 
53. Shemetov, A.A., Seit-Nebi, A.S. and Gusev, N.B. (2008) Structure, properties, and functions of the human small heat-shock protein HSP22 (HspB8, H11, E2IG1): A critical review., J. Neurosci. Res., 86(2): 264-269.
http://dx.doi.org/10.1002/jnr.21441
PMid:17722063
 
54. Tang, S., Lv, Y., Chen, H., Adam, A., Cheng, Y., Hartung, J. and Bao, E. (2014) Comparative analysis of αB-crystallin expression in heat-stressed myocardial cells in vivo and in vitro., PLoS One, 9(1): e86937.
http://dx.doi.org/10.1371/journal.pone.0086937
PMid:24466295 PMCid:PMC3899361
 
55. Xu, F., Yu, H., Liu, J., and Cheng, L. (2013) αB-crystallin regulates oxidative stress-induced apoptosis in cardiac H9c2 cells via the PI3K/AKT pathway., Mol. Biol. Rep., 40(3): 2517-2526.
http://dx.doi.org/10.1007/s11033-012-2332-2
PMid:23212619
 
56. Parfitt, D.A., Aguila, M., McCulley, C.H., Bevilacqua, D., Mendes, H.F., Athanasiou, D., Novoselov, S.S., Kanuga, N., Munro, P.M., Coffey, P.J., Kalmar, B., Greensmith, L. and Cheetham, M.E. (2014) The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa., Cell Death Dis., 5: e1236.
http://dx.doi.org/10.1038/cddis.2014.214
PMid:24853414 PMCid:PMC4047904
 
57. Romanucci, M., Marinelli1, A., Sarli, G. and Salda, L. G. (2006) Heat shock protein expression in canine malignant mammary tumors., BMC Cancer, 6: 1471-2407.
http://dx.doi.org/10.1186/1471-2407-6-171
PMid:16803633 PMCid:PMC1525201
 
58. Chu, R.M., Sun, T.J., Yang, H.Y., Wang, D.G., Liao, K.W., Chuang, T.F., Li, C.H. and Lee, W.C. (2001) Heat shock proteins in canine transmissible venereal tumor., Vet. Immunol. Immunopathol., 82(1-2): 9–-21.
http://dx.doi.org/10.1016/S0165-2427(01)00327-0
 
59. Selvarajah, G.T., Bonestroo, F.A., Kirpensteijn, J., Kik, M.J., Van der Zee, R., Van Eden, W., Timmermans-Sprang, E.P., Slob, A. and Mol, J.A. (2013) Heat shock protein expression analysis in canine osteosarcoma reveals HSP60 as a potentially relevant therapeutic target., Cell Stress Chaperon, 18(5): 607-622.
http://dx.doi.org/10.1007/s12192-013-0414-2
PMid:23463150 PMCid:PMC3745254
 
60. Unger-Waron, H., Brenner, J., Paz, R., Moalem, U., and Trainin Z. (1996) gamma delta T-lymphocytes and anti-heat shock protein reactivity in bovine leukemia virus infected cattle., Vet. Immunol. Immunopathol., 51(1-2): 79-87.
http://dx.doi.org/10.1016/0165-2427(95)05495-2
 
61. Serrano, C., Bolea, R., Lyahyai, J., Filali, H., Varona, L., Marcos-Carcavilla, A., Cristina, A., Calvo, J.H., Serrano, M., Badiola, J.J., Zaragoza, P. and Martín-Burriel, I. (2011) Changes in HSP gene and protein expression in natural scrapie with brain damage., Vet. Res., 42(1): 13.
http://dx.doi.org/10.1186/1297-9716-42-13
PMid:21314976 PMCid:PMC3037893