Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
Research
(Published
online: 30-01-2015)
23.
Virulence genes detection of Salmonella
serovars isolated from pork and slaughterhouse environment in
Ahmedabad, Gujarat -
J. H. Chaudhary, J. B.
Nayak, M. N. Brahmbhatt and P. P. Makwana
Veterinary World, 8(1): 121-124
doi:
10.14202/vetworld.2015.121-124
J. H.
Chaudhary:
Department of Veterinary Public Health, College of Veterinary
Science and Animal Husbandry, AAU, Anand - 388 001, Gujarat,
India;
jitvph007@gmail.com
J. B.
Nayak:
Department of Veterinary Public Health, College of Veterinary
Science and Animal Husbandry, AAU, Anand - 388 001, Gujarat,
India;
jbn_anand@yahoo.com
M. N.
Brahmbhatt:
Department of Veterinary Public Health, College of Veterinary
Science and Animal Husbandry, AAU, Anand - 388 001, Gujarat,
India;
mnbrahmbhatt2003@yahoo.com
P. P.
Makwana: Department of Veterinary Public Health, College of
Veterinary Science and Animal Husbandry, AAU, Anand - 388 001,
Gujarat, India;
paresh.makwana1989@gmail.com
Received:
05-11-2014, Revised: 18-12-2014, Accepted: 18-12-2014, Published
online: 30-01-2014
Corresponding author:
J. H. Chaudhary, e-mail: jitvph007@gmail.com
Abstract
Aim:
The aim was to detect virulence gene associated with the
Salmonella serovars isolated from pork and Slaughterhouse
environment.
Materials and Methods: Salmonella isolates (n=37) used
in this study were isolated from 270 pork and slaughter house
environmental samples collected from the Ahmedabad Municipal
Corporation Slaughter House, Ahmedabad, Gujarat, India.
Salmonella serovars were isolated and identified as per BAM
USFDA method and serotyped at National Salmonella and
Escherichia Centre, Central Research Institute, Kasauli
(Himachal Pradesh, India). Polymerase chain reaction technique was
used for detection of five genes, namely invA, spvR,
spvC, fimA and stn among different serovars
of Salmonella.
Results: Out of a total of 270 samples, 37 (13.70%)
Salmonella were isolated with two serovars, namely Enteritidis
and Typhimurium. All Salmonella serovars produced 284 bp
invA gene, 84 bp fimA and 260 bp amplicon for
enterotoxin (stn) gene whereas 30 isolates possessed 310 bp
spvR gene, but no isolate possessed spvC gene.
Conclusion: Presence of invA, fimA and stn
gene in all isolates shows that they are the specific targets
for Salmonella identification and are capable of producing
gastroenteric illness to humans, whereas 20 Typhimurium serovars
and 10 Enteritidis serovars can able to produce systemic
infection.
Keywords: pork, Salmonella, slaughterhouse environment,
virulence genes
References
1. Jeffries, W. (2012) Mother Earth News-What Good Is a Pig,
Homesteading and livestock. Available from: http://www.motherearthnews.com/homesteading-andlivestock/what-good-is-a-pig-cuts-of-pork-nose-to-tail.
Accessed on 05-05-2012. |
|
2. Agriculture and Processed Food Export Development Agency (APEDA),
(2013). Available from: http://www.apeda.gov.in/apedawebsite/SubHead_Products/Sheep_Goat_Meat.htm.
Accessed on 25-08-2013. |
|
3. FAO (Food and Agriculture Organization). (2013) Food
Outlook. Global Market Analysis. p51-54. Available from:
http://www.fao.org/giews/. Last accessed on 14-12-2014. |
|
4. Wang, L., Shi, L., Alam, M.J., Geng, Y. and Li, L. (2008)
Specific and rapid detection of foodborne Salmonella by
loop-mediated isothermal amplification method. Food Res. Int.,
41: 69-74.
http://dx.doi.org/10.1016/j.foodres.2007.09.005 |
|
5. Smith, R.P., Clough H.E. and Cook, A.J. (2010) Analysis of
meat juice ELISA results and questionnaire data to investigate
farm-level risk factors for Salmonella infection in UK pigs.
Zoonoses Public Health, 57(1): 39-48.
http://dx.doi.org/10.1111/j.1863-2378.2010.01362.x
PMid:21083817 |
|
6. Hernandeza, M., Gomez, J., Luqueb, I., Herrera, S.,
Maldonadob, A., Reguillob, L. and Astorgab, R.J. (2013)
Salmonella prevalence and characterization in a free-range pig
processing plant: Tracking in trucks, lairage, slaughter line
and quartering. Int. J. Food Microbiol., 162(1): 48-54.
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.12.026
PMid:23353554 |
|
7. Zheng, D.M., Bonde, M. and Sorensen, J.T. (2007)
Associations between the proportion of Salmonella seropositive
slaughter pigs and the presence of herd level risk factors for
introduction and transmission of Salmonella in 34 Danish
organic, outdoor (non-organic) and indoor finishing-pig farms.
Livest. Sci., 106: 189-199.
http://dx.doi.org/10.1016/j.livsci.2006.08.003 |
|
8. Sabbagh, S.C., Forest, C.G., Lepage, C., Leclerc, J.M. and
Daigle, F. (2010) Uncovering distinctive features in the
genomes of Salmonella enterica serovars Typhimurium and typhi.
FEMS. Microbiol. Lett., 305(1): 1-13.
http://dx.doi.org/10.1111/j.1574-6968.2010.01904.x
PMid:20146749 |
|
9. Darwin, K.H. and Miller, V.L. (1999) Molecular basis of the
interaction of Salmonella with the intestinal mucosa. Clin.
Microbiol. Rev., 12(3): 405-428.
PMid:10398673 PMCid:PMC100246 |
|
10. Heithoff, D.M., Shimp, W.R., Lau, P.W., Badie, G.,
Enioutina, E.Y., Daynes, K., Barbara, R.A., Byrne, A., House,
J. and Mahan, M.J. (2008) Human Salmonella clinical isolates
distinct from those of animal origin. Appl. Environ. Microbiol.,
10: 1757-1766.
http://dx.doi.org/10.1128/AEM.02740-07
PMid:18245251 PMCid:PMC2268321 |
|
11. Chiu, C. and Ou, J.T. (1996) Rapid identification of
salmonella serovars in feces by specific detection of
virulence genes, invA and spvC, by an enrichment broth
culture-multiplex PCR combination assay. J. Clin. Microbiol.,
34(10): 2619-2622.
PMid:8880536 PMCid:PMC229337 |
|
12. Guiney, D., Fang, F., Krause, M. and Libby, S. (1994)
Plasmid mediated virulence genes in non-typhoid Salmonella
serovares. FEEMS Microbiol. Lett., 124(1): 1-9.
http://dx.doi.org/10.1111/j.1574-6968.1994.tb07253.x |
|
13. Chopra, A.K., Houston, C.W., Peterson, J.W., Prasad, R.
and Mekalanos, J.J. (1987) Cloning and expression of the
Salmonella enterotoxin gene. J. Bacteriol., 169(11):
5095-5100.
PMid:2822664 PMCid:PMC213913 |
|
14. Andrews, W.H., Andrew, J. and Hammack, T. (2011)
Salmonella. In: Bacteriological Analytical Manual. 8th ed.,
Ch. 5, Revision A. U.S. Food and Drug Administration, AOAC
International, Gaithersburg, MD. |
|
15. Kumar, K., Saklaini, A.C., Singh, S. and Singh, V.P.
(2008) Evaluation of specificity for invA gene PCR for
detection of Salmonella spp. Proceeding of VIIth Annual
Conference of Indian Association of Veterinary Public Health
Specialists (IAVPHS). November 07-09, 2008. |
|
16. Pasmans, F., Van Immerseel, F., Heyndrickx, M., Godard,
C., Wildemauwe, C., Ducatelle, R. and Haesebrouck, F. (2003)
Host adaptation of pigeon isolates of Salmonella serovar
Typhimurium var. Copenhagen PT99 is associated with macrophage
cytotoxicity. Infect. Immunol., 71(10): 6068-6074.
http://dx.doi.org/10.1128/IAI.71.10.6068-6074.2003
PMid:14500532 PMCid:PMC201047 |
|
17. Oliveira, S.D., Rodenbusch, C.R., Michae, G.B., Cardoso,
M.I., Canal, C.W. and Brandelli, A. (2003) Detection of
virulence genes in Salmonella Enteritidis isolated from
different sources. Braz. J. Microbiol., 34(1): 123-124.
http://dx.doi.org/10.1590/S1517-83822003000500042 |
|
18. Naravaneni, R. and Jamil, K. (2005). Rapid detection of
food-borne pathogens by using molecular techniques. J. Med.
Microbiol., 54: 51-54.
http://dx.doi.org/10.1099/jmm.0.45687-0
PMid:15591255 |
|
19. Alphons, J.A.M.V. and Jaap E.V.D. (2005) Distribution of
''classic'' virulence factors among Salmonella spp. FEMS.
Immunol. Med. Microbiol., 44: 251-259.
http://dx.doi.org/10.1016/j.femsim.2005.02.002
PMid:15907446 |
|
20. Makino, S., Kurazono, H., Chongsanguam, M., Hayashi, H.,
Cheun, H., Suzuki, S. and Shirahata, T. (1999) Establishment
of the PCR system specific to Salmonella spp. and its
application for the inspection of food and fecal samples. J.
Vet. Med. Sci., 61(11): 1245-1247.
http://dx.doi.org/10.1292/jvms.61.1245
PMid:10593584 |
|
21. Swamy, S.C., Barnhart, H.M., Lee, M.D. and Dreesen, D.W.
(1996) Virulence determinants invA and spvC in salmonellae
isolated from poultry products, wastewater, and human sources.
Appl. Environ. Microbiol., 62(10): 3768-3771.
PMid:8837432 PMCid:PMC168184 |
|
22. Bhatta, D.R., Bangtrakulnonth, A., Tishyadhigama, P.,
Saroj, S.D., Bandekar, J.R., Hendriksen, R.S. and Kapadnis,
B.P. (2007) Serotyping, PCR, phage-typing and antibiotic
sensitivity testing of Salmonella serovars isolated from urban
drinking water supply systems of Nepal. Lett. Appl. Microbiol.,
44: 588-594.
http://dx.doi.org/10.1111/j.1472-765X.2007.02133.x
PMid:17576218 |
|
23. Araque, M. (2009) Nontyphoid Salmonella gastroenteritis in
pediatric patients from urban areas in the city of Mérida,
Venezuela. J. Infect. Dev. Control, 3(1): 28-34. |
|
24. Amini, K., Salehi, T.Z., Nikbakht, G., Ranjbar, R., Amini,
J. and Ashrafganjooei, S.B. (2010) Molecular detection of invA
and spv virulence genes in Salmonella enteritidis isolated
from human and animals in Iran. Afr. J. Microbiol. Res.,
4(21): 2202-2210. |
|
25. Dinjus, U., Hanvel, I., Muller, W., Bauerfeind, R. and
Helmuth, R. (1997) Detection of the induction of Salmonella
enterotoxin gene expression by contact with epithelial cells
with RT-PCR. FEMS Microbiol. Lett., 146(2): 175-178.
http://dx.doi.org/10.1111/j.1574-6968.1997.tb10189.x
PMid:9011037 |
|
26. Rahman, H. (1999) Prevalence of enterotoxin gene (stn)
among different serovars of Salmonella. Indian J. Med. Res.,
110: 43-46.
PMid:10573653 |
|
27. Soto, S.M., Rodriguez, I., Rodicio, M.R., Vila, J. and
Mendoza, M.C. (2006) Detection of virulence determinants in
clinical strains of Salmonella enterica serovar Enteritidis
and mapping on macrorestriction profiles. J. Med. Microbiol.,
55: 365-373.
http://dx.doi.org/10.1099/jmm.0.46257-0
PMid:16533982 |
|