Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access

Copyright: The authors. This article is an open access article licensed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction in any medium, provided the work is properly cited.


Review (Published online: 21-07-2015)

12.  Preparation and effects of nano mineral particle feeding in livestock: A review - Partha Sarathi Swain, D. Rajendran, S. B. N. Rao and George Dominic

Veterinary World, 8(7): 888-891

 

 

   doi: 10.14202/vetworld.2015.888-891

 

Partha Sarathi Swain: Division of Dairy Cattle Nutrition, National Dairy Research Institute, Karnal - 132 001, Haryana, India; parthavet@yahoo.com

D. Rajendran: Animal Nutrition Division, National Institute of Animal Nutrition and Physiology, Bengaluru - 560 030, Karnataka, India; rajnutri@gmail.com

S. B. N. Rao: Animal Nutrition Division, National Institute of Animal Nutrition and Physiology, Bengaluru - 560 030, Karnataka, India; SB.Rao@icar.gov.in

George Dominic: Division of Dairy Cattle Nutrition, National Dairy Research Institute, Karnal - 132 001, Haryana, India; georgedominicp@gmail.com

 

Received: 01-03-2015, Revised: 10-06-2015, Accepted: 17-06-2015, Published online: 21-07-2015

 

Corresponding author: S. B. N. Rao, e-mail: SB.Rao@icar.gov.in


Citation: Swain PS, Rajendran D, Rao SBN, Dominic G (2015) Preparation and effects of nano mineral particle feeding in livestock: A review, Veterinary World 8(7): 888-891.



Nano minerals are widely used in diversified sectors including agriculture, animal, and food systems. Hence, their multiple uses provoke the production of nanomaterials at the laboratory level, which can be achieved through physical, chemical or biological methods. Every method is having its own merits and demerits. But keeping all in mind, chemical methods are more beneficial, as uniform nano-sized particles can be produced, but the use of corrosive chemicals is the main demerits. When it comes to environmental issues, biological methods are better as these are free from corrosive chemicals, but maintaining the culture media is the disadvantage. For animal feeding, chemical methods are mostly followed to produce nano minerals as it is cheap and less time consuming. These nano minerals also showed their significant effects even at lower doses of recommendations than the conventional mineral sources. These nano minerals have significant growth promoting, immuno-modulatory, antibacterial effects than the conventional counterparts. They also alter the rumen fermentation pattern on supplementation in the animal feeds. Apart from these, nano minerals are reported to enhance the reproduction in the livestock and poultry.

Keywords: biological effects, mineral nutrition, nanotechnology, nano Zn, synthesis.



1. Newman, M.D., Stotland, M. and Ellis, J.I. (2009) The safety of nanosized particles in titanium dioxide - and zinc-oxide based sunscreens. J. Am. Acad. Dermatol., 61(4): 685-692.
http://dx.doi.org/10.1016/j.jaad.2009.02.051
PMid:19646780
 
2. Rasmussen, J.W., Martinez, E., Louka, P. and Wingett, D.G. (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv., 7(9): 1063-1077.
http://dx.doi.org/10.1517/17425247.2010.502560
PMid:20716019 PMCid:PMC2924765
 
3. Te-Hsing, W., Yi-Der, T. and Lie-Hang, S. (2007), The novel methods for preparing antibacterial fabric composites containing nano-material. Solid State Phenom., 124(12): 1241-1244.
 
4. Stoimenov, P.K., Klinger, R.L., Marchin, G.L. and Klabunde, K.J. (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir., 18: 6679-6686.
http://dx.doi.org/10.1021/la0202374
 
5. Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L. and Sun, Z. (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett., 199: 389-397.
http://dx.doi.org/10.1016/j.toxlet.2010.10.003
PMid:20934491
 
6. Sri Sindhura, K., Selvam, P.P., Prasad, T.N.V. and Hussain, O.M. (2014) Synthesis, characterization and evaluation of effect of phytogenic zinc nanoparticles on soil exo-enzymes. Appl. Nanosci., 4: 819-827.
http://dx.doi.org/10.1007/s13204-013-0263-4
 
7. Wang, Z.L. (2000) Characterization of Nanophase Material. Wiley-VCH Verlag GmbH, Weinheim. p13-14.
PMCid:PMC1760571
 
8. Kaiser, D.L ., Standridge, S., Friedersdorf, L., Geraci, C. L., Kronz, F., Meador, M. A., ... & Stepp, D. M. (2014). 2014 National Nanotechnology Initiative Strategic Plan.NSTC. (2004) Available from: http://www.nano.gov/html/res/fy04-pdf/fy04- main.html.
 
9. Yadav, A., Prasad, V., Kathe, A.A., Raj, S., Yadav, D., Sundaramoorthy, C. and Vigneshwaran, N. (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull. Mater. Sci., 29(6): 641-645.
http://dx.doi.org/10.1007/s12034-006-0017-y
 
10. Thulasi, A., Rajendran, D., Jash, S., Selvaraju, S., Lyju Jose, V., Velusamy, S. and Mathivanan, S. (2013) Nanobiotechnology in animal nutrition. In: Sampath, K.T., Ghosh, J., Bhatta, R., editors. Satish Serial Publishing House, New Delhi. p499-515.
 
11. Patil, S.S., Kore, K.B. and Kumar, P. (2012) Nanotechnology and its applications in veterinary and animal science. Vet. World, 2: 475-477.
http://dx.doi.org/10.5455/vetworld.2009.475-477
 
12. Feng, M., Wang, Z.S., Zhou, A.G. and Ai, D.W. (2009). The effects of different sizes of nanometer zinc oxide on the proliferation and cell integrity of mice duodenum-epithelial cells in primary culture. ‎Pak. J. Nutr., 8(8): 1164-1166.
http://dx.doi.org/10.3923/pjn.2009.1164.1166
 
13. Zaboli, K., Aliarabi, H., Bahari, A.A. and Abbasalipourkabir, R. (2013) Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: A study on in Iranian Angora (Markhoz) goat kids. Int Advis. Board, 2(1): 19-26.
 
14. Reddy, S.T., van der Vlies, A.J., Simeoni, E., Angeli, V., Randolph, G.J., O'Neil, C.P., Lee, L.K., Swartz, M.A. and Hubbell, J.A. (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Natr Biotechnol., 25: 1159-1164.
http://dx.doi.org/10.1038/nbt1332
PMid:17873867
 
15. Hillyer, J.F. and Albrecht, R.M. (2001) Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J. Pharm. Sci., 90: 1927-1936.
http://dx.doi.org/10.1002/jps.1143
PMid:11745751
 
16. Dickson, R.M. and Lyon, L.A. (2000) Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B., 104: 6095-6098.
http://dx.doi.org/10.1021/jp001435b
 
17. Lewis, K. and Klibanov, A.M. (2005) Surpassing nature: Rational design of sterile-surface materials. Trends Biotechnol., 23: 343-348.
http://dx.doi.org/10.1016/j.tibtech.2005.05.004
PMid:15922467
 
18. Rosi, N.L. and Mirkin, C.A. (2005) Nanostructures in biodiagnostics. Chem. Rev., 105(4): 1547-1562.
http://dx.doi.org/10.1021/cr030067f
PMid:15826019
 
19. Yang, Z.P. and Sun, L.P. (2006) Effects of nanometre ZnO on growth performance of early weaned piglets. J. Shanxi Agric. Sci., 3: 024.
 
20. Mishra, A., Swain, R.K., Mishra, S.K., Panda, N. and Sethy, K. (2014) Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J. Anim. Nutr., 31(4): 384-388.
 
21. Lina, T., Jianyang, J., Fenghua, Z., Huiying, R. and Wenli, L. (2009) Effect of nano-zinc oxide on the production and dressing performance of broiler. Chinese Agricultural Science Bulletin, 2: 003.
 
22. Rajendran, D. (2013) Application of nano minerals in animal production system. Res. J. Biotechnol., 8(3): 1-3.
 
23. Sahoo, A., Swain, R.K., Mishra, S.K. and Jena, B. (2014a) Serum biochemical indices of broiler birds fed on inorganic, organic and nano zinc supplemented diets. Int. J. Recent Sci. Res., 5(11): 2078-2081.
 
24. Sahoo, A., Swain, R.K. and Mishra, S.K. (2014b) Effect of inorganic, organic and nano zinc supplemented diets on bioavailability and immunity status of broilers. Int. J. Adv. Res., 2(11): 828-837.
 
25. Zhisheng, C.J. (2011), Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese J. Anim. Nutr., 8: 023.
 
26. Hahn, H. (1997) Unique features and properties of nanostructured materials. Nanostruct. Mater., 9: 3-12.
http://dx.doi.org/10.1016/S0965-9773(97)00013-5
 
27. Ingale, A.G. and Chaudhari, A.N. (2013) Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J. Nanomed. Nanotechol., 4: 165.
http://dx.doi.org/10.4172/2157-7439.1000165
 
28. Iravani, S., Korbekandi, H., Mirmohammadi, S.V. and Zolfaghari, B. (2014) Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci., 9(6): 385-406.
 
29. Rajendran, D., Thulasi, A., Jash, S., Selvaraju, S. and Rao, S.B.N. (2013) Synthesis and application of nano minerals in livestock industry. In: Sampath, K.T., Ghosh, J., Bhatta, R., editors. Animal Nutrition and Reproductive Physiology (Recent Concepts). Satish Serial Publishing House, Delhi, p517-530.
 
30. Cardenas, G., Meléndrez, M., Cruzat, C. and Díaz, J. (2007) Synthesis of tin nanoparticles by physical vapour deposition technique (vd). Acta Microsci., 1: 1-2.
 
31. Koch, C.C. (1997) Synthesis of nanostructured materials by mechanical milling: Problems and opportunities. Nanostruct. Mater., 9: 13-22.
http://dx.doi.org/10.1016/S0965-9773(97)00014-7
 
32. Siegel, R.W. (1991) In: Cahn, R.W., Haasen, P., Kramer, E.S., editors. Materials Science and Technology. VCH Weinheim, New York. p583.
 
33. Bakker, H., Zhou, G.F. and Yang, H. (1995) Mechanically driven disorder and phase transformations in alloys. Prog. Mater. Sci., 39: 159-241.
http://dx.doi.org/10.1016/0079-6425(95)00001-1
 
34. Lane, R., Craig, B. and Babcock, W. (2002) Materials engineering with nature's building blocks. AMPTIAC Newslett. Spring., 6: 31-37.
 
35. Oremland, R.S., Herbal, M.J., Blum, J.S., Langely, S., Beveridge, T.J., Jayan, P.M., Sutto, T. and Ellis, A.V. (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl. Environ. Microbiol., 70: 52-60.
http://dx.doi.org/10.1128/AEM.70.1.52-60.2004
PMid:14711625 PMCid:PMC321302
 
36. Szczepanowicz, K., Stefan'ska, J. and Socha, R.P. (2010) Preparation of silver nanoparticles via chemical reduction and their antimicrobial activity. Physicochem. Probl. Mi., 45: 85-98.
 
37. Zhou, Y. (2005) Recent advances in ionic liquids for synthesis of inorganic nano-materials. Curr. Nanosci., 1: 35-42.
http://dx.doi.org/10.2174/1573413052953174
 
38. Yang, J., Deivaraj, T.C., Too, H.P. and Lee, J.Y. (2004) Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir, 20: 4241-4245.
http://dx.doi.org/10.1021/la0361159
PMid:15969423
 
39. Marye, J. and Inbathamizh, L. (2012) Green synthesis and characterization of nano silver using leaf extract of morinda pubescens. Asian J. Pharm. Clin. Res., 5(1): 159-162.
 
40. Narayanan, K.B. and Sakthive, N. (2010) Photosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater. Charact., 61: 1232-1238.
http://dx.doi.org/10.1016/j.matchar.2010.08.003
 
41. Kaushik, N., Thakkar, M.S., Snehit, S., Mhatre, M.S., Rasesh, Y. and Parikh, M.S. (2010) Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol., 6: 257-262.
http://dx.doi.org/10.1016/j.nano.2009.07.002
PMid:19616126
 
42. Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G., Gardea-Torresdey, J.L. and Pal, T. (2007) Synthesis of plant mediated gold nanoparticles and catalytic role of bio matrix- embedded nanomaterials. Environ. Sci. Technol., 41: 5137-5142.
http://dx.doi.org/10.1021/es062929a
PMid:17711235 PMCid:PMC2518977
 
43. Philip, D. (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E.: (Low-dimensional Systems and Nanostructures), 42: 1417-1424.
http://dx.doi.org/10.1016/j.physe.2009.11.081
 
44. Philip, D. (2011) Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim. Acta A. Mol. Biomol. Spectroschim., 78: 327-331.
http://dx.doi.org/10.1016/j.saa.2010.10.015
PMid:21030295
 
45. Shankar, S.S., Ahmad, A., Rai, A. and Sastry, M. (2004) Rapid synthesis of Au Ag and bimetallic Au core-Ag shell nanoparticles by using neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci., 275: 496-502.
http://dx.doi.org/10.1016/j.jcis.2004.03.003
PMid:15178278