Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
R eview
(Published online:
21-07-2015)
12.
Preparation and effects of nano mineral
particle feeding in livestock: A review - Partha
Sarathi Swain, D. Rajendran, S. B. N. Rao and George Dominic
Veterinary World, 8(7): 888-891
doi:
10.14202/vetworld.2015.888-891
Partha
Sarathi Swain:
Division of Dairy Cattle Nutrition, National Dairy Research
Institute, Karnal - 132 001, Haryana, India;
parthavet@yahoo.com
D.
Rajendran:
Animal Nutrition Division, National Institute of Animal Nutrition
and Physiology, Bengaluru - 560 030, Karnataka, India;
rajnutri@gmail.com
S. B.
N. Rao:
Animal Nutrition Division, National Institute of Animal Nutrition
and Physiology, Bengaluru - 560 030, Karnataka, India;
SB.Rao@icar.gov.in
George
Dominic: Division of Dairy Cattle Nutrition, National Dairy
Research Institute, Karnal - 132 001, Haryana, India;
georgedominicp@gmail.com
Received:
01-03-2015, Revised: 10-06-2015, Accepted: 17-06-2015, Published
online: 21-07-2015
Corresponding author:
S. B. N. Rao, e-mail: SB.Rao@icar.gov.in
Citation:
Swain PS, Rajendran D,
Rao SBN, Dominic G (2015) Preparation and effects of nano mineral
particle feeding in livestock: A review, Veterinary World 8(7):
888-891.
Abstract
Nano
minerals are widely used in diversified sectors including
agriculture, animal, and food systems. Hence, their multiple uses
provoke the production of nanomaterials at the laboratory level,
which can be achieved through physical, chemical or biological
methods. Every method is having its own merits and demerits. But
keeping all in mind, chemical methods are more beneficial, as
uniform nano-sized particles can be produced, but the use of
corrosive chemicals is the main demerits. When it comes to
environmental issues, biological methods are better as these are
free from corrosive chemicals, but maintaining the culture media
is the disadvantage. For animal feeding, chemical methods are
mostly followed to produce nano minerals as it is cheap and less
time consuming. These nano minerals also showed their significant
effects even at lower doses of recommendations than the
conventional mineral sources. These nano minerals have significant
growth promoting, immuno-modulatory, antibacterial effects than
the conventional counterparts. They also alter the rumen
fermentation pattern on supplementation in the animal feeds. Apart
from these, nano minerals are reported to enhance the reproduction
in the livestock and poultry.
Keywords: biological effects, mineral
nutrition, nanotechnology, nano Zn, synthesis.
References
1. Newman, M.D., Stotland, M. and Ellis, J.I. (2009) The
safety of nanosized particles in titanium dioxide - and
zinc-oxide based sunscreens. J. Am. Acad. Dermatol., 61(4):
685-692.
http://dx.doi.org/10.1016/j.jaad.2009.02.051
PMid:19646780 |
|
2. Rasmussen, J.W., Martinez, E., Louka, P. and Wingett, D.G.
(2010) Zinc oxide nanoparticles for selective destruction of
tumor cells and potential for drug delivery applications.
Expert Opin. Drug Deliv., 7(9): 1063-1077.
http://dx.doi.org/10.1517/17425247.2010.502560
PMid:20716019 PMCid:PMC2924765 |
|
3. Te-Hsing, W., Yi-Der, T. and Lie-Hang, S. (2007), The novel
methods for preparing antibacterial fabric composites
containing nano-material. Solid State Phenom., 124(12):
1241-1244. |
|
4. Stoimenov, P.K., Klinger, R.L., Marchin, G.L. and Klabunde,
K.J. (2002) Metal oxide nanoparticles as bactericidal agents.
Langmuir., 18: 6679-6686.
http://dx.doi.org/10.1021/la0202374 |
|
5. Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L.
and Sun, Z. (2010) Role of the dissolved zinc ion and reactive
oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol.
Lett., 199: 389-397.
http://dx.doi.org/10.1016/j.toxlet.2010.10.003
PMid:20934491 |
|
6. Sri Sindhura, K., Selvam, P.P., Prasad, T.N.V. and Hussain,
O.M. (2014) Synthesis, characterization and evaluation of
effect of phytogenic zinc nanoparticles on soil exo-enzymes.
Appl. Nanosci., 4: 819-827.
http://dx.doi.org/10.1007/s13204-013-0263-4 |
|
7. Wang, Z.L. (2000) Characterization of Nanophase Material.
Wiley-VCH Verlag GmbH, Weinheim. p13-14.
PMCid:PMC1760571 |
|
8. Kaiser, D.L ., Standridge, S., Friedersdorf, L., Geraci, C.
L., Kronz, F., Meador, M. A., ... & Stepp, D. M. (2014). 2014
National Nanotechnology Initiative Strategic Plan.NSTC. (2004)
Available from: http://www.nano.gov/html/res/fy04-pdf/fy04-
main.html. |
|
9. Yadav, A., Prasad, V., Kathe, A.A., Raj, S., Yadav, D.,
Sundaramoorthy, C. and Vigneshwaran, N. (2006) Functional
finishing in cotton fabrics using zinc oxide nanoparticles.
Bull. Mater. Sci., 29(6): 641-645.
http://dx.doi.org/10.1007/s12034-006-0017-y |
|
10. Thulasi, A., Rajendran, D., Jash, S., Selvaraju, S., Lyju
Jose, V., Velusamy, S. and Mathivanan, S. (2013)
Nanobiotechnology in animal nutrition. In: Sampath, K.T.,
Ghosh, J., Bhatta, R., editors. Satish Serial Publishing
House, New Delhi. p499-515. |
|
11. Patil, S.S., Kore, K.B. and Kumar, P. (2012)
Nanotechnology and its applications in veterinary and animal
science. Vet. World, 2: 475-477.
http://dx.doi.org/10.5455/vetworld.2009.475-477 |
|
12. Feng, M., Wang, Z.S., Zhou, A.G. and Ai, D.W. (2009). The
effects of different sizes of nanometer zinc oxide on the
proliferation and cell integrity of mice duodenum-epithelial
cells in primary culture. Pak. J. Nutr., 8(8): 1164-1166.
http://dx.doi.org/10.3923/pjn.2009.1164.1166 |
|
13. Zaboli, K., Aliarabi, H., Bahari, A.A. and
Abbasalipourkabir, R. (2013) Role of dietary nano-zinc oxide
on growth performance and blood levels of mineral: A study on
in Iranian Angora (Markhoz) goat kids. Int Advis. Board, 2(1):
19-26. |
|
14. Reddy, S.T., van der Vlies, A.J., Simeoni, E., Angeli, V.,
Randolph, G.J., O'Neil, C.P., Lee, L.K., Swartz, M.A. and
Hubbell, J.A. (2007) Exploiting lymphatic transport and
complement activation in nanoparticle vaccines. Natr
Biotechnol., 25: 1159-1164.
http://dx.doi.org/10.1038/nbt1332
PMid:17873867 |
|
15. Hillyer, J.F. and Albrecht, R.M. (2001) Gastrointestinal
persorption and tissue distribution of differently sized
colloidal gold nanoparticles. J. Pharm. Sci., 90: 1927-1936.
http://dx.doi.org/10.1002/jps.1143
PMid:11745751 |
|
16. Dickson, R.M. and Lyon, L.A. (2000) Unidirectional plasmon
propagation in metallic nanowires. J. Phys. Chem. B., 104:
6095-6098.
http://dx.doi.org/10.1021/jp001435b |
|
17. Lewis, K. and Klibanov, A.M. (2005) Surpassing nature:
Rational design of sterile-surface materials. Trends
Biotechnol., 23: 343-348.
http://dx.doi.org/10.1016/j.tibtech.2005.05.004
PMid:15922467 |
|
18. Rosi, N.L. and Mirkin, C.A. (2005) Nanostructures in
biodiagnostics. Chem. Rev., 105(4): 1547-1562.
http://dx.doi.org/10.1021/cr030067f
PMid:15826019 |
|
19. Yang, Z.P. and Sun, L.P. (2006) Effects of nanometre ZnO
on growth performance of early weaned piglets. J. Shanxi
Agric. Sci., 3: 024. |
|
20. Mishra, A., Swain, R.K., Mishra, S.K., Panda, N. and
Sethy, K. (2014) Growth performance and serum biochemical
parameters as affected by nano zinc supplementation in layer
chicks. Indian J. Anim. Nutr., 31(4): 384-388. |
|
21. Lina, T., Jianyang, J., Fenghua, Z., Huiying, R. and
Wenli, L. (2009) Effect of nano-zinc oxide on the production
and dressing performance of broiler. Chinese Agricultural
Science Bulletin, 2: 003. |
|
22. Rajendran, D. (2013) Application of nano minerals in
animal production system. Res. J. Biotechnol., 8(3): 1-3. |
|
23. Sahoo, A., Swain, R.K., Mishra, S.K. and Jena, B. (2014a)
Serum biochemical indices of broiler birds fed on inorganic,
organic and nano zinc supplemented diets. Int. J. Recent Sci.
Res., 5(11): 2078-2081. |
|
24. Sahoo, A., Swain, R.K. and Mishra, S.K. (2014b) Effect of
inorganic, organic and nano zinc supplemented diets on
bioavailability and immunity status of broilers. Int. J. Adv.
Res., 2(11): 828-837. |
|
25. Zhisheng, C.J. (2011), Effect of nano-zinc oxide
supplementation on rumen fermentation in vitro. Chinese J.
Anim. Nutr., 8: 023. |
|
26. Hahn, H. (1997) Unique features and properties of
nanostructured materials. Nanostruct. Mater., 9: 3-12.
http://dx.doi.org/10.1016/S0965-9773(97)00013-5 |
|
27. Ingale, A.G. and Chaudhari, A.N. (2013) Biogenic synthesis
of nanoparticles and potential applications: An eco-friendly
approach. J. Nanomed. Nanotechol., 4: 165.
http://dx.doi.org/10.4172/2157-7439.1000165 |
|
28. Iravani, S., Korbekandi, H., Mirmohammadi, S.V. and
Zolfaghari, B. (2014) Synthesis of silver nanoparticles:
Chemical, physical and biological methods. Res. Pharm. Sci.,
9(6): 385-406. |
|
29. Rajendran, D., Thulasi, A., Jash, S., Selvaraju, S. and
Rao, S.B.N. (2013) Synthesis and application of nano minerals
in livestock industry. In: Sampath, K.T., Ghosh, J., Bhatta,
R., editors. Animal Nutrition and Reproductive Physiology
(Recent Concepts). Satish Serial Publishing House, Delhi,
p517-530. |
|
30. Cardenas, G., Meléndrez, M., Cruzat, C. and Díaz, J.
(2007) Synthesis of tin nanoparticles by physical vapour
deposition technique (vd). Acta Microsci., 1: 1-2. |
|
31. Koch, C.C. (1997) Synthesis of nanostructured materials by
mechanical milling: Problems and opportunities. Nanostruct.
Mater., 9: 13-22.
http://dx.doi.org/10.1016/S0965-9773(97)00014-7 |
|
32. Siegel, R.W. (1991) In: Cahn, R.W., Haasen, P., Kramer,
E.S., editors. Materials Science and Technology. VCH Weinheim,
New York. p583. |
|
33. Bakker, H., Zhou, G.F. and Yang, H. (1995) Mechanically
driven disorder and phase transformations in alloys. Prog.
Mater. Sci., 39: 159-241.
http://dx.doi.org/10.1016/0079-6425(95)00001-1 |
|
34. Lane, R., Craig, B. and Babcock, W. (2002) Materials
engineering with nature's building blocks. AMPTIAC Newslett.
Spring., 6: 31-37. |
|
35. Oremland, R.S., Herbal, M.J., Blum, J.S., Langely, S.,
Beveridge, T.J., Jayan, P.M., Sutto, T. and Ellis, A.V. (2004)
Structural and spectral features of selenium nanospheres
produced by Se-respiring bacteria. Appl. Environ. Microbiol.,
70: 52-60.
http://dx.doi.org/10.1128/AEM.70.1.52-60.2004
PMid:14711625 PMCid:PMC321302 |
|
36. Szczepanowicz, K., Stefan'ska, J. and Socha, R.P. (2010)
Preparation of silver nanoparticles via chemical reduction and
their antimicrobial activity. Physicochem. Probl. Mi., 45:
85-98. |
|
37. Zhou, Y. (2005) Recent advances in ionic liquids for
synthesis of inorganic nano-materials. Curr. Nanosci., 1:
35-42.
http://dx.doi.org/10.2174/1573413052953174 |
|
38. Yang, J., Deivaraj, T.C., Too, H.P. and Lee, J.Y. (2004)
Acetate stabilization of metal nanoparticles and its role in
the preparation of metal nanoparticles in ethylene glycol.
Langmuir, 20: 4241-4245.
http://dx.doi.org/10.1021/la0361159
PMid:15969423 |
|
39. Marye, J. and Inbathamizh, L. (2012) Green synthesis and
characterization of nano silver using leaf extract of morinda
pubescens. Asian J. Pharm. Clin. Res., 5(1): 159-162. |
|
40. Narayanan, K.B. and Sakthive, N. (2010) Photosynthesis of
gold nanoparticles using leaf extract of Coleus amboinicus
Lour. Mater. Charact., 61: 1232-1238.
http://dx.doi.org/10.1016/j.matchar.2010.08.003 |
|
41. Kaushik, N., Thakkar, M.S., Snehit, S., Mhatre, M.S.,
Rasesh, Y. and Parikh, M.S. (2010) Biological synthesis of
metallic nanoparticles. Nanomed. Nanotechnol., 6: 257-262.
http://dx.doi.org/10.1016/j.nano.2009.07.002
PMid:19616126 |
|
42. Sharma, N.C., Sahi, S.V., Nath, S., Parsons, J.G.,
Gardea-Torresdey, J.L. and Pal, T. (2007) Synthesis of plant
mediated gold nanoparticles and catalytic role of bio matrix-
embedded nanomaterials. Environ. Sci. Technol., 41: 5137-5142.
http://dx.doi.org/10.1021/es062929a
PMid:17711235 PMCid:PMC2518977 |
|
43. Philip, D. (2010) Green synthesis of gold and silver
nanoparticles using Hibiscus rosa sinensis. Phys. E.:
(Low-dimensional Systems and Nanostructures), 42: 1417-1424.
http://dx.doi.org/10.1016/j.physe.2009.11.081 |
|
44. Philip, D. (2011) Mangifera indica leaf-assisted
biosynthesis of well-dispersed silver nanoparticles.
Spectrochim. Acta A. Mol. Biomol. Spectroschim., 78: 327-331.
http://dx.doi.org/10.1016/j.saa.2010.10.015
PMid:21030295 |
|
45. Shankar, S.S., Ahmad, A., Rai, A. and Sastry, M. (2004)
Rapid synthesis of Au Ag and bimetallic Au core-Ag shell
nanoparticles by using neem (Azadirachta indica) leaf broth.
J. Colloid Interface Sci., 275: 496-502.
http://dx.doi.org/10.1016/j.jcis.2004.03.003
PMid:15178278 |
|