Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
R esearch
(Published online:
23-07-2015)
15.
Detection and sequence analysis of accessory
gene regulator genes of Staphylococcus pseudintermedius
isolates -
M. Ananda Chitra, C.
Jayanthy and B. Nagarajan
Veterinary World, 8(7): 902-907
doi:
10.14202/vetworld.2015.902-907
M.
Ananda Chitra:
Department of Veterinary Microbiology, Madras Veterinary College,
Tamil Nadu Veterinary and Animal Sciences
University, Chennai - 600 007, Tamil Nadu, India; m.anandachitra@tanuvas.org.in
C.
Jayanthy:
Department of Veterinary Clinical Medicine, Madras Veterinary
College, Tamil Nadu Veterinary and Animal Sciences University,
Chennai - 600 007, Tamil Nadu, India;
c.jayanthy@tanuvas.org.in
B.
Nagarajan: Department of Veterinary Clinical Medicine, Madras
Veterinary College, Tamil Nadu Veterinary and Animal Sciences
University, Chennai - 600 007, Tamil Nadu, India;
bnvetdr@yahoo.com
Received:
20-02-2015, Revised: 16-06-2015, Accepted: 26-06-2015, Published
online: 23-07-2015
Corresponding author:
M. Ananda Chitra, e-mail: m.anandachitra@tanuvas.org.in
Citation:
Ananda Chitra M,
Jayanthy C, Nagarajan B (2015) Detection and sequence analysis of
accessory gene regulator genes of Staphylococcus
pseudintermedius isolates, Veterinary World 8(7):
902-907.
Abstract
Background: Staphylococcus pseudintermedius (SP) is the
major pathogenic species of dogs involved in a wide variety of
skin and soft tissue infections. The accessory gene regulator (agr)
locus of Staphylococcus aureus has been extensively
studied, and it influences the expression of many virulence genes.
It encodes a two-component signal transduction system that leads
to down-regulation of surface proteins and up-regulation of
secreted proteins during in vitro growth of S. aureus.
The objective of this study was to detect and sequence analyzing
the AgrA, B, and D of SP isolated from canine skin infections.
Materials and Methods: In this study, we have isolated and
identified SP from canine pyoderma and otitis cases by polymerase
chain reaction (PCR) and confirmed by PCR-restriction fragment
length polymorphism. Primers for SP agrA and agrBD
genes were designed using online primer designing software and
BLAST searched for its specificity. Amplification of the agr
genes was carried out for 53 isolates of SP by PCR and
sequencing of agrA, B, and D were carried out for five isolates
and analyzed using DNAstar and Mega5.2 software.
Results: A total of 53 (59%) SP isolates were obtained from 90
samples. 15 isolates (28%) were confirmed to be
methicillinresistant SP (MRSP) with the detection of the mecA
gene. Accessory gene regulator A, B, and D genes were detected
in all the SP isolates. Complete nucleotide sequences of the above
three genes for five isolates were submitted to GenBank, and their
accession numbers are from KJ133557 to KJ133571. AgrA amino acid
sequence analysis showed that it is mainly made of alpha-helices
and is hydrophilic in nature. AgrB is a transmembrane protein, and
AgrD encodes the precursor of the autoinducing peptide (AIP).
Sequencing of the agrD gene revealed that the 5 canine SP
strains tested could be divided into three Agr specificity groups
(RIPTSTGFF, KIPTSTGFF, and RIPISTGFF) based on the putative AIP
produced by each strain. The AIP of SP contains serine and produce
lactone ring structured AIP.
Conclusion: Presence of AgrA, B, and D in all SP isolates
implies the importance of this regulatory system in the virulence
genes expression of the SP bacteria. SP isolates can be typed
based on the AgrD auto-inducible protein sequences as it is being
carried out for typing of S. aureus isolates. However,
further studies are required to elucidate the mechanism of
controlling of virulence genes by agr gene locus in the
pathogenesis of soft tissue infection by SP.
Keywords: accessory gene regulator, dog,
skin infections, Staphylococcus pseudintermedius.
References
1. Devriese, L.A., Vancanneyt, M., Baele, M., Vaneechoutte,
M., De Graef, E., Snauwaert, C., Cleenwerck, I., Dawyndt, P.,
Swings, J., Decostere, A. and Haesebrouck, F. (2005)
Staphylococcus pseudintermedius sp. nov., a coagulase-positive
species from animals. Int. J. Syst. Evol. Microbiol., 55(Pt
4): 1569-1573.
http://dx.doi.org/10.1099/ijs.0.63413-0
PMid:16014483 |
|
2. Novick, R.P., Projan, S.J., Kornblum, J., Ross, H.F., Ji,
G., Kreiswirth, B., Vandenesch, F. and Moghazeh, S. (1995).
The agr P2 operon: An autocatalytic sensory transduction
system in Staphylococcus aureus. Mol. Genet. Genomics.,
248(4): 446-458.
http://dx.doi.org/10.1007/BF02191645 |
|
3. Janzon, L., Lofdahl, S. and Arvidson, S. (1989)
Identification and nucleotide sequence of the delta-lysin
gene, hld, adjacent to the accessory gene regulator (agr) of
Staphylococcus aureus. Mol. Genet. Geneomics., 219(3):
480-485.
http://dx.doi.org/10.1007/BF00259623 |
|
4. Lina, G., Jarraud, S., Ji, G., Greenland, T., Pedraza, A.,
Etienne, J., Novick, R.P. and Vandenesch, F. (1998)
Transmembrane topology and histidine protein kinase activity
of AgrC, the agr signal receptor in Staphylococcus aureus.
Mol. Microbiol., 28(3): 655-662.
http://dx.doi.org/10.1046/j.1365-2958.1998.00830.x |
|
5. Novick, R.P., Ross, H.F., Projan, S.J., Kornblum, J.,
Kreiswirth, B. and Moghazeh, S. (1993) Synthesis of
staphylococcal virulence factors is controlled by a regulatory
RNA molecule. EMBO. J., 12(10): 3967-3975.
PMid:7691599 PMCid:PMC413679 |
|
6. Bannoehr, J., Franco, A., Iurescia, M., Battisti, A. and
Fitzgerald, J.R. (2009) Molecular diagnostic identification of
Staphylococcus pseudintermedius. J. Clin. Microbiol., 47:
469-471.
http://dx.doi.org/10.1128/JCM.01915-08
PMid:19091817 PMCid:PMC2643665 |
|
7. Bannoehr, J., Ben Zakour, N.L., Waller, A.S., Guardabassi,
L., Thoday, K.L., Broek, A.H.M. and Fitzgerald, J.R. (2007)
Population genetic structure of the Staphylococcus intermedius
group: Insights into agr diversification and the emergence of
methicillin-resistant strains. J. Bacteriol., 189: 8685-8692.
http://dx.doi.org/10.1128/jb.01150-07 |
|
8. Sasaki, T., Kikuchi, K., Tanaka, Y., Takahashi, N., Kamata,
S. and Hiramatsu, K. (2007) Methicillin-resistant
Staphylococcus pseudintermedius in a veterinary teaching
hospital. J. Clin. Microbiol., 45: 1118-1125.
http://dx.doi.org/10.1128/JCM.02193-06
PMid:17267624 PMCid:PMC1865850 |
|
9. Zubeir, I.E., Kanbar, J., Alber, C., Lammler, O., Akineden,
R., Weiss, and M. Zschock. 2007. Phenotypic and genotypic
characteristics of methicillin/oxacillin-resistant
Staphylococcus intermedius isolated from clinical specimens
during routine veterinary microbiological examinations. Vet.
Microbiol., 121: 170-176.
http://dx.doi.org/10.1016/j.vetmic.2006.11.014
PMid:17174042 |
|
10. Anonymous. (2009) Reflection Paper on meticillin-resistant
Staphylococcus pseudintermedius. Committee for Medicinal
Products for Veterinary Use (CVMP), European Medicines Agency,
EMA/CVMP/SAGAM/736964/2009. |
|
11. Perreten, V., Kadlec, K., Schwarz, S., Andersson, UG.,
Finn, M., Greko, C., Moodley, A., Kania, S.A., Frank, L.A.,
Bemis, D.A., Franco, A., Iurescia, M., Battisti, A., Duim, B.,
Wagenaar, J.A., Duijkeren, E., Scott Weese. J., Fitzgerald,
R.J., Rossano, A. and Guardabassi, L. (2010) Clonal spread of
methicillin-resistant Staphylococcus pseudintermedius in
Europe and North America: An international multicentre study.
J. Antimicrob. Chemother., 65: 1145-1154.
http://dx.doi.org/10.1093/jac/dkq078 |
|
12. Onuma, K., Tanabe, T. and Sato, H. (2011) Antimicrobial
resistance of Staphylococcus pseudintermedius isolates from
healthy dogs and dogs affected with pyoderma in Japan. Vet.
Dermatol, 23: 17-e5.
http://dx.doi.org/10.1111/j.1365-3164.2011.00995.x
PMid:21745248 |
|
13. Feng, Y., Tian, W., Lin, D., Luo, Q., Zhou, Y., Yang, T.,
Deng, Y., Liu, Y.H. and Liu, J.H. (2012) Prevalence and
characterization of methicillin-resistant Staphylococcus
pseudintermedius in pets from South China. Vet. Microbiol.,
160: 517-524.
http://dx.doi.org/10.1016/j.vetmic.2012.06.015
PMid:22770517 |
|
14. Hariharan, H., Gibson, K., Peterson, R., Frankie, M.,
Matthew, V., Daniels, J., Martin, N.A., Andrews, L., Paterson,
T. and Sharma, R.N. (2014) Staphylococcus pseudintermedius and
Staphylococcus schleiferi subspecies coagulans from drugs.
Vet. Med. Int., 2014: Article ID: 850126. Available from:
http://www.dx.doi.org/10.1155/2014/850126. Accessed on
16.03.2014. 4.19 PM |
|
15. Matanović, K., eMekić, S. and Seol, B. (2012)
Antimicrobial susceptibility of Staphylococcus
pseudintermedius isolated from dogs. Vet. Arch., 82(5):
505-517. |
|
16. Nikolskaya, A.N. and Galperin, M.Y. (2002) A novel type of
conserved DNA-binding domain in the transcriptional regulators
of the AlgR/AgrA/LytR family. Nucleic Acids Res., 30:
2453-2459.
http://dx.doi.org/10.1093/nar/30.11.2453
PMid:12034833 PMCid:PMC117183 |
|
17. Sidote, D.J., Barbieri, C.M., Wu, T. and Stock, A.M.
(2008) Structure of the Staphylococcus aureus AgrA LytTR
domain bound to DNA reveals a beta fold with an unusual mode
of binding. Structure, 16: 72-35.
http://dx.doi.org/10.1016/j.str.2008.02.011
PMid:18462677 PMCid:PMC2430735 |
|
18. Traber, K. and Novick, R. (2006) A slipped-mispairing
mutation in AgrA of laboratory strains and clinical isolates
results in delayed activation of agr and failure to translate
delta - and alpha-haemolysins. Mol. Microbiol., 59: 1519-1530.
http://dx.doi.org/10.1111/j.1365-2958.2006.04986.x
PMid:16468992 |
|
19. Ji, G., Beavis, R.C., Novick, R.P. (1995) Cell density
control of staphylococcal virulence mediated by an octapeptide
pheromone. Proc. Natl. Acade. Sci. U S A., 92(26),
12055-12059.
http://dx.doi.org/10.1073/pnas.92.26.12055 |
|
20. Zhang, L., Gray, L., Novick, R.P. and Ji, G. (2002)
Transmembrane topology of AgrB, the protein involved in the
post-translational modification of AgrD in Staphylococcus
aureus. J. Biol. Chem., 277(38): 34736-34742.
http://dx.doi.org/10.1074/jbc.M205367200
PMid:12122003 |
|
21. Qiu, R., Pei, W., Zhang, L., Lin, J. and Ji, G. (2005)
Identification of the putative staphylococcal AgrB catalytic
residues involving the proteolytic cleavage of AgrD to
generate autoinducing peptide. J. Biol. Chem., 280(17):
16695-16704.
http://dx.doi.org/10.1074/jbc.M411372200
PMid:15734745 |
|
22. Mayville, P., Ji, G., Beavis, R., Yang, H., Goger, M.,
Novick, R.P. and Muir, T. (1999) Structure-activity analysis
of synthetic autoinducing thiolactone peptides from
Staphylococcus aureus responsible for virulence. Proc. Natl.
Acade. Sci. USA., 96: 1218-1223.
http://dx.doi.org/10.1073/pnas.96.4.1218
PMid:9990004 PMCid:PMC15443 |
|
23. Sung, J.M.L., Chantler, P.D. and Lloyd, D.H. (2006)
Accessory gene regulator locus of Staphylococcus intermedius.
Infect. Immun., 74(5): 2947-2956.
http://dx.doi.org/10.1128/IAI.74.5.2947-2956.2006
PMid:16622233 PMCid:PMC1459752 |
|
24. Ji, G., Beavis, R. and Novick, R.P. (1997) Bacterial
interference caused by autoinducing peptide variants. Science,
276: 2027-2030.
http://dx.doi.org/10.1126/science.276.5321.2027
PMid:9197262 |
|
25. Novick, R.P. (2003) Autoinduction and signal transduction
in the regulation of Staphylococcal virulence. Mol.
Microbiol., 48: 1429-1449.
http://dx.doi.org/10.1046/j.1365-2958.2003.03526.x
PMid:12791129 |
|
26. Peerayeh, S.N., Azimian, A., Nejad, Q.B. and Kashi, M.
(2009) Prevalence of agr Specificity Groups Among
Staphylococcus aureus Isolates from University Hospitals in
Tehran. Labmedicine, 40(1): 27-29.
http://dx.doi.org/10.1309/lmgb9gb82wkdanwf |
|