Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
R esearch
(Published online:
07-07-2015)
2.
Modeling of spatial distribution for
scorpions of medical importance in the São Paulo State, Brazil
- José Brites-Neto and Keila Maria Roncato Duarte
Veterinary World, 8(7): 823-830
doi:
10.14202/vetworld.2015.823-830
José
Brites-Neto:
Epidemiological Surveillance Department, Secretariat of Health,
Americana, São Paulo, Brazil;
samevet@yahoo.com
Keila
Maria Roncato Duarte: Department of Genetics and Animal
Reproduction, Institute of Animal Science, Nova Odessa, São Paulo,
Brazil;
keiladuarte@globo.com
Received:
12-03-2015, Revised: 01-06-2015, Accepted: 10-06-2015, Published
online: 07-07-2015
Corresponding author:
José Brites-Neto, e-mail: samevet@yahoo.com.br
Citation:
Brites-Neto J, Duarte
KMR (2015) Modeling of spatial distribution for scorpions of
medical importance in the São Paulo State, Brazil, Veterinary
World 8(7): 823-830.
Abstract
Aim:
In this work, we aimed to develop maps of modeling geographic
distribution correlating to environmental suitability for the two
species of scorpions of medical importance at São Paulo State and
to develop spatial configuration parameters for epidemiological
surveillance of these species of venomous animals.
Materials and Methods: In this study, 54 georeferenced points
for Tityus serrulatus and 86 points for Tityus bahiensis
and eight environmental indicators, were used to generate
species distribution models in Maxent (maximum entropy modeling of
species geographic distributions) version 3.3.3k using 70% of data
for training (n=38 to T. serrulatus and n=60 to T.
bahiensis) and 30% to test the models (n=16 for T.
serrulatus and n=26 for T. bahiensis). The
logistic threshold used to cut models in converting the continuous
probability model into a binary model was the “maximum test
sensitivity plus specificity,” provided by Maxent, with results of
0.4143 to T. serrulatus and of 0.3401 to T.
bahiensis. The models were evaluated by the area under the
curve (AUC), using the omission error and the binomial
probability. With the data generated by Maxent, distribution maps
were produced using the “ESRI ® ArcGIS 10.2.2
for Desktop” software.
Results: The models had high predictive success (AUC=0.7698±0.0533,
omission error=0.2467 and p<0.001 for T. serrulatus
and AUC=0.8205±0.0390, omission error=0.1917 and p<0.001 for T.
bahiensis) and the resultant maps showed a high
environmental suitability in the north, central, and southeast of
the state, confirming the increasing spread of these species. The
environmental variables that mostly contributed to the scorpions
species distribution model were rain precipitation (28.9%) and
tree cover (28.2%) for the T. serrulatus and
temperature (45.8%) and thermal amplitude (12.6%) for the T.
bahiensis.
Conclusion: The distribution model of these species of medical
importance scorpions in São Paulo State revealed a higher
environmental suitability of these species in the regions north,
central, and southeast of the state, warning to emergencies
actions for prevention and surveillance from scorpion stings in
several counties. There is also a need to best conservation
strategies related to neighboring territories, with the
implementation of new environmental protected areas and measures
of spread control of these species in urban areas of several
counties.
Keywords: binomial probability,
environmental variable, georeferencing, maxent, Tityus
bahiensis, Tityus serrulatus.
References
1. Lourenço, W.R. (2014) Scorpion diversity and distribution:
Past and present patterns. In: Gopalakrishnakone, P.,
Schwartz, E.F., Possani, L.D., Rodríguez de la Vega, R.C.,
editors. Scorpion Venoms. Toxinology. Springer
Science+Business Media, Dordrecht. p1-20.
doi:10.1007/978-94-007-6647-1.
http://dx.doi.org/10.1007/978-94-007-6647-1 |
|
2. Porto, T.J., Brazil, T.K. and Souza, C.A.R. (2010)
Diversidade de escorpiões do Brasil. In: Brazil, T.K. and
Porto, T.J., editors. Os Escorpiões. EDUFBA, Salvador. p47-63. |
|
3. Scholte, R.G.C., Caldeira, R.L., Simões, M.C.M., Stutz, W.H.,
Silva, L.L., Carvalho, O.S. and Oliveira, G. (2009) Inter –
and intrapopulational genetic variability of Tityus serrulatus
(Scorpiones, Buthidae). Acta Trop., 112: 97-100.
http://dx.doi.org/10.1016/j.actatropica.2009.07.002
PMid:19595660 |
|
4. Goyffon, M. and Tournier, J.N. (2014) Scorpions: A
presentation. Toxins, 6: 2137-2148.
http://dx.doi.org/10.3390/toxins6072137
PMid:25133517 PMCid:PMC4113747 |
|
5. Lourenço, W.R. and Von Eickstedt, V.R.D. (2009) Scorpions
of medical importance. In: Cardoso, J.L.C., França, F.O.S.,
Wen, F.H., Málaque, C.M.S., Haddad, Jr., V. Poisonous Animals
in Brazil. Biology, Clinical and therapeutics of accidents.
Sarvier, São Paulo. p198-213 . |
|
6. Wentz, E.A., Anderson, S., Fragkias, M., Netzband, M.,
Mesev, V., Myint, S.W., Quattrochi, D., Rahman, A. and Seto,
K.C. (2014) Supporting global environmental change research: A
review of trends and knowledge gaps in Urban remote sensing.
Remote Sens., 6: 3879-3905.
http://dx.doi.org/10.3390/rs6053879 |
|
7. Stockmann, R. and Ythier, E. (2010) Scorpions of the World.
NAP editions, Paris. |
|
8. Rosa, C.M., Abegg, A.D., Borges, L.M., Bitencourt, G.S.S.
and Di Mare, R.A. (2015) New record and occurrence map of
Tityus serrulatus Lutz & Mello, 1922 (Scorpiones, Buthidae) in
the state of rio grande do sul, southern Brazil. Check List,
11(1): 1556. doi: http://dx.doi.org/10.15560/11.1.1556.
http://dx.doi.org/10.15560/11.1.1556 |
|
9. Chippaux, J.P. (2012) Emerging options for the management
of scorpion stings. Drug. Des. Dev. Ther., 6: 165-173.
http://dx.doi.org/10.2147/DDDT.S24754
PMid:22826633 PMCid:PMC3401053 |
|
10. Porto, T.J. and Brazil, T.K. (2010) Quem são os
Escorpiões? In: Brazil, T.K. and Porto, T.J. Os Escorpiões.
EDUFBA, Salvador. p15-32. |
|
11. Lourenço, W.R. and Cloudsley-Thompson, J.L. (1999)
Discovery of a sexual population of Tityus serrulatus, one of
the morphs within the complex Tityus stigmurus (Scorpiones,
Buthidae). J. Arachnol., 27: 154-158. |
|
12. Pardal, P.P.O., Ishikawa, E.A.Y., Vieira, J.L.F., Coelho,
J.S., Dórea, R.C.C., Abati, P.A.M., Quiroga, M.M.M. and
Chalkidis, H.M. (2014) Clinical aspects of envenomation caused
by Tityus obscurus (Gervais, 1843) in two distinct regions of
Pará state, Brazilian Amazon basin: A prospective case series.
J. Venom. Anim. Toxins Incl. Trop. Dis., 20: 3.
doi:10.1186/1678-9199-20-3.
http://dx.doi.org/10.1186/1678-9199-20-3 |
|
13. Reckziegel, G.C. and Pinto Jr, V.L. (2014) Scorpionism in
Brazil in the years 2000 to 2012. J. Venom. Anim. Toxins Incl.
Trop. Dis., 20: 46. doi:10.1186/1678-9199-20-46.
http://dx.doi.org/10.1186/1678-9199-20-46 |
|
14. Brazil, Secretariat of Health Surveillance, Department of
Epidemiological Surveillance (2009) Control manual of
scorpions. Ministry of Health, Brasília.. |
|
15. Lucas, S.M., Goldoni, P.A.M., Candido, D.M. and Knysak, I.
(2010) Butantan institute: strategies to obtain scorpions for
the production of anti-scorpion serum. J. Venom. Anim. Toxins
Incl. Trop. Dis., 16(4): 530-533.
http://dx.doi.org/10.1590/S1678-91992010000400002 |
|
16. Eickstedt, V.R.D., von Ribeiro, L.A., Candido, D.M.,
Albuquerque, M.J. and Jorge, M.T. (1996) Evolution of
scorpionism by Tityus bahiensis (Perty) and Tityus serrulatus
lutz and mello and geographical distribution of the two
species in the state of São Paulo - Brazil. J. Venom. Anim.
Toxins, 2(2). doi:10.1590/S0104-79301996000200003.
http://dx.doi.org/10.1590/S0104-79301996000200003 |
|
17. Szilagyi-Zecchin, V.J., Fernandes, A.L., Castagna, C.L.
and Voltolini, J.C. (2012) Abundance of scorpions Tityus
serrulatus and Tityus bahiensis associated with climate in
urban area (Scorpiones, Buthidae). Indian Journal of
Arachnology, 1(2): 15-23. |
|
18. Hoshino, K., Moura, A.T.V. and De Paula, H.M.G. (2006)
Selection of enviromental temperature by the yellow scorpion
Tityus serrulatus Lutz and Mello, 1992 (Scorpiones, Buthidae).
J. Venom. Toxins Incl. Trop. Dis., 12: 59-66.
http://dx.doi.org/10.1590/S1678-91992006000100005 |
|
19. Cloudsley-Thompson, J.L. (1975) Adaptations of arthropoda
to arid environments. Annu. Rev. Entomol., 20: 261-283.
http://dx.doi.org/10.1146/annurev.en.20.010175.001401
PMid:1090239 |
|
20. Gefen, E. and Ar, A. (2006) Temperature dependence of
water loss rates in scorpions and its effect on the
distribuition of Buthotus judaicus (Buthidae) in Israel. Comp.
Biochem. Physiol., 144: 58-62.
http://dx.doi.org/10.1016/j.cbpa.2006.02.002
PMid:16600648 |
|
21. Chowell, G., Hyman, J.M., Díaz-Due-as, P. and Hengartner,
N.W. (2005) Predicting scorpion sting incidence in a endemic
region using climatological variables. Int. J. Environ. Health
Res., 15: 425-435.
http://dx.doi.org/10.1080/09603120500392475
PMid:16506436 |
|
22. Ferraz, K.M.P., Beisiegel, B.M., Paula, R.C., Sana, D.A.,
Campos, C.B., Oliveira, T.G. and Desbiez, A.L.J. (2012) How
species distribution models can improve cat conservation -
Jaguars in Brazil. Cat. News, 7: 38-42. |
|
23. Patel, A. and Waters, N. (2012) Using geographic
information systems for health research. In: Alam, B.M.,
editor. Application of Geographic Information Systems. InTech,
Rijeka. p303-320. dx.doi.org/10.5772/47941.
http://dx.doi.org/10.5772/47941 |
|
24. Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006)
Maximum entropy modeling of species geographic distributions.
Ecol. Model., 190: 231-259.
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026 |
|
25. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M.,
Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F.,
Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle,
B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y.,
Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K.,
Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams,
S., Wisz, M.S. and Zimmermann, N.E. (2006) Novel methods
improve prediction of species' distributions from occurrence
data. Ecography, 29: 129-151.
http://dx.doi.org/10.1111/j.2006.0906-7590.04596.x |
|
26. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee,
Y.E. and Yates, C.J. (2011) A statistical explanation of Max
Ent for ecologists. Divers. Distrib., 17(1): 43-57.
doi:10.1111/j.1472-4642.2010.00725.x.
http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x |
|
27. Mateo, R.G., Croat, T.B., Felicísimo, A.M. and Mu-oz, J.
(2010) Profile or group discriminative techniques? Generating
reliable species distribution models using pseudo-absences and
target-group absences from natural history collections.
Divers. Distrib., 16(1): 84-94.
doi:10.1111/j.1472-4642.2009.00617.x.
http://dx.doi.org/10.1111/j.1472-4642.2009.00617.x |
|
28. Miller, A.L., Makowsky, R.A., Formanowicz, D.R., Prendini,
L. and Cox, C.L. (2014) Cryptic genetic diversity and complex
phylogeography of the boreal North American scorpion,
Paruroctonus boreus (Vaejovidae). Mol. Phylogenet. Evol., 71:
298-307.
http://dx.doi.org/10.1016/j.ympev.2013.11.005
PMid:24269314 |
|
29. Rogers, D.P., Shapiro, M.A., Brunet, G., Cohen, J.C.,
Connor, S.J., Diallo, A.A., Elliott, W., Haidong, K., Hales,
S., Hemming, D., Jeanne, I., Lafaye, M., Mumba, Z., Raholijao,
N., Rakotomanana, F., Teka, H., Trtanj, J. and Whung, P.Y.
(2010) Health and climate – Opportunities. Proc. Environ.
Sci., 1: 37-54.
http://dx.doi.org/10.1016/j.proenv.2010.09.005 |
|
30. Phillips, S.J. and Dudik, M. (2008) Modeling of species
distributions with Maxent: New extensions and a comprehensive
evaluation. Ecography, 31: 161-175.
http://dx.doi.org/10.1111/j.0906-7590.2008.5203.x |
|
31. Pearson, R.G. (2010) Species' distribution modeling for
conservation educators and practitioners. Synthesis. Lessons
Conserv., 3: 54-89. |
|
32. Veloz, S.D. (2009) Spatially autocorrelated sampling
falsely inflates measures of accuracy for presence-only niche
models. J. Biogeogr., 36: 2290-2299.
http://dx.doi.org/10.1111/j.1365-2699.2009.02174.x |
|
33. Lira, A.F.A. and Souza, A.M. (2014) Microhabitat use by
scorpion species (Arachnida: Scorpiones) in the montane
Atlantic Rain Forest, Brazil. Rev. Iber. Aracnol., 24:
107-108. |
|
34. Silva, A.V.M., Magalhaes, M.A.F., Brazil, R.P. and
Carreira, J.C.A. (2011) Ecological study and risk mapping of
leishmaniasis in an endemic area of Brazil based on a
geographical information systems approach. Geospat. Health,
6(1): 33-40.
http://dx.doi.org/10.4081/gh.2011.155
PMid:22109861 |
|
35. Kshirsagar, D.P., Savalia, C.V., Kalyani, I.H., Kumar, R.
and Nayak, D.N. (2013) Disease alerts and forecasting of
zoonotic diseases: An overview. Vet. World, 6(11): 889-896.
http://dx.doi.org/10.14202/vetworld.2013.889-896 |
|
36. Aparicio, C. and Bitencourt, M.D. (2004) Modelagem
espacial de zonas de risco da leishmaniose tegumentar
americana. Rev. Saúde Públ., 38(4): 511-516.
http://dx.doi.org/10.1590/s0034-89102004000400005 |
|
37. Kalluri, S., Gilruth, P., Rogers, D. and Szczur, M. (2007)
Surveillance of arthropod vector-borne infectious diseases
using remote sensing techniques: A review. PLoS Pathog.,
3(10): e116. doi:10.1371/journal.ppat.0030116.
http://dx.doi.org/10.1371/journal.ppat.0030116 |
|
38. Carreira, J.C.A., Magalhães, M.A.F. and Silva, A.V.M.
(2014) The geospatial approach on eco-epidemiological studies
of leishmaniasis. In: Claborn, D. Leishmaniasis – Trends in
Epidemiology, Diagnosis and Treatment. InTech, Rijeka.
p125-145. dx.doi.org/10.5772/57210.
http://dx.doi.org/10.5772/57210 |
|
39. Porto, T.J., Carnaval, A.C. and Rocha, P.L.B. (2013)
Evaluating forest refugial models using species distribution
models, model filling and inclusion: A case study with 14
Brazilian species. Divers. Distrib., 19: 330-340.
http://dx.doi.org/10.1111/j.1472-4642.2012.00944.x |
|
40. Lourenço, W.R. (2002) Scorpions of Brazil. Les Editions de
l'IF, Paris.
PMCid:PMC339563 |
|
41. Souza, C.A.R., Candido, D.M., Lucas, S.M. and Brescovit,
A.D. (2009) On the Tityus stigmurus complex (Scorpiones,
Buthidae). Zootaxa, 1987: 1-38. |
|
42. Almeida, R.B. (2010) Atlas das espécies de Tityus C.L.
Koch, 1836 (Scorpiones, Buthidae) do Brasil. Master's Thesis
in Biological Sciences. Submitted to Universidade de São
Paulo, São Paulo, Brazil. |
|