Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
R esearch
(Published online:
24-06-2015)
15.
Partial characterization of a novel anti-inflammatory protein from
salivary gland extract of Hyalomma anatolicum anatolicum
(Acari: Ixodidae) ticks -
Mayukh Ghosh, Nirmal
Sangwan and Arun K. Sangwan
Veterinary World, 8(6): 772-776
doi:
10.14202/vetworld.2015.772-776
Mayukh Ghosh:
Department of Veterinary Physiology and Biochemistry, College of
Veterinary Sciences, Lala Lajpat Rai University of
Veterinary and Animal Sciences, Hisar, Haryana, India;
ghosh.mayukh87@gmail.com
Nirmal Sangwan:
Department of Veterinary Physiology and Biochemistry, College of
Veterinary Sciences, Lala Lajpat Rai University of
Veterinary and Animal Sciences, Hisar, Haryana, India;
nirmalsangwan@gmail.com
Arun
K. Sangwan: Department of Veterinary Parasitology, College of
Veterinary Sciences, Lala Lajpat Rai University of Veterinary and
Animal Sciences, Hisar, Haryana, India;
sangwan_arun@hotmail.com
Received: 22-01-2015, Revised: 16-05-2015, Accepted: 23-05-2015,
Published online: 24-06-2015
Corresponding author:
Nirmal Sangwan, e-mail: nirmalsangwan@gmail.com
Citation:
Ghosh M, Sangwan N,
Sangwan AK (2015) Partial characterization of a novel
anti-inflammatory protein from salivary gland extract of
Hyalomma anatolicum anatolicum (Acari: Ixodidae) ticks,
Veterinary World 8(6):772-776.
Abstract
Aim:
Hyalomma anatolicum anatolicum ticks transmit
Theileria annulata, causative agent of tropical theileriosis
to cattle and buffaloes causing a major economic loss in terms of
production and mortality in tropical countries. Ticks have evolved
several immune evading strategies to circumvent hosts’ rejection
and achieve engorgement. Successful feeding of ticks relies on a
pharmacy of chemicals located in their complex salivary glands and
secreted saliva. These chemicals in saliva could inhibit host
inflammatory responses through modulating cytokine secretion and
detoxifying reactive oxygen species. Therefore, the present study
was aimed to characterize anti-inflammatory peptides from salivary
gland extract (SGE) of H. a. anatolicum ticks with a view
that this information could be utilized in raising vaccines,
designing synthetic peptides or peptidomimetics which can further
be developed as novel therapeutics.
Materials and Methods: Salivary glands were dissected out from
partially fed adult female H. a. anatolicum ticks and
homogenized under the ice to prepare SGE. Gel filtration
chromatography was performed using Sephadex G-50 column to
fractionate the crude extract. Protein was estimated in each
fraction and analyzed for identification of anti-inflammatory
activity. Sodium dodecyl sulfate - polyacrylamide gel
electrophoresis (SDS-PAGE) was run for further characterization of
protein in desired fractions.
Results: A novel 28 kDa protein was identified in H. a.
anatolicum SGE with pronounced anti-inflammatory activity.
Conclusion: Purification and partial
characterization of H. a. anatolicum SGE by size-exclusion
chromatography and SDSPAGE depicted a 28 kDa protein with
prominent anti-inflammatory activity.
Keywords: anti-inflammatory, Hyalomma anatolicum anatolicum,
size-exclusion chromatography, sodium dodecyl sulfate -
polyacrylamide gel electrophoresis, tropical theileriosis.
References
1. Brown, C.G.D. (1997) Dynamics and impact of tick borne
diseases of cattle. Trop. Anim. Health Prod., 29 Suppl 4: 1-3.
http://dx.doi.org/10.1007/BF02632905 |
|
2. Preston, P.M. (2001) The Encyclopedia of Arthropod
Transmitted infections. 1st ed. CABI Publishing, Wallingford
(UK). p487-504. |
|
3. ICAR Vision 2030. (2011) Project Director, Directorate of
Knowledge Management in Agriculture. Indian Council of
Agricultural Research, Krishi Anusandhan Bhavan, Pusa, New
Delhi. |
|
4. Minjauw, L. and McLeod, A. (2003) Tick borne diseases and
poverty. The impact of tick and tick borne diseases on the
livelihoods of small-scale and marginal livestockowners in
India and eastern and southern Africa. In: Research Report.
DFID Animal Health Programme. UK: Centre for Tropical
Veterinary Medicine, University of Edinburgh. |
|
5. Ribeiro, J.M.C. and Francischetti, I.M.B. (2003) Role of
arthropod saliva in blood feeding: Sialome and post-sialome
perspectives. Annu. Rev. Entomol., 48: 7388.
http://dx.doi.org/10.1146/annurev.ento.48.060402.102812
PMid:12194906 |
|
6. Islam, M.K., Tsuji, N., Miyoshi, T., Alim, M.A., Huang, X.,
Hatta, T. and Fujisaki, K. (2009) The Kunitz-like modulatory
protein haemangin is vital for hard tick blood-feeding
success. PLoS Pathog., 5: e1000497.
http://dx.doi.org/10.1371/journal.ppat.1000497 |
|
7. Fontaine, A., Diouf, I., Bakkali, N., Missé, D., Pagčs, F.,
Fusi, T., Rogier, C. and Almeras, L. (2011) Implication of
haematophagous arthropod salivary proteins in host-vector
interactions. Parasit. Vectors, 4: 187.
http://dx.doi.org/10.1186/1756-3305-4-187
PMid:21951834 PMCid:PMC3197560 |
|
8. Guo, X., Booth, C.J., Paley, M.A., Wng, X., De Ponte, K.,
Fikrig, E., Narasimhan, S. and Montgomery, R.R. (2009)
Inhibition of neutrophil function by two tick salivary
proteins. Infect. Immun., 77: 2320-2329.
http://dx.doi.org/10.1128/IAI.01507-08
PMid:19332533 PMCid:PMC2687334 |
|
9. Randolph, S.E. (2009) Tick-borne disease systems emerge
from the shadows: The beauty lies in molecular detail, the
message in epidemiology. Parasitology, 136: 1403-1413.
http://dx.doi.org/10.1017/S0031182009005782
PMid:19366480 |
|
10. Mori, A., Konnai, S., Yamada, S., Hidano, A., Murase, Y.,
Ito, T., Takano, A., Kawabata, H., Onuma, M. and Ohashi, K.
(2010) Two novel salp15-like immunosuppressant genes from
salivary glands of ixodespersulcatus schulze tick. Insect.
Mol. Biol., 19: 359-365.
http://dx.doi.org/10.1111/j.1365-2583.2010.00994.x
PMid:20201978 |
|
11. Francischetti, I.M.B., Sá-Nunes, A, Mans, B.J, Santos,
I.M. and Ribeiro, J.M.C. (2009) The role of saliva in tick
feeding. Front Biosci., 14: 2051-2088.
http://dx.doi.org/10.2741/3363 |
|
12. Anisuzzaman, M., Islam, M.K., Alim, M.A., Miyoshi, T.,
Hatta, T., Yamaji, K., Matsumoto, Y., Fujisaki, K. and Tsuji,
N. (2011) Longistatin, a plasminogen activator, is key to the
availability of blood-meals for ixodid ticks. PLoS Pathog., 7:
e1001312.
http://dx.doi.org/10.1371/journal.ppat.1001312 |
|
13. Kazimírová, M. and Štibrániová, I (2013) Tick salivary
compounds: their role in modulation of host defences and
pathogen transmission. Front Cell Infect. Microbiol., 3: 43.
http://dx.doi.org/10.3389/fcimb.2013.00043
PMid:23971008 PMCid:PMC3747359 |
|
14. Déruaz, M., Bonvin, P., Severin, I.C., Johnson, Z., Krohn,
S., Power, C.A. and Proudfoot, A.E.I. (2013) Evasin-4, a
tick-derived chemokine-binding protein with broad selectivity
can be modified for use in preclinical disease models. FEBS.
J., 280: 4876-4887.
http://dx.doi.org/10.1111/febs.12463
PMid:23910450 PMCid:PMC4240464 |
|
15. Tirloni, L., Reck, J., Terra, R.M.S., Martins, J.R.,
Mulenga, A., Sherman, N.E., Fox, J.W., Yates, J.R. 3rd.,
Termignoni, C., Pinto, A.F. and Vaz Ida S, Jr. (2014)
Proteomic analysis of cattle tick Rhipicephalus (Boophilus)
microplus saliva: A comparison between partially and fully
engorged females. PLoS One, 9(4): e94831.
http://dx.doi.org/10.1371/journal.pone.0094831 |
|
16. Radulović ŽM, Kim TK, Porter LM, Sze SH, Lewis L, Mulenga
A. (2014) A 24-48 h fed Amblyomma americanum tick saliva
immuno-proteome. BMC Genomics, 15(1): 518.
http://dx.doi.org/10.1186/1471-2164-15-518 |
|
17. Garcia, G.R., Gardinassi, L.G., Ribeiro, J.M.C.,
Anatriello, E., Ferreira, B.R., Moreira, H.N.S., Mafra, C.,
Martins, M.M., Szabó, M.P.J., de Miranda-Santos, I.K.F. and
Maruyama, S.R. (2014) The sialotranscriptome of Amblyomma
triste, Amblyomma parvum and Amblyomma cajennense ticks,
uncovered by 454-based RNA-seq. Parasit Vectors, 7(1): 430.
http://dx.doi.org/10.1186/1756-3305-7-430 |
|
18. Paesen, G.C., Adams, P.L., Harlos, K., Nuttall P.A. and
Stuart, D.I. (1999) Tick histamine-binding proteins:
Isolation, cloning, and three-dimensional structure. Mol.
Cell, 3: 661-671.
http://dx.doi.org/10.1016/s1097-2765(00)80359-7 |
|
19. Leboulle, G., Crippa, M., Decrem, Y., Mejri, N., Brossard
M., Bollen A. and Godfroid, E. (2002) Characterization of a
novel salivary immunosuppressive protein from ixodes ricinus
ticks. J. Biol. Chem., 277: 10083-10089.
http://dx.doi.org/10.1074/jbc.M111391200
PMid:11792703 |
|
20. Kotsyfakis, M., Sa-Nunes, A., Francischetti, I.M.B.,
Mather, T.N., Andersen, J.F. and Ribeiro, J. M.C. (2006)
Antiinflammatory and immunosuppressive activity of sialostatin
L, a salivary cystatin from the tick Ixodes scapularis. J Biol
Chem., 281: 26298-26307.
http://dx.doi.org/10.1074/jbc.M513010200
PMid:16772304 |
|
21. Wu, J., Wang, Y., Liu, H., Yang, H., a, D., Li, J., Li,
D., Lai, R. and Yu, H. (2010) Two immunoregulatory peptides
with antioxidant activity from tick salivary glands. J. Biol.
Chem., 285(22): 1-19.
http://dx.doi.org/10.1074/jbc.m109.094615 |
|
22. Kaufman, R. (2010) Ticks: Physiological aspects with
implications for pathogen transmission. Ticks Tick Borne Dis.,
1: 11-22.
http://dx.doi.org/10.1016/j.ttbdis.2009.12.001
PMid:21771507 |
|
23. Fialová, A., Cimburek, Z., Iezzi, G. and Kopecký, J.
(2010) Ixodes ricinus tick saliva modulates tick-borne
encephalitis virus infection of dendritic cells. Microbes
Infect., 12: 580-585.
http://dx.doi.org/10.1016/j.micinf.2010.03.015
PMid:20381639 |
|
24. Chmelar, J., Oliveira, C.J., Rezacova, P., Francischetti,
I.M.B., Kovarova, Z., Pejler, G., Kopacek, P., Ribeiro,
J.M.C., Mares, M., Kopecky, J. and Kotsyfakis, M. (2011) A
tick salivary protein targets cathepsin G and chymase and
inhibits host inflammation and platelet aggregation. Blood,
117: 736-744.
http://dx.doi.org/10.1182/blood-2010-06-293241
PMid:20940421 PMCid:PMC3031492 |
|
25. Schuijt, T.J., Coumou, J., Narasimhan, S., Dai, J.,
Deponte, K., Wouters, D., Brouwer, M., Oei, A., Roelofs, J.J.,
van Dam, A.P., van der Poll, T., Van't Veer, C., Hovius, J.W.
and Fikrig, E. (2011) A tick mannose-binding lectin inhibitor
interferes with the vertebrate complement cascade to enhance
transmission of the Lyme disease agent. Cell Host Microbes,
10: 136-146.
http://dx.doi.org/10.1016/j.chom.2011.06.010
PMid:21843870 PMCid:PMC3170916 |
|
26. Randolph, S.E. (2011) Transmission of tick-borne pathogens
between co-feeding ticks: Milan labuda's enduring paradigm.
Ticks Tick Borne Dis., 2: 179-182.
http://dx.doi.org/10.1016/j.ttbdis.2011.07.004
PMid:22108009 |
|
27. Radolf, J.D., Caimano, M.J., Stevenson, B. and Hu, L.T.
(2012) Of ticks, mice and men: Understanding the dual-host
lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol.,
10: 87-99.
http://dx.doi.org/10.1038/nrmicro2714 |
|
28. Valdes, J.J. (2014) Antihistamine response: A dynamically
refined function at the host-tick interface. Parasit Vectors,
7(1): 491.
http://dx.doi.org/10.1186/s13071-014-0491-9
PMid:25358914 PMCid:PMC4226919 |
|
29. Ghosh, M., Sangwan, N. and Sangwan, A.K. (2014) Variations
in free radical scavenging activities and antioxidant
responses in salivary glands of Hyalomma anatolicum anatolicum
and Hyalomma dromedarii (Acari: Ixodidae) ticks. Vet. World,
7(10): 876-881.
http://dx.doi.org/10.14202/vetworld.2014.876-881 |
|
30. Oliveira, C.J., Anatriello, E., de Miranda-Santos, I.K.,
Francischetti, I.M., Sá-Nunes, A., Ferreira, B.R. and Ribeiro,
J.M.C. (2013) Proteome of Rhipicephalus sanguineus tick saliva
induced by the secretagogues pilocarpine and dopamine. Ticks
Tick Borne Dis., 4(6): 469-477.
http://dx.doi.org/10.1016/j.ttbdis.2013.05.001
PMid:24029695 PMCid:PMC3917560 |
|
31. Tirloni, L., Seixas, A., Mulenga, A., da Silva, VI Jr.,
Termignoni, C. (2014) A family of serine protease inhibitors
(serpins) in the cattle tick Rhipicephalus (Boophilus)
microplus. Exp. Parasitol., 137: 25-34.
http://dx.doi.org/10.1016/j.exppara.2013.12.001
PMid:24333790 |
|
32. Cotte, V., Sabatier, L., Schnell, G., Carmi-Leroy, A.,
Rousselle, J.C., Arsene-Ploetze, F., Malandrin, L., Sertour,
N., Namane, A., Ferquel, E. and Choumet, V. (2014)
Differential expression of Ixodes ricinus salivary gland
proteins in the presence of the Borrelia burgdorferi sensu
lato complex. J. Proteomics, 96: 29-43.
http://dx.doi.org/10.1016/j.jprot.2013.10.033
PMid:24189444 |
|
33. Lewis, L.A., Radulović, Z.M., Kim, T.K., Porter, L.A. and
Mulenga, A. (2015) Identification of 24h Ixodes scapularis
immunogenic tick saliva proteins. Ticks Tick Borne Dis., 6(3):
424-434.
http://dx.doi.org/10.1016/j.ttbdis.2015.03.012
PMid:25825233 PMCid:PMC4415496 |
|
34. Tan, A.W., Francischetti, I.M., Slovak, M., Kini, R.M. and
Ribeiro, J.M.C. (2015) Sexual differences in the sialomes of
the zebra tick, Rhipicephalus pulchellus. J. Proteomics, 117:
120-144.
http://dx.doi.org/10.1016/j.jprot.2014.12.014
PMid:25576852 |
|
35. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall,
R.J. (1951) Potein measurement with the folin phenol reagent.
J. Biol. Chem., 193: 265-275.
PMid:14907713 |
|
36. Shinde, U.A., Phadke, A.S., Nair, A.M., Mungantiwar, A.A.,
Dikshit, V.J. and Saraf, V.O. (1999) Membrane stabilizing
activity–a possible mechanism of action for the
anti-inflammatory activity of Cedrus deodara wood oil.
Fitoterapia, 70: 251-257.
http://dx.doi.org/10.1016/S0367-326X(99)00030-1 |
|
37. Laemmli, U.K. (1970) Cleavage of structural proteins
during the assembly of the head of bacteriophage T4. Nature,
227: 680-685.
http://dx.doi.org/10.1038/227680a0
PMid:5432063 |
|
38. Morrissey, J.H. (1981) Silver stain for proteins in
polyacrylamide gels: A modified procedure with enhanced
uniform sensitivity. Anal. Biochem., 117: 307-310.
http://dx.doi.org/10.1016/0003-2697(81)90783-1 |
|
39. Vancova, I., Hajnická, V., Slovák, M., Kocáková, P.,
Paesen, G.C. and Nutall, P.A. (2010) Evasin-3-like
anti-chemokine activity in salivary gland extracts of ixodid
ticks during blood-feeding: A new target for tick control.
Parasite Immunol., 32: 460-463.
http://dx.doi.org/10.1111/j.1365-3024.2010.01203.x
PMid:20500677 |
|
40. Kern, A., Collin, E., Barthel, C., Michel, C., Jaulhac, B.
and Boulanger, N. (2011) Tick saliva represses innate immunity
and cutaneous inflammation in a murine model of lyme disease.
Vector Borne Zoonotic Dis., 11: 1343-1350.
http://dx.doi.org/10.1089/vbz.2010.0197
PMid:21612525 |
|
41. Oliveira, C.J., Sa-Nunes, A., Francischetti, I.M.,
Carregaro, V., Anatriello, E., Silva, J.S., Santos, I.K.,
Ribeiro, J.M.C. and Ferreira, B.R. (2011) Deconstructing tick
saliva: Non-protein molecules with potent immunomodulatory
properties. J. Biol. Chem., 286: 10960-10969.
http://dx.doi.org/10.1074/jbc.m110.205047 |
|
42. Chmelar, J., Calvo, E., Pedra, J.H.F., Francischetti,
I.M.B. and Kotsyfakis, M. (2012) Tick salivary secretion as a
source of antihemostatics. J. Proteomics, 75: 3842-3854.
http://dx.doi.org/10.1016/j.jprot.2012.04.026
PMid:22564820 PMCid:PMC3383439 |
|
43. Mudenda, L., Pierlé, S.A., Turse, J.E., Scoles, G.A.,
Purvine, S.O., Nicora, C.D., Clauss, T.R., Ueti, M.W., Brown,
W.C. and Brayton, K.A. (2014) Proteomics informed by
transcriptomics identifies novel secreted proteins in
Dermacentor andersoni saliva. Int J Parasitol., 44(13):
1029-37.
http://dx.doi.org/10.1016/j.ijpara.2014.07.003
PMid:25110293 |
|
44. Páleníková, J., Lieskovská, J., Langhansová, H.,
Kotsyfakis, M., Chmelař, J., Kopecký, J. (2015) Ixodes
ricinsus salivary Serpin IRS-2 Affects Th17 differentiation
via inhibition of the interleukin-6/STAT-3 signaling pathway.
Infect. Immun., 83(5): 1949-56.
http://dx.doi.org/10.1128/IAI.03065-14
PMid:25712932 |
|
45. Porter, L., Radulović, Ž., Kim, T., Braz, G.R., Da Silva
Vazm, I, Jr. and Mulenga, A. (2015) Bioinformatic analyses of
male and female Amblyomma americanum tick expressed serine
protease inhibitors (serpins). Ticks Tick Borne Dis., 6(1):
16-30.
http://dx.doi.org/10.1016/j.ttbdis.2014.08.002
PMid:25238688 |
|