Open Access
Copyright: The authors. This article is an open access
article licensed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0) which permits unrestricted use,
distribution and reproduction in any medium, provided the work is properly
cited.
R esearch
(Published online:
30-09-2015)
20. Replacement
of inorganic zinc with lower levels of organic zinc (zinc
nicotinate) on performance, hematological and serum biochemical
constituents, antioxidants status, and immune responses in rats
- D. Nagalakshmi, K. Sridhar and S. Parashuramulu
Veterinary World, 8(9): 1156-1162
doi:
10.14202/vetworld.2015.1156-1162
D.
Nagalakshmi:
Department of Animal Nutrition, College of Veterinary Science,
Korutla, Karimnagar - 505 326, Telangana, India; dnlakshmi@rediffmail.com
K.
Sridhar:
Department of Animal Nutrition, College of Veterinary Science,
Hyderabad - 500 030, Telangana, India; sri.vety@gmail.com
S.
Parashuramulu: Department of Animal Nutrition, College of
Veterinary Science, Hyderabad - 500 030, Telangana, India;
shanigaramparashuram@gmail.com
Received: 01-04-2015, Revised: 22-08-2015, Accepted: 31-08-2015,
Published online: 30-09-2015
Corresponding author:
D. Nagalakshmi, e-mail: dnlakshmi@rediffmail.com
Citation:
Nagalakshmi D, Sridhar
K, Parashuramulu S (2015) Replacement of inorganic zinc with lower
levels of organic zinc (zinc nicotinate) on performance,
hematological and serum biochemical constituents, antioxidants
status and immune responses in rats, Veterinary World 8(9):1156-1162.
Abstract
Aim:
A study was undertaken to investigate the effect of organic
zinc (zinc nicotinate, Zn-nic) supplementation (6, 9, and 12 ppm)
compared to inorganic zinc (12 ppm) on growth performance,
hematology, serum biochemical constituents oxidative stress, and
immunity in weaned female Sprague–Dawley rats.
Material and Methods: A 48 weaned rats (285.20±1.95 g) were
randomly distributed to 4 dietary treatments with 6 replicates in
each and reared in polypropylene cages for 10 weeks. Basal diet
(BD) was formulated with purified ingredients without zinc (Zn).
Four dietary treatments were prepared by adding 12 ppm Zn from
ZnCO 3 (control) and 6, 9, and 12 ppm Zn from
Zn-nic to the BD. On 42nd day, blood was
collected by retro-orbital puncture for analyzing hematological
constituents, glucose, cholesterol, alkaline phosphatase, total
protein, albumin, and globulin and antioxidant enzyme activities.
At 43rd day, rats were antigenically
challenged with sheep red blood cell (RBC) to assess humoral
immune response and on 70th day
cell-mediated immune response.
Results: Weekly body weight gains, daily feed intake, blood
hematological constituents (white blood cell, RBC, hemoglobin
concentration, packed cell volume, mean corpuscular volume,
lymphocyte, monocyte, and granulocyte concentration) and serum
glucose, total protein levels were comparable among the rats feed
Zn from ZnCO 3 and Zn-nic (6, 9, and 12 ppm).
Serum cholesterol reduced with organic Zn supplementation at
either concentration (6-12 ppm). Serum globulin concentration
reduced (p<0.05) with 6 ppm Zn-nic supplementation compared to
other dietary treatments. Lipid peroxidation lowered (p<0.05)
reduced with 12 ppm organic Zn; thiobarbituric acid reacting
substances and protein carbonyls concentrations in liver reduced
(p<0.05) with 9 and 12 ppm levels of organic Zn supplementation
compared to 12 ppm Zn supplementation from inorganic source. RBC
catalase and glutathione peroxidase enzymes activities were
highest (p<0.05) in rats supplemented with 12 ppm Zn-nic, followed
by 9 ppm. Comparable immune response (humoral and cell-mediated)
was observed between 12 ppm inorganic Zn and 9 ppm organic Zn and
higher (p<0.05) immune response was noticed at 12 ppm Zn-nic
supplementation.
Conclusion: Based on the results, it is
concluded that dietary Zn concentration can be reduced by 50% (6
ppm) as Zn nicotinate without affecting growth performance, hemato-biochemical
constituents, antioxidant status, and immunity. In addition,
replacement of 12 ppm inorganic Zn with 12 ppm organic Zn
significantly improved antioxidant status and immune response.
Keywords: antioxidants status, hematological
and serum biochemical constituents, immune responses, performance,
rats, zinc nicotinate.
References
1. Chasapis, C.T., Loutsidou, A.C., Spiliopoulou, C.A. and
Stefanidou, M.E. (2012) Zinc and human health: An update.
Arch. Toxicol., 86(4): 521-534.
http://dx.doi.org/10.1007/s00204-011-0775-1
PMid:22071549 |
|
2. Gruber, K., Rink, L. (2013) The role of zinc in immunity
and inflammation In: Calder, P.C. and Yaqoob, P. editor. Diet.
Immun. Inflam. 1st edition, Cambridge, U.K. 123-156.
http://dx.doi.org/10.1533/9780857095749.2.123 |
|
3. Oteiza, P.I. (2012) Zinc and the modulation of redox
homeostasis. Free Radic. Biol. Med., 53(9): 1748-1759.
http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.568
PMid:22960578 PMCid:PMC3506432 |
|
4. Świątkiewicz, S., Arczewska-włosek, A. and Jozefiak, D.
(2014) The efficacy of organic minerals in poultry nutrition:
Review and implications of recent studies. World's Poult. Sci.
J., 70(3): 475-486.
http://dx.doi.org/10.1017/S0043933914000531 |
|
5. Moghaddam, H.N. and Jahanian, R. (2009) Immunological
responses of broiler chicks can be modulated by dietary
supplementation of zinc-methionine in place of inorganic zinc
sources. Asian – Aust. J. Anim. Sci., 22(3): 396-403.
http://dx.doi.org/10.5713/ajas.2009.80473 |
|
6. Feng, J., Ma, W.Q., Niu, H.H., Wu, X.M., Wang, Y. and Feng,
J. (2010) Effects of zinc glycine chelate on growth,
hematological, and immunological characteristics in broilers.
Biol. Trace. Elem. Res., 133: 203-211.
http://dx.doi.org/10.1007/s12011-009-8431-9
PMid:19551351 |
|
7. Ao, T., Pierce, J.L., Power, R., Pescatore, A.J., Cantor,
A.H., Dawson, K.A., Ford, M.J. and Paul, M. (2011) Effects of
feeding different concentration and forms of zinc on the
performance and tissue mineral status of broiler chicks. Br.
Poult. Sci., 52: 466-471.
http://dx.doi.org/10.1080/00071668.2011.588198
PMid:21919574 |
|
8. Swiatkiewicz, S., Arczewska-włosek, A. and Jozefiak, D.
(2014) The efficacy of organic minerals in poultry nutrition:
Review and implications of recent studies. World's Poult. Sci.
J., 70(03): 475-486.
http://dx.doi.org/10.1017/S0043933914000531 |
|
9. Reinhold, J.G. (1953) In: Rynner, M., editor. Standard
Methods of Clinical Chemistry C. Academic Press, New York.
p88. |
|
10. Gustafsson, E.J. (1976) Improved specificity of serum
albumin determination and estimation of acute phase of
reactants by use of the bromocresol green. Quinchemisty,
22(5): 616-622. |
|
11. Cooper, G.R. and Mc Daniel, V. (1970) Assay methods. In:
Mc Donald, R.P., editor. Standard Methods for Clinical
Chemistry. John Wiley and Sons, New York. p159-170.
PMid:5427451 |
|
12. Wybenga, D.R., Pileggi, V.J., Dirstine, P.H. and Di
Giorgio, J. (1970) Direct manual determination of serum total
cholesterol with a single stable reagent. Clin. Chem., 16:
980-984.
PMid:4098216 |
|
13. Kind, P.R. and King, E.J. (1954) Estimation of plasma
phosphatase by determination of hydrolyzed phenol with
amino-antipyrine. J. Clin. Pathol., 7: 322-326.
http://dx.doi.org/10.1136/jcp.7.4.322
PMid:13286357 PMCid:PMC1023845 |
|
14. Bergmeyer, H.U. (1983) Catalase. Methods of Enzymatic
Analysis. Verlag Chemie, Weinheim. p165-166. |
|
15. Placer, Z.A., Cushman, L.L. and Johnson, B.C. (1966)
Estimation of product of lipid peroxidation (Malonyl
Dialdehyde) in biochemical systems. Anal. Biochem., 16:
359-364.
http://dx.doi.org/10.1016/0003-2697(66)90167-9 |
|
16. Paglia, D.E. and Valentine, W.N. (1967) Studies on the
quantitative and qualitative characterization of erythrocyte
glutathione peroxidase. J. Lab. Clin. Med., 70(1): 158-169.
PMid:6066618 |
|
17. Carlberg, I. and Mannervik, B. (1985) Glutathione
reductase. Methods Enzymol., 113: 484-490.
http://dx.doi.org/10.1016/S0076-6879(85)13062-4 |
|
18. Cannan, R.K. (1958) Laboratory methods-proposal for a
certified standard for use in hemoglobinometry second and
final report. J. Lab. Clin. Med., 52(3): 471-476.
PMid:13575938 |
|
19. Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall,
R.J. (1951) Protein measurement with the Folin phenol reagent.
J. Boil. Chem., 193(1): 265-275. |
|
20. Balasubramanian, K.A., Manohar, M. and Mathan, V.I. (1988)
An unidentified inhibitor of lipid peroxidation in intestinal
mucosa. Biochim. Biophy. Acta, 962(1): 51-58.
http://dx.doi.org/10.1016/0005-2760(88)90094-X |
|
21. Moron, M.J., Diperre, J.W. and Mannerv, K.B. (1979) Levels
of glutathione, glutathione reductase and glutathiones
transferase activities in rat lungs and liver. Biochim.
Biophys. Acta, 582: 67-71.
http://dx.doi.org/10.1016/0304-4165(79)90289-7 |
|
22. Levine, R.L., Garland, D., Oliver, C.N., Amici, A.,
Climent, I., Lenz, A.G., Ahn, B.W., Shaltiel, S. and Stadtman,
E.R. (1990) Determination of carbonyl content in oxdatively
modified proteins. Methods Enzymol., 186: 464-478.
http://dx.doi.org/10.1016/0076-6879(90)86141-H |
|
23. Liew, F.Y. (1977) Regulation of delayed type
hypersensitivity, T suppressor cells for delayed type
hypersensitivity to sheep erythrocytes in mice. Eur. J.
Immunol., 7: 714-718.
http://dx.doi.org/10.1002/eji.1830071013
PMid:303999 |
|
24. Snedecor, G.W. and Cochran, W.G. (1994) Statistical
Methods. 8th ed. Iowa State University Press, Ames, Iowa, USA. |
|
25. Duncan, D.B. (1955) Multiple range and multiple F tests.
Biometrics, 11(1): 1-42.
http://dx.doi.org/10.2307/3001478 |
|
26. Deshpande, J.D., Joshi, M.M. and Giri, P.A. (2013) Zinc:
The trace element of major importance in human nutrition and
health. Int. J. Med. Sci. Public Health, (1): 1-6.
http://dx.doi.org/10.5455/ijmsph.2013.2.1-6 |
|
27. Rossi, P., Rutz, F., Amciuti, M.A., Rech, J.L. and Zauk,
N.H.F (2007) Influence of graded levels of organic zinc on
growth performance and carcass traits of broilers. J. Appl.
Poult. Res., 16: 219-225.
http://dx.doi.org/10.1093/japr/16.2.219 |
|
28. Wang, Y., Tang, J.W., Ma, W.Q., Feng, J. and Feng, J.
(2010) Dietary zinc glycine chelate on growth performance,
tissue mineral concentration, and serum enzyme activity in
weanling piglets. Biol. Trace Elem. Res., 133: 325-334.
http://dx.doi.org/10.1007/s12011-009-8437-3
PMid:19557314 |
|
29. El Hendy, H.A., Yousef, M.I. and El-Naga, N.I.A. (2001)
Effect of dietary zinc deficiency on hematological and
biochemical parameters and concentrations of zinc, copper, and
iron in growing rats. Toxicology, 167(2): 163-170.
http://dx.doi.org/10.1016/S0300-483X(01)00373-0 |
|
30. Dardenne, M. (2002) Zinc and immune function. Eur. J.
Clin. Nutr., 56: S20-S23.
http://dx.doi.org/10.1038/sj.ejcn.1601479 |
|
31. Someya, Y., Ichinose, T., Nomura, S., Kawashima, Y.U.,
Sugiyama, M., Tachiyashiki, K. and Imaizumi, K. (2007) Effects
of zinc deficiency on the number of white blood cells in rats.
FASEB J., 21: 697.2. |
|
32. Akbari, M.R., Kermanshahi, H., Moghaddam, H.N., Moussavi,
A.R.H. and Afshari, J.T. (2008) Effects of wheat-soybean meal
based diet supplementation with vitamin A, vitamin E and zinc
on blood cells, organ weights and humoral immune response in
broiler chickens. J. Anim. Vet. Adv., 7(3): 297-304. |
|
33. Ao, T., Pierce, J.L., Power, R., Pescatore, A.J., Cantor,
A.H., Dawson, K.A. and Ford, M.J. (2009) Effect of different
forms of zinc and copper on the performance and tissue mineral
content of chicks. Poult. Sci., 88: 2171-2175.
http://dx.doi.org/10.3382/ps.2009-00117
PMid:19762872 |
|
34. Al-Daraji, H.J. and Amen, M.H.M. (2011) Effect of dietary
zinc on certain blood traits of broiler breeder chickens. Int.
J. Poult. Res., 10(10): 807-813.
http://dx.doi.org/10.3923/ijps.2011.807.813 |
|
35. Beattie, J.H., Gordon, M.J., Duthie, S.J., McNeil, C.J.,
Horgan, G.W., Nixon, G.F., Feldmann, J. and Kwun, I.S. (2012)
Suboptimal dietary zinc intake promotes vascular inflammation
and atherogenesis in a mouse model of atherosclerosis. Mol.
Nutr. Food Res., 56(7): 1097-1105.
http://dx.doi.org/10.1002/mnfr.201100776
PMid:22760982 |
|
36. Reiterer, G., Macdonald, R., Browning, J.D., Morrow, J.,
Matveev, S.V., Daugherty, A., Smart, E., Toborek, M. and
Hennig, B. (2005) Zinc deficiency increases plasma lipids and
atherosclerotic markers in LDL-receptor-deficient mice. J.
Nutr., 135: 2114-2118.
PMid:16140885 |
|
37. Bolkent, S., Yanardag, R., Bolkent, S., Mutlu, O.,
Yildirim, S., Kangawa, K., Minegishi, Y. and Suzuki, H. (2006)
The effect of zinc supplementation on ghrelin-immunoreactive
cells and lipid parameters in gastrointestinal tissue of
streptozotocin-induced female diabetic rats. Mol. Cell.
Biochem., 286: 77-85.
http://dx.doi.org/10.1007/s11010-005-9095-1
PMid:16479319 |
|
38. Parák., T. and Straková, E. (2011) Zinc as a feed
supplement and its impact on plasma cholesterol concentrations
in breeding cocks. Acta Vet. Brno., 80: 281-285.
http://dx.doi.org/10.2754/avb201180030281 |
|
39. Sahin, K., Smith, M.O., Onderci, M., Sahin, N., Gursu,
M.F. and Kucuk, O. (2005) Supplementation of zinc from organic
or inorganic source improves performance and antioxidant
status of heat-distressed quail. Poult. Sci., 84: 882-887.
http://dx.doi.org/10.1093/ps/84.6.882
PMid:15971524 |
|
40. Sies, H., editor. (2013) Oxidative Stress. Elsevier, San
Diego. |
|
41. Osaretin, A.T.E. and Gabriel, A.A. (2009) Effect of zinc
deficiency on memory, oxidative stress and blood chemistry in
rats. Int. J. Biol. Chem. Sci., 3(3): 513-523. |
|
42. Prasad, A.S. (2014) Zinc: An antioxidant and
anti-inflammatory agent: Role of zinc in degenerative
disorders of aging. J. Trace Elem. Med. Biol., 28(4): 364-371.
http://dx.doi.org/10.1016/j.jtemb.2014.07.019
PMid:25200490 |
|
43. Flohe, L. (2009) Glutathione peroxidase: Fact and fiction.
Oxygen Free Radicals and Tissue Damage. Oxford University
Press, New York. p95-120. |
|
44. Peerapatdit, T. and Sriratanasathavorn, C. (2010) Lipid
peroxidation and antioxidant enzyme activities in erythrocytes
of type 2 diabetic patients. J. Med. Assoc. Thai, 93(6):
682-693.
PMid:20572373 |
|
45. Bun, S.D., Guo, Y.M., Guo, F.C., Ji, F.J. and Cao, H.
(2011) Influence of organic zinc supplementation on the
antioxidant status and immune responses of broilers challenged
with Eimeria tenella. Poult. Sci., 90: 1220-1226.
http://dx.doi.org/10.3382/ps.2010-01308
PMid:21597062 |
|
46. Ma, W., Niu, H., Feng, J., Wang, Y. and Feng, J. (2011)
Effect of zinc glycine on oxidative stress, contents of trace
elements, and intestinal morphology in broilers. Biol. Trace
Elem. Res., 142: 546-556.
http://dx.doi.org/10.1007/s12011-010-8824-9
PMid:20734240 |
|
47. Gajula, S.S., Chelasani, V.K., Panda, A.K., Mantena,
V.L.N. and Rama Rao, S. (2011) Effect of supplemental
inorganic Zn and Mn and their interactions on the performance
of broiler chicken, mineral bioavailability, and immune
response. Biol. Trace Elem. Res., 139: 177-187.
http://dx.doi.org/10.1007/s12011-010-8647-8
PMid:20198454 |
|
48. Sajadifar, S., Miranzadeh, H. and Moazeni, M. (2011)
Immune responses of broiler chicks supplemented with high
levels of zinc. Online J. Anim. Feed Res., 6(2): 493-496. |
|
49. Soni, N., Mishra, S.K., Swain, R., Das, A., Chichilichi,
B. and Sethy, K. (2013) Bioavailability and immunity response
in broiler breeders on organically complexed zinc
supplementation. Food Nutr. Sci., 4(12): 1293-1300.
http://dx.doi.org/10.4236/fns.2013.412166 |
|
50. Ezzati, M.S., Bozorgmehrifard, M.H., Bijanzad, P.,
Rasoulinezhad, S., Moomivand, H., Faramarzi, S., Ghaedi, A.,
Ghabel, H. and Stabraghi, E. (2013) Effects of different
levels of zinc supplementation on broilers performance and
immunity response to Newcastle disease vaccine. Eur. J. Exp.
Biol., 3(5): 497-501. |
|
51. Hudson, B.P., Dozier 3rd, W.A., Wilson, J.L., Sander, J.E.
and Ward, T.L. (2004) Reproductive performance and immune
status of caged broiler breeder hens provided diets
supplemented with either inorganic or organic sources of zinc
from hatching to 65 wk of age. J. Appl. Poult. Res., 13:
349-359.
http://dx.doi.org/10.1093/japr/13.2.349 |
|