Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Review (Published online: 18-04-2016)

10. Advances in reproductive biotechnologies - K. K. Choudhary, K. M. Kavya, A. Jerome, and R. K. Sharma

Veterinary World, 9(4): 388-395

 

 

   doi: 10.14202/vetworld.2016.388-395

 

 

K. K. Choudhary: ICAR-National Dairy Research Institute, Karnal - 132 001, Haryana, India; drkkvets@gmail.com

K. M. Kavya: ICAR-Indian Veterinary Research Institute, Bareilly - 243 122, Uttar Pradesh, India; kavyakmkp@gmail.com

A. Jerome: ICAR-Central Institute for Research on Buffaloes, Hisar - 125 001, Haryana, India; jerome210982@gmail.com

R. K. Sharma: ICAR-Central Institute for Research on Buffaloes, Hisar - 125 001, Haryana, India; rksharmascientist@gmail.com

 

Received: 14-12-2015, Accepted: 11-03-2016, Published online: 18-04-2016

 

Corresponding author: A. Jerome, e-mail: jerome210982@gmail.com


Citation: Choudhary KK, Kavya KM, Jerome A, Sharma RK (2016) Advances in reproductive biotechnologies, Veterinary World, 9(4): 388-395.



In recent times, reproductive biotechnologies have emerged and started to replace the conventional techniques. It is noteworthy that for sustained livestock productivity, it is imperative to start using these techniques for facing the increasing challenges for productivity, reproduction and health with impending environment conditions. These recent biotechniques, both in male and female, have revolutionized and opened avenues for studying and manipulating the reproductive process both in vitro and in vivo in various livestock species for improving tis efficiency. This review attempts to highlight pros and cons, on the recent developments in reproductive biotechnologies, both in male and female in livestock species.

Keywords: assisted reproductive technologies, biotechnology, livestock, reproduction.



1. Johnson, L.A. (2000) Sexing mammalian sperm for production of offspring: The state-of-the-art. Anim. Reprod. Sci., 60-61: 93-107.
http://dx.doi.org/10.1016/S0378-4320(00)00088-9
 
2. Seidel, G.E. Jr. (2014) Update on sexed semen technology in cattle. Animal, 8(1): 160-164.
http://dx.doi.org/10.1017/S1751731114000202
PMid:24680061 PMCid:PMC3951379
 
3. Garner, D.L. (2006) Flow cytometric sexing of mammalian sperm. Theriogenology, 65: 943-957.
http://dx.doi.org/10.1016/j.theriogenology.2005.09.009
PMid:16242764
 
4. Garner, D.L. (2001) Sex-sorting mammalian sperm: Concept to application in animals. J. Androl., 22(4): 519-526.
PMid:11451346
 
5. Campanile, G., Gasparrini, B., Vecchio, D., Neglia, G., Senatore, E.M., Bella, A., Presicce, G. and Zicarelli, L. (2011) Pregnancy rates following AI with sexed semen in Mediterranean Italian buffalo heifers (Bubalus bubalis). Theriogenology, 76(3): 500-506.
http://dx.doi.org/10.1016/j.theriogenology.2011.02.029
PMid:21497388
 
6. Campanile, G., Vecchio, D., Neglia, G., Bella, A., Prandi, A., Senatore, E.M., Gasparrini, B. and Presicce, G.A. (2013) Effect of season, late embryonic mortality and progesterone production on pregnancy rates in pluriparous buffaloes (Bubalus bubalis) after artificial insemination with sexed semen. Theriogenology, 79(4): 653-659.
http://dx.doi.org/10.1016/j.theriogenology.2012.11.020
PMid:23265928
 
7. Gaviraghi, A., Puglisi, R,, Balduzzi, D., Severgnini, A., Bornaghi, V., Bongioni, G., Frana, A., Gandini, L.M., Lukaj, A., Bonacina, C. and Galli, A. (2013) Minimum number of spermatozoa per dose in Mediterranean Italian buffalo (Bubalus bubalis) using sexed frozen semen and conventional artificial insemination. Theriogenology, 79(8): 1171-1176.
http://dx.doi.org/10.1016/j.theriogenology.2013.02.014
PMid:23523175
 
8. Warriach, H.M., McGill, D.M., Bush, R.D., Wynn, P.C. and Choha, K.R. (2015) A review of recent developments in buffalo reproduction - A review. Asian Aust. J. Anim. Sci., 28(3): 451-455.
http://dx.doi.org/10.5713/ajas.14.0259
PMid:25656203 PMCid:PMC4341092
 
9. Blondin, P., Beaulieu, M., Fournier, V., Morin, N., Crawford, L., Madan, P. and King, W.A. (2009) Analysis of bovine sexed sperm for IVF from sorting to the embryo. Theriogenology, 71: 30-38.
http://dx.doi.org/10.1016/j.theriogenology.2008.09.017
PMid:19004490
 
10. Carvalho, J.O., Sartori, R., Machado, G.M., Mourao, G.B. and Dode, M.A. (2010) Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in in vitro embryo production. Theriogenology, 74(9): 1521-1530.
http://dx.doi.org/10.1016/j.theriogenology.2010.06.030
PMid:20728930
 
11. Gosálvez, J., López-Fernández, C., Fernández, J.L., Gouraud, A. and Holt, W.V. (2011a) Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol. Reprod. Dev., 78: 951-961.
http://dx.doi.org/10.1002/mrd.21394
PMid:21919111
 
12. Gosálvez, J., Nú-ez, R., Fernández, J.L., López-Fernández, C. and Caballero, P. (2011b) Dynamics of sperm DNA damage in fresh versus frozen-thawed and gradient processed ejaculates in human donors. Andrologia, 43: 373-377.
http://dx.doi.org/10.1111/j.1439-0272.2010.01022.x
PMid:21919930
 
13. Faustini, M. (2011) New aspects of boar sperm encapsulation. Reprod. Domest. Anim., 46(2): 52-4.
http://dx.doi.org/10.1111/j.1439-0531.2011.01868.x
PMid:21884278
 
14. Feugang, J.M., Rodriguez-Osorio, N., Kaya, A., Wang, H., Page, G., Ostermeier, G.C., Topper, E.K. and Memili, E. (2010) Transcriptome analysis of bull spermatozoa: Implications for male fertility. Reprod. Biomed. Online, 21(3): 312-324.
http://dx.doi.org/10.1016/j.rbmo.2010.06.022
PMid:20638337
 
15. Srivastava, J., Premi, S., Kumar, S. and Ali, S. (2008) Organization and differential expression of the GACA/GATA tagged somatic and spermatozoal transcriptomes in buffalo Bubalus bubalis. BMC Genomics, 9: 132.
http://dx.doi.org/10.1186/1471-2164-9-132
PMid:18366692 PMCid:PMC2346481
 
16. Feugang, J.M. (2010) Transcriptome analysis of bull spermatozoa: Implications for male fertility. Reprod. Biomed. Online, 21(3): 312-324.
http://dx.doi.org/10.1016/j.rbmo.2010.06.022
PMid:20638337
 
17. Miller, D. (2014) Sperm RNA as a mediator of genomic plasticity. Adv. Biol., 2014: Article ID: 179701, 13.
 
18. Bissonnette, N., Lévesque-Sergerie, J.P., Thibault, C. and Boissonneault, G. (2009) Spermatozoal transcriptome profiling for bull sperm motility: A potential tool to evaluate semen quality. Reproduction, 138(1): 65-80.
http://dx.doi.org/10.1530/REP-08-0503
PMid:19423662
 
19. Arangasamy, A., Singh, L.P., Ahmad, N., Ansari, M.R. and Ram, G.C. (2005) Isolation and characterization of heparin and gelatin binding buffalo seminal plasma proteins and their effect on cauda epididymal spermatozoa. Anim. Reprod. Sci., 90: 243-254.
http://dx.doi.org/10.1016/j.anireprosci.2004.12.014
PMid:16260100
 
20. Harshan, H.M., Sankar, S., Singh, L.P., Singh, M.K., Sudharani, S., Ansari, M.R., Singh, S.K., Majumdar, A.C. and Joshi, P. (2009) Identification of PDC-109-like protein(s) in buffalo seminal plasma. Anim. Reprod. Sci., 115(1-4): 306-311.
http://dx.doi.org/10.1016/j.anireprosci.2008.11.007
PMid:19117702
 
21. Srivastava, N., Jerome, A., Srivastava, S.K., Ghosh, S.K. and Kumar, A. (2013) Bovine seminal PDC-109 protein: An overview of biochemical and functional properties. Anim. Reprod. Sci., 138(1-2): 1-13.
http://dx.doi.org/10.1016/j.anireprosci.2013.02.008
PMid:23489472
 
22. Peddinti, D., Nanduri, B., Kaya, A., Feugang, J.M., Shane, C.B. and Memili, E. (2008) Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst. Biol., 2: 19.
http://dx.doi.org/10.1186/1752-0509-2-19
PMid:18294385 PMCid:PMC2291030
 
23. Galli, C., Crotti, G., Notari, C., Turini, P., Duchi, R. and Lazzari, G. (2001) Embryo production by ovum pick up from live donors. Theriogenology, 55(6): 1341-1357.
http://dx.doi.org/10.1016/S0093-691X(01)00486-1
 
24. Verma, O.P., Kumar, R., Kumar, A. and Chand, S. (2012) Assisted reproductive techniques in farm animal - From artificial insemination to nanobiotechnology. Vet. World, 5(5): 301-310.
http://dx.doi.org/10.5455/vetworld.2012.301-310
 
25. Boni, R. (2012) Ovum pick-up in cattle: A 25 year retrospective analysis. Anim. Reprod., 9(3): 362-369.
 
26. Prasad, S., Singh, B., Singhal, S., Khan, F.A., Prasad, J.K. and Gupta, H.P. (2013) Production of the first viable ovum pick-up and in vitro embryo produced (OPU-IVEP) buffalo calf in India. Asian Pac. J. Reprod., 2(2): 163-165.
http://dx.doi.org/10.1016/S2305-0500(13)60139-6
 
27. Purohit, G. N., Duggal, G.P., Dadarwal, D., Kumar, D., Yadav, R.C. and Vyas, S. (2003) reproductive biotechnologies for improvement of buffalo: The current status. Asian Aust. J. Anim. Sci., 16(7): 1071-1086.
http://dx.doi.org/10.5713/ajas.2003.1071
 
28. Machado, S.A., Reichenbach, H.D., Weppert, M., Wolf, E. and Gonçalves, P.B. (2006) The variability of ovum pick-up response and in vitro embryo production from monozygotic twin cows. Theriogenology, 65(3): 573-583.
http://dx.doi.org/10.1016/j.theriogenology.2005.04.032
PMid:16045974
 
29. Van Wagtendonk-de Leeuw, A.M. (2006) Ovum pick up and in vitro production in the bovine after use in several generations: A 2005 status. Theriogenology, 65: 914-925.
http://dx.doi.org/10.1016/j.theriogenology.2005.09.007
PMid:16253322
 
30. Brackett, B.G., Bousquet, D., Boice, M.L., Donawick, W.J., Evans, J.F. and Dressel, M.A. (1982) Normal development following in vitro fertilization in the cow. Biol. Reprod., 27(1): 147-158.
http://dx.doi.org/10.1095/biolreprod27.1.147
 
31. Hasler, J.F. (2003) The current status and future of commercial embryo transfer in cattle. Anim. Reprod. Sci., 79(3-4): 245-264.
http://dx.doi.org/10.1016/S0378-4320(03)00167-2
 
32. Betteridge, K.J. (2006) Farm animal embryo technologies: Achievements and perspectives. Theriogenology, 65: 905-913.
http://dx.doi.org/10.1016/j.theriogenology.2005.09.005
PMid:16233910
 
33. Madan, M.L., Singla, S.K., Jailkhani, S. and Ambrose, J.D. (1991) In vitro fertilization in buffalo and birth of first ever IVF buffalo calf. Vol. 7. Proceeding of the 3rd Buffalo Congress. Verma, Bulgaria. 15-19 May. p11-17.
 
34. Galli, C. and Lazzari, G. (2008) The manipulation of gametes and embryos in farm animals. Reprod. Domes. Anim., 43: 1-7.
http://dx.doi.org/10.1111/j.1439-0531.2008.01136.x
PMid:18638099
 
35. Drost, M. (2007) Advanced reproductive technology in the water buffalo. Theriogenology, 68: 450-453.
http://dx.doi.org/10.1016/j.theriogenology.2007.04.013
PMid:17481722
 
36. Lin, T.P. (1966) Microinjection of mouse eggs. Science, 151(3708): 333-337.
http://dx.doi.org/10.1126/science.151.3708.333
 
37. Liang, Y.Y., Ye, D.N., Laowtammathron, C., Phermthai, T., Nagai, T., Somfai, T. and Parnpai, R. (2011) Effects of chemical activation treatment on development of swamp buffalo (Bubalus bubalis) oocytes matured in vitro and fertilized by intracytoplasmic sperm injection. Reprod. Domest. Anim., 46(1): 67-73.
http://dx.doi.org/10.1111/j.1439-0531.2010.01636.x
PMid:20546174
 
38. Ohlweiler, L.U., Brum, D.S., Leivas, F.G., Moyses, A.B., Ramos, R.S., Klein, N., Mezzalira, J.C. and Mezzalira, A. (2013) Intracytoplasmic sperm injection improves in vitro embryo production from poor quality bovine oocytes. Theriogenology, 79(5): 778-783.
http://dx.doi.org/10.1016/j.theriogenology.2012.12.002
PMid:23312719
 
39. Mapletoft, R.J. (2013) History and perspectives on bovine embryo transfer. Anim. Reprod., 10(3): 168-173.
 
40. Hasler, J.F. (2014) Forty years of embryo transfer in cattle: A review focusing on the journal. Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology, 81: 152-169.
http://dx.doi.org/10.1016/j.theriogenology.2013.09.010
PMid:24274419
 
41. Mapletoft, R.J. (1985) Embryo transfer in the cow: General procedures. Rev. Sci. Tech. Off. Int. Epiz., 4(4): 843-858.
http://dx.doi.org/10.20506/rst.4.4.218
 
42. Hasler, J.F. (1998) The current status of oocyte recovery, in vitro embryo production, and embryo transfer in domestic animals, with an emphasis on the bovine. J. Anim. Sci., 76 Suppl 3: 52-74.
 
43. Drost, M., Brand, A. and Aarts, M.H. (1976) A device for nonsurgical recovery of bovine embryos. Theriogenology, 6(5): 503-508.
http://dx.doi.org/10.1016/0093-691X(76)90117-5
 
44. Nandi, S., Raghu, H.M., Ravindranatha, B.M. and Chauhan, M.S. (2002) Production of buffalo (Bubalus bubalis) embryos in vitro: Premises and promises. Reprod. Domest. Anim., 37: 65-74.
http://dx.doi.org/10.1046/j.1439-0531.2002.00340.x
PMid:11975742
 
45. Smith, A.K. (2001) Retrospective study of the effect of superovulation on subsequent fertility in embryo-transfer donors. Vet. Rec., 148(4): 114-116.
http://dx.doi.org/10.1136/vr.148.4.114
 
46. Leibo, S.P. and Mazur, P. (1978) Methods for the preservation of mammalian embryos by freezing. In: Daniel J.C. Jr., editor. Methods in mammalian reproduction. Academic Press, New York. p179-201.
http://dx.doi.org/10.1016/b978-0-12-201850-3.50013-9
 
47. Youngs, C.R. (2011) Cryopreservation of preimplantation embryos of cattle, sheep, and goats. J. Vis. Exp., (54): 2764.
http://dx.doi.org/10.3791/2764
 
48. Hwang I.S., Hochi, S. (2014) Recent progress in cryopreservation of bovine oocytes, review article. Biomed. Res. Int., 2014: Article ID: 570647, 11. http://dx.doi.org/10.1155/2014/570647.
http://dx.doi.org/10.1155/2014/570647
 
49. Sirisha, K., Selokar, N.L., Saini, M., Palta, P., Manik, R.S., Chauhan, M.S. and Singla, S.K. (2013) Cryopreservation of zona-free cloned buffalo (Bubalus Bubalis) embryos: Slow freezing vs open-pulled straw vitrification. Reprod. Domest. Anim., 48(4): 538-544.
http://dx.doi.org/10.1111/rda.12122
PMid:23281817
 
50. Rall, W.F. and Fahy, G.M. (1985) Ice-free cryopreservation of mouse embryos at - 196 degrees C by vitrification. Nature, 313(6003): 573-575.
http://dx.doi.org/10.1038/313573a0
 
51. Lonergan, P. (2007) State-of-the-art embryo technologies in cattle. Soc. Reprod. Fertil. Suppl., 64: 315-325.
http://dx.doi.org/10.5661/rdr-vi-315
 
52. Yavin, S., Aroya, A., Roth, Z. and Arav, A. 2009. Embryo cryopreservation in the presence of low concentration of vitrification solution with sealed pulled straws in liquid nitrogen slush. Hum. Reprod., 24: 797-804.
http://dx.doi.org/10.1093/humrep/den397
PMid:19141483
 
53. Thibier, M. and Nibart, M. (1995) The sexing of bovine embryos in the field. Theriogenology, 43(1): 71-80.
http://dx.doi.org/10.1016/0093-691X(94)00008-I
 
54. Rao, K.B., Pawshe, C.H. and Totey, S.M. (1993) Sex determination of in vitro develoeped buffalo (Bubalus bubalis) embryoes by DNA amplification. Mol. Reprod. Dev., 36: 291-296.
http://dx.doi.org/10.1002/mrd.1080360302
PMid:8286109
 
55. Zoheir, K.M.A. and Allam, A.A. (2010) A rapid method for sexing the bovine embryo Anim. Reprod. Sci., 119(1-2): 92-96.
http://dx.doi.org/10.1016/j.anireprosci.2009.12.013
PMid:20060664
 
56. Sood, S.K., Chauhan, M.S. and Tomer, O.S. (2001) A direct duplex PCR assay for sex determination of Murrah buffalo embryos. Buffalo J., 17: 113-124.
 
57. Graf, A., Krebs, S., Heininen-Brown, M., Zakhartchenko, V., Blum, H. and Wolf, E. (2014) Genome activation in bovine embryos: Review of the literature and new insights from RNA sequencing experiments. Anim. Reprod. Sci., 149(1-2): 46-58.
http://dx.doi.org/10.1016/j.anireprosci.2014.05.016
PMid:24975847
 
58. Graf, A., Krebs, S., Zakhartchenko, V., Schwalb, B., Blum, H. and Wolf, E. (2014) Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl. Acad. Sci. USA., 111(11): 4139-4144.
http://dx.doi.org/10.1073/pnas.1321569111
PMid:24591639 PMCid:PMC3964062
 
59. Niemann, H. and Wrenzycki, C. (2000) Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: Implications for subsequent development. Theriogenology, 53: 21-34.
http://dx.doi.org/10.1016/S0093-691X(99)00237-X
 
60. Latham, K.E. and Schultz, R.M. (2001) Embryonic genome activation. Front. Biosci., 6: D748-D759.
http://dx.doi.org/10.2741/latham
 
61. Nath, A., Sharma, V., Dubey, P.K., Pratheesh, M.D., Gade, N.E., Saikumar, G. and Sharma, G.T. (2013) Impact of gonadotropin supplementation on the expression of germ cell marker genes (MATER, ZAR1, GDF9, and BMP15) during in vitro maturation of buffalo (Bubalus bubalis) oocyte. In Vitro Cell Dev. Biol. Anim., 49(1): 34-41.
http://dx.doi.org/10.1007/s11626-012-9561-5
PMid:23263936
 
62. Eswari, S., Sai Kumar, G. and Sharma, G.T. (2013) Expression of mRNA encoding leukaemia inhibitory factor (LIF) and its receptor (LIFRβ) in buffalo preimplantation embryos produced in vitro: Markers of successful embryo implantation. Zygote, 21(2): 203-213.
http://dx.doi.org/10.1017/S0967199412000172
PMid:22892066
 
63. Sharma, G.T., Nath, A., Prasad, S., Singhal, S., Singh, N., Gade, N.E., Dubey, P.K. and Saikumar, G. (2012) Expression and characterization of constitutive heat shock protein 70.1 (HSPA-1A) gene in in vitro produced and in vivo-derived buffalo (Bubalus bubalis) embryos. Reprod. Dom. Anim., 47(6): 975-983.
http://dx.doi.org/10.1111/j.1439-0531.2012.02002.x
PMid:22463675
 
64. Rajhans, R., Kumar, G.S., Dubey, P.K. and Sharma, G.T. (2010) Effect of timing of development on total cell number and expression profile of HSP-70.1 and GLUT-1 in buffalo (Bubalus bubalis) oocytes and preimplantation embryos produced in vitro. Cell Biol. Int., 34(5): 463-468.
http://dx.doi.org/10.1042/CBI20090295
PMid:20100172
 
65. Gad, A., Hoelker, M., Besenfelder, U., Havlicek, V., Cinar, U., Rings, F., Held, E., Dufort, I., Sirard, M.A., Schellander, K. and Tesfaye, D. (2012) Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biol. Reprod., 87(4): 1-13.
http://dx.doi.org/10.1095/biolreprod.112.099697
 
66. Tesfaye, D., Ponsuksili, S., Wimmers, K., Gilles, M. and Schellander, K. (2004) A comparative expression analysis of gene transcripts in post-fertilization developmental stages of bovine embryos produced in vitro or in vivo. Reprod. Domest. Anim., 39: 396-404.
http://dx.doi.org/10.1111/j.1439-0531.2004.00531.x
PMid:15598228
 
67. Abdoon, A.S., Ghanem, N., Kandil, O.M., Gad, A., Schellander, K. and Tesfaye, D. (2012) cDNA microarray analysis of gene expression in parthenotes and in vitro produced buffalo embryos. Theriogenology, 77(6): 1240-1251.
http://dx.doi.org/10.1016/j.theriogenology.2011.11.004
PMid:22289221
 
68. Singla, S.K., Selokar, N.L., Saini, M., Palta, P., Chauhan, M.S. and Manik, R.S. (2015) Buffalo cloning: What we have achieved so far. Curr. Sci., 109(4): 670-671.
 
69. Vajta, G., Lewis, I.M., Trounson, A.O., Purup, S., Maddox-Hyttel, P., Schmidt, M., Pedersen, H.G., Greve, T. and Callesen, H. (2003) Handmade somatic cell cloning in cattle: Analysis of factors contributing to high efficiency in vitro. Biol. Reprod., 68(2): 571-578.
http://dx.doi.org/10.1095/biolreprod.102.008771
PMid:12533421
 
70. Vajta, G. and Gjerris, M. (2006) Science and technology of farm animal cloning: State of the art. Anim. Reprod. Sci., 92: 211-230.
http://dx.doi.org/10.1016/j.anireprosci.2005.12.001
PMid:16406426
 
71. Campbell, K.H., McWhir, J., Ritchie, W.A. and Wilmut, I. (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380(6569): 64-66.
http://dx.doi.org/10.1038/380064a0
PMid:8598906
 
72. Shah, R.A., George, A., Singh, M.K., Kumar, D., Chauhan, M.S., Manik, R., Palta, P. and Singla, S.K. (2008) Hand-made cloned buffalo (Bubalus bubalis) embryos: Comparison of different media and culture systems. Cloning Stem Cells, 10(4): 435-442.
http://dx.doi.org/10.1089/clo.2008.0033
PMid:18800862
 
73. Shah, R.A., George, A., Singh, M.K., Kumar, D., Anand, T., Chauhan, M.S., Manik, R.S., Palta, P. and Singla, S.K. (2009) Pregnancies established from handmade cloned blastocysts reconstructed using skin fibroblasts in buffalo (Bubalus bubalis). Theriogenology, 71(8): 1215-1219.
http://dx.doi.org/10.1016/j.theriogenology.2008.10.004
PMid:19168209
 
74. Avasthi, S., Srivastava, R.N., Singh, A. and Srivastava, M. (2008) Stem cell: Past, present and future - A review article. Int. J. Med. Update, 3(1): 22-30.
http://dx.doi.org/10.4314/ijmu.v3i1.39856
 
75. Tecirlioglu, R.T. and Trounson, A.O. (2007) Embryonic stem cells in companion animals (horses, dogs and cats): Present status and future prospects. Reprod. Fertil. Dev., 9: 740-747.
http://dx.doi.org/10.1071/RD07039
 
76. Talbot, N.C. and Blomberg, L.A. (2008) The pursuit of ES cell lines of domestic ungulates. Stem Cell Rev., 4: 235-254.
http://dx.doi.org/10.1007/s12015-008-9026-0
PMid:18612851
 
77. Nowak-Imialek, M., Kues, W.A. and Niemann, H, (2011) Pluripotent stem cells and reprogrammed cells in farm animals. Microsc. Microanal., 17: 474-497.
http://dx.doi.org/10.1017/S1431927611000080
PMid:21682936
 
78. Yadav, P.S., Singh, R.K. and Singh, B. (2012) Fetal stem cells in farm animals: Applications in health and production. Agric. Res., 1(1): 67-77.
http://dx.doi.org/10.1007/s40003-011-0001-7
 
79. George, A., Sharma, R., Singh, K.P., Panda, S.K., Singla, S.K., Palta, P., Manik, R. and Chauhan, M.S. (2011) Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts. Cell Reprog., 13(3): 263-272.
http://dx.doi.org/10.1089/cell.2010.0094
PMid:21548826
 
80. Selokar, N.L., Saini, M., Palta, P., Chauhan, M.S., Manik, R.S. and Singla, S.K. (2014) Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen. PLoS One, 9(3): e90755.
http://dx.doi.org/10.1371/journal.pone.0090755
 
81. Wall, R.J. (1996) Transgenic livestock: Progress and prospects for the future. Theriogenology, 45(1): 57-68.
http://dx.doi.org/10.1016/0093-691X(95)00355-C
 
82. Niemann, H. and Kues, W.A. (2003) Application of transgenesis in livestock for agriculture and biomedicine. Anim. Reprod. Sci., 79(3-4): 291-317.
http://dx.doi.org/10.1016/S0378-4320(03)00169-6
 
83. Robl, J.M., Wang, Z., Kasinthan, P. and Kuroiwa, Y. (2007) Transgenic animal production and animal biotechnology. Theriogeneology, 67: 127-133.
http://dx.doi.org/10.1016/j.theriogenology.2006.09.034
PMid:17070901
 
84. Verma, V., Gautam, S.K., Palta, P., Manik, R.S., Singla, S.K. and Chauhan, M.S. (2008) Development of a pronuclear DNA microinjection technique for production of green fluorescent protein-expressing bubaline (Bubalus bubalis) embryos. Theriogenology, 69: 655-665.
http://dx.doi.org/10.1016/j.theriogenology.2007.09.035
PMid:18272213
 
85. Wells, D.J. (2010) Genetically modified animals and pharmacological research. Handb. Exp. Pharmacol., 199: 213-216.
http://dx.doi.org/10.1007/978-3-642-10324-7_9
PMid:20204589
 
86. Ebert, K.M., Selgrath, J.P., DiTullio P., Denmen, J., Smith, T.E., Memon, M.A., Schindler, J.E., Monastersky, G.M., Vitale, J.A. and Gordan, K. (1991) Transgenic production of variant human tissue type palsminogen activator in goat milk. Genneration of transgenic goat and analysis of expression. Biotechnology, 9: 835-838.
http://dx.doi.org/10.1038/nbt0991-835
PMid:1367544
 
87. McNeil, E.S. (2005) Nanotechnology for the biologist. J. Leukoc. Biol., 78: 1-10.
http://dx.doi.org/10.1189/jlb.0205074
PMid:15923216
 
88. Beebe, D., Wheeler, M., Zerigue, H., Walters, E. and Raty, S. (2002) Microfluidic technology for assisted reproduction. Theriogenology, 57: 125-135.
http://dx.doi.org/10.1016/S0093-691X(01)00662-8
 
89. Knowlton, M., Sadasivam, M. and Tasoglu, S. (2015) Microfluidics for sperm research. Trends Biotech., 33(4): 221-229.
http://dx.doi.org/10.1016/j.tibtech.2015.01.005
PMid:25798781
 
90. Rishpon, J. and Ivnitski, D. (1997) An amperometric enzyme channeling immunosensor. Biosens. Bioelectron., 12(3): 195-204.
http://dx.doi.org/10.1016/S0956-5663(97)85337-7