Open Access
Research
(Published
online: 22-04-2016)
11.
Effect of supplemental heat on mortality
rate, growth performance, and blood biochemical profiles of
Ghungroo piglets in Indian sub-tropical climate -
Hemanta Nath, Mousumi Hazorika, Dipjyoti Rajkhowa, Mrinmoy Datta
and Avijit Haldar
Veterinary World, 9(4): 396-402
doi:
10.14202/vetworld.2016.396-402
Hemanta Nath:
Animal Reproduction Division, ICAR Research Complex for North
Eastern Hill Region, Tripura Centre, Agartala, Lembucherra, West
Tripura, India; johnnath2000@gmail.com
Mousumi Hazorika:
Animal Reproduction Division, ICAR Research Complex for North
Eastern Hill Region, Tripura Centre, Agartala, Lembucherra, West
Tripura, India;
mausumihazorika5@gmail.com
Dipjyoti Rajkhowa:
ICAR Research Complex for NEH Region, Barapani, Umiam, Meghalaya,
India; djrajkhowa@gmail.com
Mrinmoy Datta:
Animal Reproduction Division, ICAR Research Complex for North
Eastern Hill Region, Tripura Centre, Agartala, Lembucherra, West
Tripura, India; mdatta2@rediffmail.com
Avijit Haldar:
Animal Reproduction Division, ICAR Research Complex for North
Eastern Hill Region, Tripura Centre, Agartala, Lembucherra, West
Tripura, India; avijit_vet@rediffmail.com
Received: 12-11-2015, Accepted: 07-03-2016, Published Online:
22-04-2016
Corresponding author:
Avijit Haldar, e-mail: avijit_vet@rediffmail.com
Citation:
Nath H, Hazorika M, Rajkhowa D, Datta M, Haldar A (2016) Effect
of supplemental heat on mortality rate, growth performance, and
blood biochemical profiles of Ghungroo piglets in Indian
sub-tropical climate,
Veterinary World, 9(4):
396-402.
Abstract
Aim:
The present study was conducted to explore the effect of
supplemental heat on mortality rate, growth performance, and
blood biochemical profiles of indigenous Ghungroo piglets in
sub-tropical cold and humid climatic conditions of Tripura, a
state of the north eastern hill (NEH) region of India.
Materials and Methods:
The experiment was conducted on 38 indigenous Ghungroo piglets
from birth up to 60 days of age. Among the 38 piglets, 19
piglets were provided with supplemental heat ranging between
17.0°C and 21.1°C for the period of the first 30 days and
thereafter between 24.1°C and 29.9°C for the next 30 days. The
other 19 piglets were exposed to natural environmental minimum
temperatures ranging between 7.2°C and 15.0°C during the first
30 days and then between 18.5°C and 25.5°C for the next 30 days.
Results:
The supplemental heat resulted in 10.6% reduction of piglet
mortality from the 2nd till the 7th day of age. These beneficial
effects could be related with the lower (p<0.05) plasma
glutamate pyruvate transaminase (GPT) and cortisol levels and
higher (p<0.05) plasma alkaline phosphatase (AP) concentrations
in heat supplemented group compared to control group. Plasma AP,
GPT, glucose, triiodothyronine, and luteinizing hormone
concentrations decreased (p<0.05) gradually with the advancement
of age in both control and supplemental heat treated piglets.
Conclusion:
Supplemental heat could be beneficial since it is related to a
reduction of piglet mortality during the first week of life
under farm management system in the sub-tropical climate of NEH
region of India.
Keywords:
biochemical profiles, Ghungroo piglets, growth, mortality rate,
neonatal, supplemental heat.
References
1. Kirkden, R.D., Broom, D.M. and Andersen, I.L. (2013)
Invited review: Piglet mortality: Management solutions. J.
Anim. Sci., 91(7): 3361-3389.
http://dx.doi.org/10.2527/jas.2012-5637
PMid:23798524 |
|
2. Strange, T., Ask, B. and Nielsen, B. (2013) Genetic
parameters of the piglet mortality traits stillbirth, weak
at birth, starvation, crushing and miscellaneous in
crossbred pigs. J. Anim. Sci., 91(4): 1562-1569.
http://dx.doi.org/10.2527/jas.2012-5584
PMid:23408809 |
|
3. Herpin, P., Damon, M. and Le Dividich, J. (2002)
Development of thermoregulation and neonatal survival in
pigs. Livest. Prod. Sci., 78: 25-45.
http://dx.doi.org/10.1016/S0301-6226(02)00183-5 |
|
4. Berthon, D., Herpin, P., Bertin, R., De Marco, F. and le
Dividich, J. (1996) Metabolic changes associated with
sustained 48-hr shivering thermogenesis in the newborn pig.
Comp. Biochem. Physiol. B Biochem. Mol. Biol., 114: 327-335.
http://dx.doi.org/10.1016/0305-0491(96)00044-2 |
|
5. Lossec, G., Herpin, P. and Le Dividich, J. (1998)
Thermoregulatory responses of the newborn pig during
experimentally induced hypothermia and rewarming. J. Exp.
Physiol., 83: 667-678.
http://dx.doi.org/10.1113/expphysiol.1998.sp004148 |
|
6. Alonso-Spilsbury, M., Mota-Rojas, D., Villanueva-Garcia,
D., Martines-Burnes, J., Orozco, H., Ramirez-Necoechea, R.,
Lopez, M.A. and Truijillo, M.E. (2005) Perinatal asphyxia
pathophysiology and human: A review. Anim. Reprod. Sci., 90:
1-30.
http://dx.doi.org/10.1016/j.anireprosci.2005.01.007
PMid:16257594 |
|
7. Zhong, X., Li, W., Huang, X., Zhang, L., Yimamu, M.,
Raiput, N., Zhou, Y. and Wang, T. (2012) Impairment of
cellular immunity is associated with overexpression of heat
shock protein 70 in neonatal pigs with intrauterine growth
retardation. Cell Stress Chaperones., 17(4): 495-505.
http://dx.doi.org/10.1007/s12192-012-0326-6
PMid:22270614 PMCid:PMC3368032 |
|
8. Pedersen, L.J., Malmkvist, J., Kammersgaard, T. and
Jørgensen, E. (2013) Avoiding hypothermia in neonatal pigs:
Effect of duration of floor heating at different room
temperatures. J. Anim. Sci., 91(1): 425-432.
http://dx.doi.org/10.2527/jas.2011-4534
PMid:23100591 |
|
9. Westin, R., Holmgren, N., Hultgren, J., Ortman, K.,
Linder, A. and Algers, B. (2015) Post-mortem findings and
piglet mortality in relation to strategic use of straw at
farrowing. Prev. Vet. Med., 119(3-4): 141-152.
http://dx.doi.org/10.1016/j.prevetmed.2015.02.023
PMid:25792335 |
|
10. Cai, D., Jia, Y., Song, H., Sui, S., Lu, J., Jiang, Z.
and Zhao, R. (2014) Betaine supplementation in maternal diet
modulates the epigenetic regulation of hepatic gluconeogenic
genes in neonatal piglets. PLoS One, 9(8): e105504.
http://dx.doi.org/10.1371/journal.pone.0105504 |
|
11. Kenneth, B. (1986) Bioenergetics and growth: The whole
and the parts. J. Anim. Sci., 63: 1-10. |
|
12. Johnson, H.D., Ragsdale, A.C., Berry, I.L. and Shanklin,
M.D. (1963) Temperature humidity effects including influence
of acclimation feed and water consumption of Holstein
cattle. Missouri University, Agricultural Experiment Station
Research, Bullet No. 846. Columbia. |
|
13. Sahli, H. (1909) Untersuchungen Methode. 5th ed.
Lehrbuch d klin, Leipzig. p846. |
|
14. McGinnis, R.M., Marple, D.N., Ganjam, V.K., Prince, T.J.
and Pritchett, J.F. (1981) The effect of floor temperature,
supplemental heat and drying at birth on neonatal swine. J.
Anim. Sci., 53: 1424-1431.
PMid:7341612 |
|
15. Adams, K.L., Baker, T.H. and Jensen, A.H. (1980) Effect
of supplemental heat for nursing piglets. J. Anim. Sci., 50:
779-782.
PMid:7390938 |
|
16. Kammersgaard, T.S., Pedersen, L.J. and Jørgensen, E.
(2011) Hypothermia in neonatal piglets: Interactions and
causes of individual differences. J. Anim. Sci., 89(7):
2073-2085.
http://dx.doi.org/10.2527/jas.2010-3022
PMid:21317343 |
|
17. Phookan, A., Laskar, S., Goswami, R.N. and Deori, S.
(2011) Hemoglobin type, hemoglobin concentration and serum
alkaline phosphatase level in indigenous pigs of Assam.
Tamilnadu J. Vet. Anim. Sci., 7: 110-111. |
|
18. Sarma, K., Konwar, B. and Ali, A. (2011) Hemato-biochemical
parameters of Burmese pig of subtropical hill agro
ecosystem. Indian J. Anim. Sci., 81: 819-821. |
|
19. Jia, Y., Cong, R., Li, R., Yang, X., Sun, Q., Parvizi,
N. and Zhao, R. (2012) Maternal low-protein diet induces
gender-dependent changes in epigenetic regulation of the
glucose-6-phosphatase gene in newborn piglet liver. J. Nutr.,
142(9): 1659-1665.
http://dx.doi.org/10.3945/jn.112.160341
PMid:22833655 |
|
20. Pan, S., Zheng, Y., Zhao, R. and Yang, X. (2013)
MicroRNA-130b and microRNA-374b mediate the effect of
maternal dietary protein on offspring lipid metabolism in
Meishan pigs. Br. J. Nutr., 109(10): 1731-1738.
http://dx.doi.org/10.1017/S0007114512003728
PMid:22958366 |
|
21. Dhanotiya, R.S. (2006) Textbook of Veterinary
Biochemistry. 2nd ed. Jaypee Brothers Medical Publishers,
(P) Ltd., New Delhi. |
|
22. Nirupama, R., Devaki, M. and Yajurvedi, H.N. (2010)
Repeated acute stress induced alternations in carbohydrate
metabolism in rats. J. Stress Physiol. Biochem., 6: 44-55. |
|
23. Macari, M., Dauncey, M.J., Ramsden, D.B. and Ingram,
D.Z. (1983) Thyroid hormone metabolism after acclimatization
to a warm or cold temperature under the condition of high or
low energy intake. J. Exp. Physiol., 68: 709-718.
http://dx.doi.org/10.1113/expphysiol.1983.sp002760 |
|
24. Macari, M., Zuim, S.M., Secato, E.R. and Guerreiro, J.R.
(1986) Effect of ambient temperature and thyroid hormone on
food intake by pigs. J. Physiol. Behav., 36: 1035-1090.
http://dx.doi.org/10.1016/0031-9384(86)90476-2 |
|
25. Laurberg, P., Anderson, S. and Kermisolt, J. (2005) Cold
adaptation and thyroid hormone metabolism: Review. Horm.
Metab. Res., 37: 545-549.
http://dx.doi.org/10.1055/s-2005-870420 |
|
26. Colenbrander, B., Meijer, J.C., Macdonald, A.A., Van De
Wiel, D.F.M., Engel, B. and De Jong, F.H. (1987) Feedback
regulation of gonadotropic hormone secretion in neonatal
pigs. Biol. Reprod., 36: 871-877.
http://dx.doi.org/10.1095/biolreprod36.4.871
PMid:3109515 |
|
27. Campbell, C.S. and Schwartz, M.B. (1977) Steroid
feedback regulation of luteinizing hormone and follicle -
Stimulating hormone secretion rates in male and females
rats. J. Toxicol. Environ. Health., 3: 61-95.
http://dx.doi.org/10.1080/15287397709529550
PMid:336902 |
|