Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 22-04-2016)

11. Effect of supplemental heat on mortality rate, growth performance, and blood biochemical profiles of Ghungroo piglets in Indian sub-tropical climate - Hemanta Nath, Mousumi Hazorika, Dipjyoti Rajkhowa, Mrinmoy Datta and Avijit Haldar

Veterinary World, 9(4): 396-402

 

 

   doi: 10.14202/vetworld.2016.396-402

 

 

Hemanta Nath: Animal Reproduction Division, ICAR Research Complex for North Eastern Hill Region, Tripura Centre, Agartala, Lembucherra, West Tripura, India; johnnath2000@gmail.com

Mousumi Hazorika: Animal Reproduction Division, ICAR Research Complex for North Eastern Hill Region, Tripura Centre, Agartala, Lembucherra, West Tripura, India; mausumihazorika5@gmail.com

Dipjyoti Rajkhowa: ICAR Research Complex for NEH Region, Barapani, Umiam, Meghalaya, India; djrajkhowa@gmail.com

Mrinmoy Datta: Animal Reproduction Division, ICAR Research Complex for North Eastern Hill Region, Tripura Centre, Agartala, Lembucherra, West Tripura, India; mdatta2@rediffmail.com

Avijit Haldar: Animal Reproduction Division, ICAR Research Complex for North Eastern Hill Region, Tripura Centre, Agartala, Lembucherra, West Tripura, India; avijit_vet@rediffmail.com

 

Received: 12-11-2015, Accepted: 07-03-2016, Published Online: 22-04-2016

 

Corresponding author: Avijit Haldar, e-mail: avijit_vet@rediffmail.com


Citation: Nath H, Hazorika M, Rajkhowa D, Datta M, Haldar A (2016) Effect of supplemental heat on mortality rate, growth performance, and blood biochemical profiles of Ghungroo piglets in Indian sub-tropical climate, Veterinary World, 9(4): 396-402.



Aim: The present study was conducted to explore the effect of supplemental heat on mortality rate, growth performance, and blood biochemical profiles of indigenous Ghungroo piglets in sub-tropical cold and humid climatic conditions of Tripura, a state of the north eastern hill (NEH) region of India.

Materials and Methods: The experiment was conducted on 38 indigenous Ghungroo piglets from birth up to 60 days of age. Among the 38 piglets, 19 piglets were provided with supplemental heat ranging between 17.0°C and 21.1°C for the period of the first 30 days and thereafter between 24.1°C and 29.9°C for the next 30 days. The other 19 piglets were exposed to natural environmental minimum temperatures ranging between 7.2°C and 15.0°C during the first 30 days and then between 18.5°C and 25.5°C for the next 30 days.

Results: The supplemental heat resulted in 10.6% reduction of piglet mortality from the 2nd till the 7th day of age. These beneficial effects could be related with the lower (p<0.05) plasma glutamate pyruvate transaminase (GPT) and cortisol levels and higher (p<0.05) plasma alkaline phosphatase (AP) concentrations in heat supplemented group compared to control group. Plasma AP, GPT, glucose, triiodothyronine, and luteinizing hormone concentrations decreased (p<0.05) gradually with the advancement of age in both control and supplemental heat treated piglets.

Conclusion: Supplemental heat could be beneficial since it is related to a reduction of piglet mortality during the first week of life under farm management system in the sub-tropical climate of NEH region of India.

Keywords: biochemical profiles, Ghungroo piglets, growth, mortality rate, neonatal, supplemental heat.



1. Kirkden, R.D., Broom, D.M. and Andersen, I.L. (2013) Invited review: Piglet mortality: Management solutions. J. Anim. Sci., 91(7): 3361-3389.
http://dx.doi.org/10.2527/jas.2012-5637
PMid:23798524
 
2. Strange, T., Ask, B. and Nielsen, B. (2013) Genetic parameters of the piglet mortality traits stillbirth, weak at birth, starvation, crushing and miscellaneous in crossbred pigs. J. Anim. Sci., 91(4): 1562-1569.
http://dx.doi.org/10.2527/jas.2012-5584
PMid:23408809
 
3. Herpin, P., Damon, M. and Le Dividich, J. (2002) Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci., 78: 25-45.
http://dx.doi.org/10.1016/S0301-6226(02)00183-5
 
4. Berthon, D., Herpin, P., Bertin, R., De Marco, F. and le Dividich, J. (1996) Metabolic changes associated with sustained 48-hr shivering thermogenesis in the newborn pig. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 114: 327-335.
http://dx.doi.org/10.1016/0305-0491(96)00044-2
 
5. Lossec, G., Herpin, P. and Le Dividich, J. (1998) Thermoregulatory responses of the newborn pig during experimentally induced hypothermia and rewarming. J. Exp. Physiol., 83: 667-678.
http://dx.doi.org/10.1113/expphysiol.1998.sp004148
 
6. Alonso-Spilsbury, M., Mota-Rojas, D., Villanueva-Garcia, D., Martines-Burnes, J., Orozco, H., Ramirez-Necoechea, R., Lopez, M.A. and Truijillo, M.E. (2005) Perinatal asphyxia pathophysiology and human: A review. Anim. Reprod. Sci., 90: 1-30.
http://dx.doi.org/10.1016/j.anireprosci.2005.01.007
PMid:16257594
 
7. Zhong, X., Li, W., Huang, X., Zhang, L., Yimamu, M., Raiput, N., Zhou, Y. and Wang, T. (2012) Impairment of cellular immunity is associated with overexpression of heat shock protein 70 in neonatal pigs with intrauterine growth retardation. Cell Stress Chaperones., 17(4): 495-505.
http://dx.doi.org/10.1007/s12192-012-0326-6
PMid:22270614 PMCid:PMC3368032
 
8. Pedersen, L.J., Malmkvist, J., Kammersgaard, T. and Jørgensen, E. (2013) Avoiding hypothermia in neonatal pigs: Effect of duration of floor heating at different room temperatures. J. Anim. Sci., 91(1): 425-432.
http://dx.doi.org/10.2527/jas.2011-4534
PMid:23100591
 
9. Westin, R., Holmgren, N., Hultgren, J., Ortman, K., Linder, A. and Algers, B. (2015) Post-mortem findings and piglet mortality in relation to strategic use of straw at farrowing. Prev. Vet. Med., 119(3-4): 141-152.
http://dx.doi.org/10.1016/j.prevetmed.2015.02.023
PMid:25792335
 
10. Cai, D., Jia, Y., Song, H., Sui, S., Lu, J., Jiang, Z. and Zhao, R. (2014) Betaine supplementation in maternal diet modulates the epigenetic regulation of hepatic gluconeogenic genes in neonatal piglets. PLoS One, 9(8): e105504.
http://dx.doi.org/10.1371/journal.pone.0105504
 
11. Kenneth, B. (1986) Bioenergetics and growth: The whole and the parts. J. Anim. Sci., 63: 1-10.
 
12. Johnson, H.D., Ragsdale, A.C., Berry, I.L. and Shanklin, M.D. (1963) Temperature humidity effects including influence of acclimation feed and water consumption of Holstein cattle. Missouri University, Agricultural Experiment Station Research, Bullet No. 846. Columbia.
 
13. Sahli, H. (1909) Untersuchungen Methode. 5th ed. Lehrbuch d klin, Leipzig. p846.
 
14. McGinnis, R.M., Marple, D.N., Ganjam, V.K., Prince, T.J. and Pritchett, J.F. (1981) The effect of floor temperature, supplemental heat and drying at birth on neonatal swine. J. Anim. Sci., 53: 1424-1431.
PMid:7341612
 
15. Adams, K.L., Baker, T.H. and Jensen, A.H. (1980) Effect of supplemental heat for nursing piglets. J. Anim. Sci., 50: 779-782.
PMid:7390938
 
16. Kammersgaard, T.S., Pedersen, L.J. and Jørgensen, E. (2011) Hypothermia in neonatal piglets: Interactions and causes of individual differences. J. Anim. Sci., 89(7): 2073-2085.
http://dx.doi.org/10.2527/jas.2010-3022
PMid:21317343
 
17. Phookan, A., Laskar, S., Goswami, R.N. and Deori, S. (2011) Hemoglobin type, hemoglobin concentration and serum alkaline phosphatase level in indigenous pigs of Assam. Tamilnadu J. Vet. Anim. Sci., 7: 110-111.
 
18. Sarma, K., Konwar, B. and Ali, A. (2011) Hemato-biochemical parameters of Burmese pig of subtropical hill agro ecosystem. Indian J. Anim. Sci., 81: 819-821.
 
19. Jia, Y., Cong, R., Li, R., Yang, X., Sun, Q., Parvizi, N. and Zhao, R. (2012) Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver. J. Nutr., 142(9): 1659-1665.
http://dx.doi.org/10.3945/jn.112.160341
PMid:22833655
 
20. Pan, S., Zheng, Y., Zhao, R. and Yang, X. (2013) MicroRNA-130b and microRNA-374b mediate the effect of maternal dietary protein on offspring lipid metabolism in Meishan pigs. Br. J. Nutr., 109(10): 1731-1738.
http://dx.doi.org/10.1017/S0007114512003728
PMid:22958366
 
21. Dhanotiya, R.S. (2006) Textbook of Veterinary Biochemistry. 2nd ed. Jaypee Brothers Medical Publishers, (P) Ltd., New Delhi.
 
22. Nirupama, R., Devaki, M. and Yajurvedi, H.N. (2010) Repeated acute stress induced alternations in carbohydrate metabolism in rats. J. Stress Physiol. Biochem., 6: 44-55.
 
23. Macari, M., Dauncey, M.J., Ramsden, D.B. and Ingram, D.Z. (1983) Thyroid hormone metabolism after acclimatization to a warm or cold temperature under the condition of high or low energy intake. J. Exp. Physiol., 68: 709-718.
http://dx.doi.org/10.1113/expphysiol.1983.sp002760
 
24. Macari, M., Zuim, S.M., Secato, E.R. and Guerreiro, J.R. (1986) Effect of ambient temperature and thyroid hormone on food intake by pigs. J. Physiol. Behav., 36: 1035-1090.
http://dx.doi.org/10.1016/0031-9384(86)90476-2
 
25. Laurberg, P., Anderson, S. and Kermisolt, J. (2005) Cold adaptation and thyroid hormone metabolism: Review. Horm. Metab. Res., 37: 545-549.
http://dx.doi.org/10.1055/s-2005-870420
 
26. Colenbrander, B., Meijer, J.C., Macdonald, A.A., Van De Wiel, D.F.M., Engel, B. and De Jong, F.H. (1987) Feedback regulation of gonadotropic hormone secretion in neonatal pigs. Biol. Reprod., 36: 871-877.
http://dx.doi.org/10.1095/biolreprod36.4.871
PMid:3109515
 
27. Campbell, C.S. and Schwartz, M.B. (1977) Steroid feedback regulation of luteinizing hormone and follicle - Stimulating hormone secretion rates in male and females rats. J. Toxicol. Environ. Health., 3: 61-95.
http://dx.doi.org/10.1080/15287397709529550
PMid:336902