Open Access
Research
(Published
online: 16-08-2016)
11.
Evaluation of complementary
diagnostic tools for bovine tuberculosis detection in dairy
herds from India -
Mukesh Kumar Thakur,
Dharmender Kumar Sinha
and Bhoj Raj Singh
Veterinary World, 9(8): 862-868
doi:
10.14202/vetworld.2016.862-868
Mukesh Kumar
Thakur :
School of Public
Health & Zoonoses, Guru Angad Dev Veterinary & Animal Sciences
University, Ludhiana, Punjab, India;
vetsamu@gmail.com
Dharmender Kumar
Sinha :
Division of
Epidemiology, Indian Veterinary Research Institute, Izatnagar,
Bareilly, Uttar Pradesh, India;
sinhaivri@rediffmail.com
Bhoj Raj Singh :
Division of
Epidemiology, Indian Veterinary Research Institute, Izatnagar,
Bareilly, Uttar Pradesh, India; brs1762@gmail.com
Received: 29-04-2016, Accepted: 08-07-2016, Published online:
16-08-2016
Corresponding author:
Mukesh
Kumar Thakur, e-mail: vetsamu@gmail.com
Citation:
Thakur MK, Sinha DK, Singh BR (2016) Evaluation of complementary
diagnostic tools for bovine tuberculosis detection in dairy
herds from India, Veterinary World, 9(8): 862-868.
Abstract
Aim:
A
cross-sectional study was undertaken to know the herd prevalence
and evaluate the single intradermal tuberculin testing (SITT),
culture isolation, and polymerase chain reaction (PCR) analysis
for the diagnosis of bovine tuberculosis (TB).
Materials and
Methods:
A total of 541
cows of three dairy farms of Bareilly and Mukteshwar were
screened by SITT followed by collection of pre-scapular lymph
node (PSLN) aspirates (71), milk (54), and blood (71) samples
from reactor animals. These clinical samples were processed for
culture isolation and direct PCR-based identification and
species differentiation.
Results:
Out
of 541 cows screened by SITT, 71 (13.12%) animals were found
positive. Mycobacteria were isolated from 3 (4.22%) PSLN
aspirate but not from any cultured milk and blood samples. 28
(39.43%) PSLN aspirate and 5 (9.25%) milk samples were positive
for Mycobacterium TB (MTB) complex (MTC) by PCR
amplification for the IS6110 insertion sequence; however,
blood samples were found negative. For species differentiation,
multiplex-PCR using 12.7 kb primers was conducted. Out of 28
PSLN aspirate, Mycobacterium bovis was detected in 18
(64.28%) and MTB in 8 (28.57%), whereas 2 aspirate samples
(7.14%) were positive for both the species. All the five milk
positive samples were positive for M. bovis.
Conclusion:
Direct detection of bovine TB by a molecular-based method in
dairy animals after preliminary screening was appeared to be
more sensitive and specific compared to the conventional method
(i.e., culture isolation). Its application in form of serial
testing methodology for the routine diagnosis and thereafter,
culling of infected stock may be suggested for the control
programs in dairy herds. The PSLN aspirate was found to be the
most suitable specimen for culture isolation and PCR-based
detection of Mycobacterium spp. among live infected
animals.
Keywords:
bovine tuberculosis, culture isolation, Mycobacterium
tuberculosis complex, polymerase chain reaction, single
intradermal tuberculin testing.
References
1. Van Soolingen, D., Hoogenboezem, T., de Haas, P.E.W.,
Hermans, P.W.M., Koedam, M.A., Teppema, K.S., Brennan, P.J.,
Besra, G.S., Portaels, F., Top, J., Schouls, L.M. and Van
Embden, J.D.A. (1997) A novel pathogenic taxon of the
Mycobacterium tuberculosis complex, Canetti:
Characterization of an exceptional isolate from Africa. Int.
J. Syst. Bacteriol., 47: 1236-1245.
http://dx.doi.org/10.1099/00207713-47-4-1236
PMid:9336935 |
|
2. Cousins, D.V., Bastida, R., Cataldi, A., Quse, V.,
Redrobe, S., Dow, S., Duignan, P., Murray, A., Dupont, C.,
Ahmed, A., Collins, D.M., Butler, W.R., Dawson, D.,
Rodriguez, D., Loureiro, J., Romano, M.I., Alito, A.,
Zumarraga, M. and Bernardelli, A. (2003) Tuberculosis in
seals caused by a novel member of the Mycobacterium
tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int.
J. Syst. Evol. Microbiol., 53: 1305-1314.
http://dx.doi.org/10.1099/ijs.0.02401-0
PMid:13130011 |
|
3. Aranaz, A., Cousins, D., Mateos, A. and Dominiguez, L.
(2003) Elevation of Mycobacterium tuberculosis subsp. Caprae
Aranaz et al. 1999 to species rank as Mycobacterium caprae
comb. nov., sp. nov. Int. J. Syst. Evol. Microbiol., 53:
1785-1789.
http://dx.doi.org/10.1099/ijs.0.02532-0
PMid:14657105 |
|
4. Palmer, M.V., Thacker, T.C., Waters, W.R., Gort, C.A. and
Corner, L.A. (2012) Mycobacterium bovis: A model pathogen at
the interface of livestock, wildlife, and humans. Vet. Med.
Int., 1: 17.
http://dx.doi.org/10.1155/2012/236205 |
|
5. Cosivi, O., Grange, J.M., Daborn, C.J., Raviglione, M.C.,
Fujikura, T., Cousins, D., Robinson, R.A., Huchzermeyer,
F.A.K., de Kantor, I. and Meslin, F.X. (1998) Zoonotic
tuberculosis due to Mycobacterium bovis in developing
countries. Emerg. Infect. Dis., 4(1): 59-70.
http://dx.doi.org/10.3201/eid0401.980108
PMid:9452399 PMCid:PMC2627667 |
|
6. Thakur, M.K., Sinha, D.K. and Singh, B.R. (2015)
Evaluation of PPD based ELISA in the diagnosis of bovine
tuberculosis. J. Anim. Res., 5(4): 761-766.
http://dx.doi.org/10.5958/2277-940X.2015.00126.6 |
|
7. Mishra, A., Singhal, A., Chauhan, D.S., Katoch, V.M.,
Srivastava, K., Thakral, S.S., Bharadwaj, S.S., Sreenivas,
V. and Prasad, H.K. (2005) Direct detection and
identification of Mycobacterium tuberculosis and
Mycobacterium bovis in bovine samples by a novel nested PCR
assay: Correlation with conventional techniques. J. Clin.
Microbiol., 43(11): 5670-5678.
http://dx.doi.org/10.1128/JCM.43.11.5670-5678.2005
PMid:16272503 PMCid:PMC1287790 |
|
8. Lermo, A., Liébana, S., Campoy, S., Fabiano, S., García,
M.I., Soutullo, A., Zumárraga, M.J., Alegret, S. and
Pividori, M.I. (2010) A novel strategy for screening - Out
raw milk contaminated with Mycobacterium bovis on dairy
farms by double-tagging PCR and electrochemical genosensing.
Int. Microbiol., 13: 91-97.
PMid:20890843 |
|
9. Dubey, S. (2015) Molecular Epidemiology of Chronic
Bacterial Diseases in Mithun, M.V.Sc. Thesis. IVRI,
Izatnagar. |
|
10. Figueiredo, E.E.S., Carvalho, R.C.T., Silvestre, F.G.,
Lilenbaum, W., Fonseca, L.S., Silva, J.T. and Paschoalin,
V.M.F. (2010) Detection of Mycobacterium bovis DNA in nasal
swabs from tuberculous cattle by a multiplex PCR. Braz. J.
Microbiol., 41: 386-390.
http://dx.doi.org/10.1590/S1517-83822010000200020 |
|
11. Medeiros, L.S., Marassi, C.D., Figueiredo, E.E.S. and
Lilenbaum, W. (2010) Potential application of new diagnostic
methods for controlling of bovine tuberculosis in Brazil.
Braz. J. Microbiol., 41(3): 531-541.
http://dx.doi.org/10.1590/S1517-83822010005000002
PMid:24031527 PMCid:PMC3768653 |
|
12. Morrison, W.I., Bourne, F.J., Cox, D.R., Donnelly, C.A.,
Gettinby, G., McInerney, J.P. and Woodroffe, R. (2000)
Pathogenesis and diagnosis of infections with Mycobacterium
bovis in cattle. Vet. Rec., 146: 236-242.
PMid:10737292 |
|
13. Ameni, G., Bonnet, P. and Tibbo, M. (2003) A
cross-sectional study of bovine tuberculosis in selected
dairy farms in Ethiopia. Int. J. Appl. Res. Vet. Med., 1(4):
1-2. |
|
14. Office Internationale des Epizooties. (2009) Manual of
Diagnostic Tests and Vaccines for Terrestrial Animals. World
Organization for Animal Health, Paris, France. |
|
15. Srivastava, K., Chauhan, D.S., Gupta, P., Singh, H.B.,
Sharma, V.D., Yadav, V.S., Sreekumaran, Thakral, S.S.,
Dharamdheeran, J.S., Nigam, P., Prasad, H.K. and Katoch,
V.M. (2008) Isolation of Mycobacterium bovis and M.
Tuberculosis from cattle of some farms in North India -
Possible relevance in human health. Indian J. Med. Res.,
128: 26-31.
PMid:18820355 |
|
16. Grange, J.M. (1988) The genus mycobacteria and species
of Mycobacteria. In: Mycobacteria and Human Disease. 1st ed.
Edward Arnold, London. p9-48. |
|
17. Thierry, D., Cave, M.D., Eisenach, K.D., Crawford, J.T.,
Bates, J.H., Gicquel, B. and Guesdon, J.L. (1990) IS6110, an
IS - Like element of Mycobacterium tuberculosis complex.
Nucleic Acids Res., 18(1): 188.
http://dx.doi.org/10.1093/nar/18.1.188
PMid:2155396 PMCid:PMC330226 |
|
18. Zumarraga, M., Bigi, F., Alito, A., Romano, M.I. and
Cataldi, A. (1999) A 12.7 kb fragment of the Mycobacterium
tuberculosis genome is not present in Mycobacterium bovis.
Microbiology, 145: 893-897.
http://dx.doi.org/10.1099/13500872-145-4-893
PMid:10220168 |
|
19. Bates, I. (1974) Isolation and purification of
deoxyribonucleic acid from Mycobacteria. Acta Pathol.
Microbiol. Scand. B, 82: 780-784. |
|
20. Thrusfield, M. (2005) Diagnostic testing. In: Veterinary
Epidemiology. 3rd ed. Blackwell Publishing Company, London.
p305-330. |
|
21. Chauhan, H.V.S., Dwivedi, P.D., Chauhan, S.S. and Kalra,
D.S. (1974) Tuberculosis in animals in India - A review.
Indian J. Tuberc. 21(1): 22-35. |
|
22. Mukherjee, F. (2006) Comparative prevalence of
tuberculosis in two dairy herds in India. Rev. Sci. Tech.
Off. Int. Epiz., 25(3): 1125-1130.
http://dx.doi.org/10.20506/rst.25.3.1717 |
|
23. Thakur, A., Sharma, M., Katoch, V.C., Dhar, P. and
Katoch, R.C. (2010) A study on the prevalence of bovine
tuberculosis in farmed dairy cattle in Himachal Pradesh.
Vet. World, 3(9): 409-414.
http://dx.doi.org/10.5455/vetworld.2010.408-413 |
|
24. Ganesan, P.I. (2012) Comparative efficacy of single
intradermal test and gamma interferon assay in the diagnosis
of bovine tuberculosis. Indian Vet. J., 89(6): 126. |
|
25. Filia, G., Leishangthem, G.D., Mahajan, V. and Singh, A.
(2016) Detection of Mycobacterium tuberculosis and
Mycobacterium bovis in Sahiwal cattle from an organized farm
using ante mortem techniques. Vet. World, 9(4): 383-387.
http://dx.doi.org/10.14202/vetworld.2016.383-387
PMid:27182134 PMCid:PMC4864480 |
|
26. Sonawane, G.G., Narnaware, S.D. and Tripathi, B.N.
(2016) Molecular epidemiology of Mycobacterium avium
subspecies paratuberculosis in ruminants in different parts
of India. Int. J. Mycobacteriol., 5(1): 59-65.
http://dx.doi.org/10.1016/j.ijmyco.2015.11.003
PMid:26927991 |
|
27. Kaur, P., Filiaa, G., Singh, S.V., Patil, P.K., Ravi
Kumar, G.V.P.and Sandhu, K.S. (2011) Molecular epidemiology
of Mycobacterium avium subspecies paratuberculosis: IS900
PCR identification and IS1311 polymorphism analysis from
ruminants in the Punjab region of India. Comp. Immunol.
Microbiol. Infect. Dis., 34: 163-169.
http://dx.doi.org/10.1016/j.cimid.2010.09.002
PMid:21071087 |
|
28. Radostits, O.M., Gay, C.C., Hinchcliff, K.W. and
Constable, P.D. (2007) Veterinary Medicine: A Text Book of
the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 10th
ed. Saunders Ltd., Philadelphia, PA. p1007-1014. |
|
29. Amos, W., Brooks-Pollock, E., Blackwell, R., Driscoll,
E., Nelson-Flower, M. and Conlan, A.J. (2013) Genetic
predisposition to pass the standard SICCT test for bovine
tuberculosis in British cattle. PLoS One, 8(3): e58245.
http://dx.doi.org/10.1371/journal.pone.0058245 |
|
30. Ali, S., Khan, I.A., Mian, M.S. and Rana, W. (2005)
Detection of Mycobacteria from milk of cattle and buffaloes
at government livestock farms. Pak. J. Agric. Sci., 42:
11-12. |
|
31. Ofukwu, R.A., Oboegbulem, S.I. and Akwuobu, C.A. (2008)
Zoonotic Mycobacterium species in fresh cow milk and fresh
skimmed, unpasteurised market milk (nono) in Makurdi,
Nigeria: Implications for public health. J. Anim. Plant
Sci., 1(1): 21-25. |
|
32. Hassanain, N.A., Hassanain, M.A., Soliman, Y.A., Ghazy,
A.A. and Ghazyi, Y.A. (2009) Bovine tuberculosis in a dairy
cattle farm as a threat to public health. Afr. J. Microbiol.
Res., 3(8): 446-450. |
|
33. Grange, J.M. and Yates, M.D. (1994) Zoonotic aspects of
Mycobacterium bovis infection. Vet. Microbiol., 40: 137-151.
http://dx.doi.org/10.1016/0378-1135(94)90052-3 |
|
34. Kidane, D., Olobo, J.O., Habte, A., Negesse, Y., Aseffa,
A., Abate, G., Yassin, M.A., Bereda, K. and Harboe, M.
(2002) Identification of the causative organism of
tuberculous lymphadenitis in Ethiopia by PCR. J. Clin.
Microbiol., 40: 4230-4234.
http://dx.doi.org/10.1128/JCM.40.11.4230-4234.2002
PMid:12409403 PMCid:PMC139683 |
|