Open Access
Research
(Published
online: 31-12-2016)
26.
Altered oxidative stress and carbohydrate
metabolism in canine mammary tumors -
K. Jayasri, K. Padmaja and M. Saibaba
Veterinary World, 9(12): 1489-1492
doi:
10.14202/vetworld.2016.1489-1492
K. Jayasri:
Department of Veterinary Biochemistry, College of Veterinary
Science, Tirupati, Andhra Pradesh, India; jayasrikanteti@yahoo.co.in
K. Padmaja:
Department of Veterinary Biochemistry, College of Veterinary
Science, Tirupati, Andhra Pradesh, India; kondetibicm@gmail.com
M. Saibaba:
Department of Surgery and Radiology, College of Veterinary
Science, Tirupati, Andhra Pradesh, India; drsaimvsc@gmail.com
Received: 25-06-2016, Accepted: 24-11-2016, Published online:
31-12-2016
Corresponding author:
K. Jayasri, e-mail: jayasrikanteti@yahoo.co.in
Citation:
Jayasri K, Padmaja K, Saibaba M (2016) Altered oxidative stress
and carbohydrate metabolism in canine mammary tumors,
Veterinary World, 9(12):
1489-1492.
Abstract
Aim:
Mammary tumors are the most prevalent type of neoplasms in
canines. Even though cancer induced metabolic alterations are well
established, the clinical data describing the metabolic profiles
of animal tumors is not available. Hence, our present
investigation was carried out with the aim of studying changes in
carbohydrate metabolism along with the level of oxidative stress
in canine mammary tumors.
Materials and Methods:
Fresh mammary tumor tissues along with the adjacent healthy
tissues were collected from the college surgical ward. The levels
of thiobarbituric acid reactive substances (TBARS), glutathione,
protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1,
6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD)
were analyzed in all the tissues. The results were analyzed
statistically.
Results:
More than two-fold increase in TBARS and three-fold increase in
glutathione levels were observed in neoplastic tissues. Hexokinase
activity and hexose concentration (175%) was found to be
increased, whereas glucose-6-phosphatase (33%), fructose-1,
6-bisphosphatase (42%), and G6PD (5 fold) activities were reduced
in tumor mass compared to control.
Conclusion:
Finally, it was revealed that lipid peroxidation was increased
with differentially altered carbohydrate metabolism in canine
mammary tumors.
Keywords:
canine mammary tumor, fructose-1,6-bisphosphatase,
glucose-6-phosphatase, glucose-6-phosphate dehydrogenase,
hexokinase, thiobarbituric reactive substances
References
1. Kumaraguruparan, R., Balachandran, C., Manohar, B.M. and
Nagini, S. (2005) Altered oxidant-antioxidant profile in
canine mammary tumours. Vet. Res. Commun., 29(4): 287-296.
https://doi.org/10.1023/B:VERC.0000048499.38049.4b |
|
2. Ray, G. and Hussain, S.A. (2002) Oxidants, antioxidants and
carcinogenesis. Indian J. Exp. Biol., 40: 1213-1232.
PMid:13677623 |
|
3. Dang, V. (2012) Links between metabolism and cancer. Genes
Dev., 26: 877-890.
https://doi.org/10.1101/gad.189365.112
PMid:22549953 PMCid:PMC3347786 |
|
4. Cairns, R.A., Harris, I.S. and Mak, T.W. (2011) Regulation
of cancer cell metabolism. Nat. Rev. Cancer, 11: 85-95.
https://doi.org/10.1038/nrc2981
PMid:21258394 |
|
5. Frezza, C., Zheng, L., Tennant, D.A., Papkovsky, D.B.,
Hedley, B.A., Kalna, G., Watson, D.G. and Gottlieb, E. (2011)
Metabolic profiling of hypoxic cells revealed a catabolic
signature required for cell survival. Available from: http://www.dx.doi.org/10.1371/journal.pone.0024411.
https://doi.org/10.1371/journal.pone.0024411 |
|
6. Cardaci, S. and Ciriolo, M.R. (2012) TCA cycle defects and
cancer: When metabolism tunes redox state. Int. J. Cell.
Biol., 2012: 161837.
https://doi.org/10.1155/2012/161837
PMid:22888353 PMCid:PMC3408673 |
|
7. Anastasiou, D., Poulogiannis, G., Asara, J.M., Boxer, M.B.,
Jiang, J.K., Shen, M., Bellinger, G., Sasaki, A.T., Locasale,
J.W., Auld, D.S., Thomas, C.J., Vander Heiden, M.G. and
Cantley, L.C. (2011) Inhibition of pyruvate kinase M2 by
reactive oxygen species contributes to cellular antioxidant
responses. Science, 334(6060): 1278-1283.
https://doi.org/10.1126/science.1211485 |
|
8. Ying, H., Kimmelman, A.C., Lyssiotis, C.A., Hua, S., Chu,
G.C., Fletcher-Sananikone, E., Locasale, J.W., Son, J., Zhang,
H., Coloff, J.L., Yan, H., Wang, W., Chen, S., Viale, A.,
Zheng, H., Paik, J.H., Lim, C., Guimaraes, A.R., Martin, E.S.,
Chang, J., Hezel, A.F., Perry, S.R., Hu, J., Gan, B., Xiao,
Y., Asara, J.M., Weissleder, R., Wang, Y.A., Chin, L., Cantley,
L.C. and DePinho, R.A. (2012) Oncogenic K-ras maintains
pancreatic tumors through regulation of anabolic glucose
metabolism. Cell, 149: 656-670.
https://doi.org/10.1016/j.cell.2012.01.058
PMid:22541435 PMCid:PMC3472002 |
|
9. Wang, X., Li, X.J., Zhang, X.Q., Fan, R.T., Gu, H., Shi,
Y.G. and Liu, H.T. (2015) Glucose-6-phosphate dehydrogenase
expression is correlated with poor clinical prognosis in
esophagealsquamous cell carcinoma. Eur. J. Surg. Oncol.,
41(10): 1293-1299.
https://doi.org/10.1016/j.ejso.2015.08.155
PMid:26329784 |
|
10. Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid
peroxides in animal tissues by thiobarbituric acid reaction.
Anal. Biochem., 95: 351-358.
https://doi.org/10.1016/0003-2697(79)90738-3 |
|
11. Ellman, G.L. (1959) Tissue sulfhydryl groups. Arch.
Biochem. Biophys., 82: 70-77.
https://doi.org/10.1016/0003-9861(59)90090-6 |
|
12. Neibes, P. (1972) Determination of enzymes and degradation
products of glycosaminoglycans metabolism in the serum of
healthy and varicose subjects. Clin. Chem. Acta, 42: 399-408.
https://doi.org/10.1016/0009-8981(72)90105-2 |
|
13. Lowry, O.H., Rosenberg, N.J., Farr, A.L. and Randall, R.J.
(1951) Protein measurement with folin phenol reagent. J. Biol.
Chem., 193: 265-275.
PMid:14907713 |
|
14. Brandstrup, N., Kirk, J.E. and Bruni, C. (1957)
Determination of hexokinase in tissues. J. Gerontol., 12:
166-171.
https://doi.org/10.1093/geronj/12.2.166
PMid:13416554 |
|
15. Koida, H. and Oda, T. (1959) Pathological occurence of
glucose-6-phosphatase in liver disease. Clin. Chem. Acta, 4:
554-561.
https://doi.org/10.1016/0009-8981(59)90165-2 |
|
16. Gancedo, J.M. and Gancedo, C. (1971) Fructose-1,
6-bisphosphatase, phosphofructokinase and glucose-6-phosphate
dehydrogenase from fermenting yeast. Arch. Microbiol., 76:
132-138. |
|
17. Ellis, H.A. and Kirkman, H.N. (1961) A colorimetric method
for assay of erythrocyte glucose-6-phosphate dehydrogenase.
Proc. Soc. Exp. Biol. Med., 106: 607-609.
https://doi.org/10.3181/00379727-106-26418 |
|
18. Snedecor, G.W. and Cochran, W.G. (1994) Statistical
Methods. 8th ed. Ames: Iowa State University Press. |
|
19. Karayannopoulou, M., Fytianou, A., Assaloumidis, N.,
Psalla, D., Savvas, I. and Kaldrymidou, E. (2013b) Lipid
peroxidation in neoplastic tissue of dogs with mammary cancer
fed with different kinds of diet. Turk. J. Vet. Anim. Sci.,
37: 449-453.
https://doi.org/10.3906/vet-1211-7 |
|
20. Macotpet, A., Suksawat, F., Sukon, P., Pimpakdee, K.,
Pattarapanwichien, E., Tangrassameeprasert, R. and Boonsirl,
P. (2013) Oxidative stress in cancer-bearing dogs assessed by
measuring serum malondialdehyde. BMC Vet. Res., 9: 101.
https://doi.org/10.1186/1746-6148-9-101
PMid:23663727 PMCid:PMC3654958 |
|
21. Karayannopoulou, M., Fytianou, A., Assaloumidis, N.,
Psalla, D., Constantinidis, T.C., Kaldrymidou, E. and Koutinas,
A.F. (2013a) Markers of lipid peroxidation and α-tocopherol
levels in the blood and neoplastic tissue of dogs with
malignant mammary gland tumors. Vet. Clin. Pathol., 42(3):
323-328.
https://doi.org/10.1111/vcp.12064
PMid:23906434 |
|
22. Szczubiał, M., Kankofer, M., Lopuszyński, W., Dabrowski,
R. and Lipko, J. (2004) Oxidative stress parameters in bitches
with mammary gland tumours. J. Vet. Med. A., 51(7-8): 336-340.
https://doi.org/10.1111/j.1439-0442.2004.00647.x
PMid:15533114 |
|
23. Szczubiał, M., Kankofer, M., Albera, E., Łopuszyński, W.
and Dąbrowski, R. (2008) Oxidative/antioxidative status of
blood plasma in bitches with mammary gland tumours. B. Vet. I.
Pulawy, 52: 255-259. |
|
24. Schumcaker, P.T. (2006) Reactive oxygen species in cancer
cells: Live by the sword, die by the sword. Cancer Cell,
10(3): 175-176.
https://doi.org/10.1016/j.ccr.2006.08.015
PMid:16959608 |
|
25. Leonel, C., Gabriela, B., Jardim, B.V., Moschetta, M.G.,
Regiani, V.R., Oliveira, J.G. and Zuccari, D.A. (2014)
Expression of glutathione, glutathione peroxidase and
glutathione S-transferase pi in canine mammary tumors. BMC
Vet. Res., 10: 49.
https://doi.org/10.1186/1746-6148-10-49
PMid:24565113 PMCid:PMC3975948 |
|
26. Fogg, V.C., Lanning, N.J. and MacKeigan, J.P. (2011)
Mitochondria in cancer: At the crossroads of life and death.
Chin. J. Cancer, 30(8): 526-539.
https://doi.org/10.5732/cjc.011.10018
PMid:21801601 PMCid:PMC3336361 |
|
27. Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer:
The next generation. Cell, 144: 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
PMid:21376230 |
|
28. Alvarez, J.V., Belka, G.K., Pan, T.C. and Chen, C.C.
(2014) Oncogene pathway activation in mammary tumors dictates
[18-F] FDG-PET uptake. Cancer Res., 74(24): 7583-7598.
https://doi.org/10.1158/0008-5472.CAN-14-1235
PMid:25239452 PMCid:PMC4342047 |
|
29. Macheda, M.L., Rogers, S. and Best, J.D. (2005) Molecular
and cellular regulation of glucose transporter (GLUT) proteins
in cancer. J. Cell. Physiol., 202(3): 654-662.
https://doi.org/10.1002/jcp.20166
PMid:15389572 |
|
30. Smith, T. (2000) Mammalian hexokinase and their abnormal
expression in cancer. Br. J. Biomed. Sci., 57(2): 170-178.
PMid:10912295 |
|
31. Bryson, J.M. (2002) Increased hexokinase activity of
either ectopic or endogenous origin protects renal epithelial
cells against oxidant induced cell death. J. Biol. Chem., 277:
11392-11400.
https://doi.org/10.1074/jbc.M110927200
PMid:11751868 |
|
32. Jagadeesan, A.J., Langeswaran, K., Kumar, S.G., Revathy,
R. and Balasubramanian, M.P. (2013) Chemopreventive potential
of diogenin on modulating glycoproteins, TCA cycle enzymes,
carbohydrate metabolising enzymes and biotransformation
enzymes against N-methyl-N-nitrosourea induced mammary
carcinogenesis. Int. J. Pharm. Sci., 5(4): 572-582. |
|
33. DeBeradinis, R.J., Sayed, N., Ditsworth, D. and Thompson,
C.B. (2008) Brick by brick: Metabolism and tumor cell growth.
Curr. Opin. Genet. Dev., 18: 54-61.
https://doi.org/10.1016/j.gde.2008.02.003
PMid:18387799 PMCid:PMC2476215 |
|