Open Access
Research
(Published
online: 03-12-2016)
3.
Ocimum sanctum
Linn. stimulate the expression of choline acetyltransferase on the
human cerebral microvascular endothelial cells -
Dwi Liliek Kusindarta, Hevi Wihadmadyatami
and Aris Haryanto
Veterinary World, 9(12): 1348-1354
doi:
10.14202/vetworld.2016.1348-1354
Dwi Liliek Kusindarta :
Department of
Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada,
Yogyakarta, Indonesia; indarta@ugm.ac.id
Hevi Wihadmadyatami :
Department of
Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada,
Yogyakarta, Indonesia; heviwihadmadyatami@ugm.ac.id
Aris Haryanto :
Department of
Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah
Mada, Yogyakarta, Indonesia; arisharyanto@yahoo.com
Received: 12-06-2016, Accepted: 13-10-2016, Published online:
03-12-2016
Corresponding author:
Dwi Liliek
Kusindarta, e-mail: indarta@ugm.ac.id
Citation:
Kusindarta DL, Wihadmadyatami H, Haryanto A (2016) Ocimum
sanctum Linn. stimulate the expression of choline
acetyltransferase on the human cerebral microvascular endothelial
cells, Veterinary World, 9(12): 1348-1354.
Abstract
Aim:
This research
was conducted to identify the expression of choline
acetyltransferase (ChAT) in human cerebral microvascular
endothelial cells (HCMECs) and to clarify the capability of
Ocimum sanctum Linn. ethanolic extract to stimulate the
presence of ChAT in the aging HCMECs.
Materials and
Methods:
In this study, we
perform an in vitro analysis some in the presence of an
ethanolic extract of O. sanctum Linn. as a stimulator for
the ChAT expression. HCMECs are divided become two groups, the
first is in low passage cells as a model of young aged and the
second is in a high passage as a model of aging. Furthermore to
analysis the expression of ChAT without and with extract
treatments, immunocytochemistry and flow cytometry analysis were
performed. In addition, ChAT sandwich enzyme-linked immunosorbent
assay is developed to detect the increasing activity of the ChAT
under normal, and aging HCMECs on the condition treated and
untreated cells.
Results:
In our in
vitro models using HCMECs, we found that ChAT is expressed
throughout intracytoplasmic areas. On the status of aging, the
ethanolic extract from O. sanctum Linn. is capable to
stimulate and restore the expression of ChAT. The increasing of
ChAT expression is in line with the increasing activity of this
enzyme on the aging treated HCMECs.
Conclusions:
Our
observation indicates that HCMECs is one of the noncholinergic
cells which is produced ChAT. The administrated of O. sanctum
Linn. ethanolic extract may stimulate and restore the
expression of ChAT on the deteriorating cells of HCMECs, thus its
may give nerve protection and help the production of
acetylcholine.
Keywords:
choline acetyltransferase, human cerebral microvascular
endothelial cells, Ocimum sanctum Linn.
References
1. Glisky El (2007) Changes in cognitive function in human
aging. In Riddle DR, editor. Brain Aging : Models, Methods,
and Mechanism. Boca Raton (FL): CRC Press/Taylor & Francis.
Chapter I. |
|
2. Prince, M. and Jackson, J. (2009) World Alzheimer Report
2009. Alzheimer's Disease International, London. p1-96.
PMCid:PMC2834500 |
|
3. Takeuchi, T., Duszkiewicz, A.J. and Morris, R.G. (2014) The
synaptic plasticity and memory hypothesis: Encoding, storage
and persistence. Philos. Trans. R. Soc. Lond. B. Biol. Sci.,
369(1633): 20130288.
https://doi.org/10.1098/rstb.2013.0288
PMid:24298167 PMCid:PMC3843897 |
|
4. Mangina, C.A. and Sokolov, E.N. (2006) Neuronal plasticity
in memory and learning abilities: Theoretical position and
selective review. Int. J. Psychophysiol., 60(3): 203-214.
https://doi.org/10.1016/j.ijpsycho.2005.11.004
PMid:16387375 |
|
5. Blokland, A. (1995) Acetylcholine: A neurotransmitter for
learning and memory? Brain Res. Rev., 21(3): 285-300.
https://doi.org/10.1016/0165-0173(95)00016-X |
|
6. Hasselmo, M.E. (2006) The role of acetylcholine in learning
and memory. Curr. Opin. Neurobiol., 16(6): 710-715.
https://doi.org/10.1016/j.conb.2006.09.002
PMid:17011181 PMCid:PMC2659740 |
|
7. Nunes-Tavares, N., Santos, L.E., Stutz, B., Brito-Moreira,
J., Klein, W.L., Ferreiram S.T. and de Mello, F.G. (2012)
Inhibition of choline acetyltransferase as a mechanism for
cholinergic dysfunction induced by amyloid-? peptide oligomers.
J. Biol. Chem., 287(23): 19377-19385.
https://doi.org/10.1074/jbc.M111.321448
PMid:22505713 PMCid:PMC3365976 |
|
8. Oda, Y. (1999) Choline acetyltransferase: The structure,
distribution and pathologic changes in the central nervous
system. Pathol. Int., 49(11): 921-937.
https://doi.org/10.1046/j.1440-1827.1999.00977.x |
|
9. Ichikawa, T., Ajiki, K., Matsuura, J. and Misawa, H. (1997)
Localization of two cholinergic markers, choline
acetyltransferase and vesicular acetylcholine transporter in
the central nervous system of the rat: In situ hybridization
histochemistry and immunohistochemistry. J. Chem. Neuroanat.,
13(1): 23-39.
https://doi.org/10.1016/S0891-0618(97)00021-5 |
|
10. Tang, F., Nag, S., Shiu, S.Y.W. and Pang, S.F. (2002) The
effects of melatonin and Ginkgo biloba extract on memory loss
and choline acetyltransferase activities in the brain of rats
infused intracerebroventricularly with h-amyloid 1-40. Life
Sci., 71: 2625-2631.
https://doi.org/10.1016/S0024-3205(02)02105-7 |
|
11. Raut, S., Rege, N., Malve, H. and Marathe, P. (2014)
Effect of combination of Phyllanthus emblica, Tinospora
cordifolia, and Ocimum sanctum on spatial learning and memory
in rats. J. Ayurveda Integr. Med., 5(4): 209.
https://doi.org/10.4103/0975-9476.146564 |
|
12. Kadian, R., Parle, M., Noida, G. and Division, P. (2012)
Therapeutic potential and phytopharmacology of tulsi. Int. J.
Pharm. Life Sci., 3(7): 1858-1867. |
|
13. Gupta, S.K., Prakash, J. and Srivastava, S. (2002)
Validation of traditional claim of Tulsi, Ocimum sanctum Linn.
As a medicinal plant. Indian J. Exp. Biol., 40(7): 765-773.
PMid:12597545 |
|
14. Ramesh, B. and Satakopan, V.N. (2010) Antioxidant
activities of hydroalcoholic extract of Ocimum sanctum against
cadmium induced toxicity in rats. Indian J. Clin. Biochem.,
25(3): 307-310.
https://doi.org/10.1007/s12291-010-0039-5
PMid:21731203 PMCid:PMC3001835 |
|
15. Uma, D.P. (2001) Radioprotective, anticarcinogenic and
antioxidant properties of the Indian holy basil, Ocimum
sanctum (Tulasi). Indian J. Exp. Biol., 39(3): 185-190. |
|
16. Jagetia, G.C. (2007) Radioprotective potential of plants
and herbs against the effects of ionizing radiation. J. Clin.
Biochem. Nutr., 40(2): 74-81.
https://doi.org/10.3164/jcbn.40.74
PMid:18188408 PMCid:PMC2127223 |
|
17. Adhvaryu, M.R., Reddy, N. and Parabia, M.H. (2008)
Anti-tumor activity of four Ayurvedic herbs in Dalton lymphoma
ascites bearing mice and their short-term in vitro
cytotoxicity on DLA-cell-line. Afr. J. Tradit. Complement.
Altern. Med. Afr. Networks Ethnomed., 5(4): 409-418.
https://doi.org/10.4314/ajtcam.v5i4.31297 |
|
18. Venuprasad, M.P., Kumar, K.H. and Khanum, F. (2013)
Neuroprotective effects of hydroalcoholic extract of Ocimum
sanctum against H2O2 induced neuronal cell damage in SH-SY5Y
cells via its antioxidative defence mechanism. Neurochem.
Res., 38(10): 2190-2200.
https://doi.org/10.1007/s11064-013-1128-7
PMid:23996399 |
|
19. Porter, N.M., Thibault, O., Thibault, V., Chen, K.C. and
Landfield, P.W. (1997) Calcium channel density and hippocampal
cell death with age in long-term culture. J. Neurosci.,
17(14): 5629-5639.
PMid:9204944 |
|
20. Schneider, E.L., Sternberg, H., Tice, R.R., Senula, G.C.,
Kram, D., Smith, J.R. and Bynum, G. (1979) Cellular
replication and aging. Mech. Ageing Dev., 9: 313-324.
https://doi.org/10.1016/0047-6374(79)90108-8 |
|
21. Norgall, S., Papoutsi, M., Rössler, J., Schweigerer, L.,
Wilting, J. and Weich, H.A. (2007) Elevated expression of
VEGFR-3 in lymphatic endothelial cells from lymphangiomas. BMC
Cancer, 7: 105.
https://doi.org/10.1186/1471-2407-7-105
PMid:17584927 PMCid:PMC1925108 |
|
22. Hajra, L., Evans, A.I., Chen, M., Hyduk, S.J., Collins, T.
and Cybulsky, M.I. (2000) The NF-kappa B signal transduction
pathway in aortic endothelial cells is primed for activation
in regions predisposed to atherosclerotic lesion formation.
Proc. Natl. Acad. Sci. U S A., 97(16): 9052-9057.
https://doi.org/10.1073/pnas.97.16.9052 |
|
23. Bennett, J.S. (2005) Structure and function of the
platelet integrin alphaIIbbeta3. J. Clin. Invest., 115(12):
3363-3369.
https://doi.org/10.1172/JCI26989
PMid:16322781 PMCid:PMC1297263 |
|
24. Cohen, M. (2014) Tulsi-Ocimum sanctum: A herb for all
reasons. J. Ayurveda Integr. Med., 5(4): 251.
https://doi.org/10.4103/0975-9476.146554 |
|
25. Devi, P.U., Bisht, K.S. and Vinitha, M. (1998) A
comparative study of radioprotection by Ocimum flavonoids and
synthetic aminothiol protectors in the mouse. Br. J. Radiol.,
71(847): 782-784.
https://doi.org/10.1259/bjr.71.847.9771390
PMid:9771390 |
|
26. Mondal, S., Mirdha, B.R. and Mahapatra, S.C. (2009) The
science behind sacredness of Tulsi (Ocimum sanctum Linn.).
Indian J. Physiol. Pharmacol., 53(4): 291-306.
PMid:20509321 |
|
27. Weksler, B., Romero, I.A. and Couraud, P.O. (2013) The
hCMEC/D3 cell line as a model of the human blood brain
barrier. Fluids Barriers CNS., 10(1): 16.
https://doi.org/10.1186/2045-8118-10-16 |
|
28. Janzer, R.C. and Raff, M.C. (1987) Astrocytes induce
blood-brain barrier properties in endothelial cells. Nature,
325: 253-257.
https://doi.org/10.1038/325253a0
PMid:3543687 |
|
29. Cabezas, R., Avila, M., Gonzalez, J., El-Bachá, R.S., Báez,
E., García-Segura, L.M., Coronel, J.C.J., Capani, F.,
Cardona-Gomez, G.P. and Barreto, G.E. (2014) Astrocytic
modulation of blood brain barrier: Perspectives on Parkinson's
disease. Front. Cell. Neurosci., 8: 211.
https://doi.org/10.3389/fncel.2014.00211
PMid:25136294 PMCid:PMC4120694 |
|
30. Abbott, N.J., Rönnbäck, L. and Hansson, E. (2006)
Astrocyte–endothelial interactions at the blood-brain barrier.
Nat. Rev. Neurosci., 7(1): 41-53.
https://doi.org/10.1038/nrn1824
PMid:16371949 |
|
31. Badder S, Klein J. Diener M (2014) Choline
acetyltransferase and organic cation transportes are
responsible for synthesis and propionate-induced release of
acetylcholine in colon epithelium. Eur. J. Pharmacol 733:23-33
.
https://doi.org/10.1016/j.ejphar.2014.03.036
PMid:24698650 |
|
32. Lips, K.S., Lührmann, A., Tschernig, T., Stoeger, T.,
Alessandrini, F., Grau, V. Haberberger RV, Kopesell H, Pabst
R, and Kummer W (2007) Down-regulation of the non-neuronal
acetylcholine synthesis and release machinery in acute
allergic airway inflammation of rat and mouse. Life Sci.,
80(24-25): 2263-2269.
https://doi.org/10.1016/j.lfs.2007.01.026
PMid:17328924 |
|
33. Hannan, J.M.A., Marenah, L., Ali, L., Rokeya, B., Flatt,
P.R. and Abdel-Wahab, Y.H.A. (2006) Ocimum sanctum leaf
extracts stimulate insulin secretion from perfused pancreas,
isolated islets and clonal pancreatic beta-cells. J.
Endocrinol., 189(1): 127-136.
https://doi.org/10.1677/joe.1.06615
PMid:16614387 |
|
34. Khanna, A., Shukla, P. and Tabassum, S. (2011) Role of
Ocimum sanctum as a genoprotective agent on chlorpyrifos-induced
genotoxicity. Toxicol. Int., 18(1): 9-13.
https://doi.org/10.4103/0971-6580.75845
PMid:21430913 PMCid:PMC3052594 |
|
35. Bader, S., Klein, J. and Diener, M. (2014) Choline
acetyltransferase and organic cation transporters are
responsible for synthesis and propionate-induced release of
acetylcholine in colon epithelium. Eur. J. Pharmacol., 733(1):
23-33.
https://doi.org/10.1016/j.ejphar.2014.03.036
PMid:24698650 |
|
36. Lips, K.S., Brüggmann, D., Pfeil, U., Vollerthun, R.,
Grando, S.A. and Kummer, W. (2005) Nicotinic acetylcholine
receptors in rat and human placenta. Placenta, 26(10):
735-746.
https://doi.org/10.1016/j.placenta.2004.10.009
PMid:16226123 |
|
37. Lips, K.S., Pfeil, U., Reiners, K., Rimasch, C.,
Kuchelmeister, K., Braun-Dullaeus, R.C., Haberberger, R.V.,
Schmidt, R. and Kummer, W. (2016) Expression of the
high-affinity choline transporter CHT1 in rat and human
arteries. J. Histochem. Cytochem., 51(12): 1645-1654.
https://doi.org/10.1177/002215540305101208 |
|
38. Armstrong, D.M. (1986) Ultrastructural characterization of
choline acetyltransferase-containing neurons in the basal
forebrain of rat: Evidence for a cholinergic innervation of
intracerebral blood vessels. J. Comp. Neurol., 250(1): 81-92.
https://doi.org/10.1002/cne.902500108
PMid:3734170 |
|
39. Kirkpatrick, C.J., Bittinger, F., Nozadze, K. and Wessler,
I. (2003) Expression and function of the non-neuronal
cholinergic system in endothelial cells. Life Sci., 72(18-19):
2111-2116.
https://doi.org/10.1016/S0024-3205(03)00069-9 |
|
40. Lan, C.T., Shieh, J.Y., Wen, C.Y., Tan, C.K. and Ling, E.A.
(1996) Ultrastructural localization of acetylcholinesterase
and choline acetyltransferase in oligodendrocytes, glioblasts
and vascular endothelial cells in the external cuneate nucleus
of the gerbil. Anat. Embryol., 194(2): 177-185.
https://doi.org/10.1007/bf00195011 |
|
41. Arnerić, S.P., Honig, M.A., Milner, T.A., Greco, S.,
Iadecola, C. and Reis, D.J. (1988) Neuronal and endothelial
sites of acetylcholine synthesis and release associated with
microvessels in rat cerebral cortex: Ultrastructural and
neurochemical studies. Brain Res., 454(1-2): 11-30.
https://doi.org/10.1016/0006-8993(88)90799-8 |
|
42. Yasuhara, O., Matsuo, A., Bellier, J.P. and Aimi, Y.
(2006) Demonstration of choline acetyltransferase of a
peripheral type in the rat heart. J. Histochem. Cytochem.,
55(3): 287-299.
https://doi.org/10.1369/jhc.6A7092.2006
PMid:17142806 |
|
43. Iwamoto, K., Mata, D., Linn, D.M. and Linn, C.L. (2013)
Neuroprotection of rat retinal ganglion cells mediated through
alpha7 nicotinic acetylcholine receptors. Neuroscience, 237:
184-198.
https://doi.org/10.1016/j.neuroscience.2013.02.003
PMid:23402849 PMCid:PMC3609885 |
|