Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 03-12-2016)

3. Ocimum sanctum Linn. stimulate the expression of choline acetyltransferase on the human cerebral microvascular endothelial cells - Dwi Liliek Kusindarta, Hevi Wihadmadyatami and Aris Haryanto

Veterinary World, 9(12): 1348-1354

 

 

   doi: 10.14202/vetworld.2016.1348-1354

 

Dwi Liliek Kusindarta: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; indarta@ugm.ac.id

Hevi Wihadmadyatami: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; heviwihadmadyatami@ugm.ac.id

Aris Haryanto: Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; arisharyanto@yahoo.com

 

Received: 12-06-2016, Accepted: 13-10-2016, Published online: 03-12-2016

 

Corresponding author: Dwi Liliek Kusindarta, e-mail: indarta@ugm.ac.id


Citation: Kusindarta DL, Wihadmadyatami H, Haryanto A (2016) Ocimum sanctum Linn. stimulate the expression of choline acetyltransferase on the human cerebral microvascular endothelial cells, Veterinary World, 9(12): 1348-1354.



Aim: This research was conducted to identify the expression of choline acetyltransferase (ChAT) in human cerebral microvascular endothelial cells (HCMECs) and to clarify the capability of Ocimum sanctum Linn. ethanolic extract to stimulate the presence of ChAT in the aging HCMECs.

Materials and Methods: In this study, we perform an in vitro analysis some in the presence of an ethanolic extract of O. sanctum Linn. as a stimulator for the ChAT expression. HCMECs are divided become two groups, the first is in low passage cells as a model of young aged and the second is in a high passage as a model of aging. Furthermore to analysis the expression of ChAT without and with extract treatments, immunocytochemistry and flow cytometry analysis were performed. In addition, ChAT sandwich enzyme-linked immunosorbent assay is developed to detect the increasing activity of the ChAT under normal, and aging HCMECs on the condition treated and untreated cells.

Results: In our in vitro models using HCMECs, we found that ChAT is expressed throughout intracytoplasmic areas. On the status of aging, the ethanolic extract from O. sanctum Linn. is capable to stimulate and restore the expression of ChAT. The increasing of ChAT expression is in line with the increasing activity of this enzyme on the aging treated HCMECs.

Conclusions: Our observation indicates that HCMECs is one of the noncholinergic cells which is produced ChAT. The administrated of O. sanctum Linn. ethanolic extract may stimulate and restore the expression of ChAT on the deteriorating cells of HCMECs, thus its may give nerve protection and help the production of acetylcholine.

Keywords: choline acetyltransferase, human cerebral microvascular endothelial cells, Ocimum sanctum Linn.



1. Glisky El (2007) Changes in cognitive function in human aging. In Riddle DR, editor. Brain Aging : Models, Methods, and Mechanism. Boca Raton (FL): CRC Press/Taylor & Francis. Chapter I.
 
2. Prince, M. and Jackson, J. (2009) World Alzheimer Report 2009. Alzheimer's Disease International, London. p1-96.
PMCid:PMC2834500
 
3. Takeuchi, T., Duszkiewicz, A.J. and Morris, R.G. (2014) The synaptic plasticity and memory hypothesis: Encoding, storage and persistence. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 369(1633): 20130288.
https://doi.org/10.1098/rstb.2013.0288
PMid:24298167 PMCid:PMC3843897
 
4. Mangina, C.A. and Sokolov, E.N. (2006) Neuronal plasticity in memory and learning abilities: Theoretical position and selective review. Int. J. Psychophysiol., 60(3): 203-214.
https://doi.org/10.1016/j.ijpsycho.2005.11.004
PMid:16387375
 
5. Blokland, A. (1995) Acetylcholine: A neurotransmitter for learning and memory? Brain Res. Rev., 21(3): 285-300.
https://doi.org/10.1016/0165-0173(95)00016-X
 
6. Hasselmo, M.E. (2006) The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol., 16(6): 710-715.
https://doi.org/10.1016/j.conb.2006.09.002
PMid:17011181 PMCid:PMC2659740
 
7. Nunes-Tavares, N., Santos, L.E., Stutz, B., Brito-Moreira, J., Klein, W.L., Ferreiram S.T. and de Mello, F.G. (2012) Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-? peptide oligomers. J. Biol. Chem., 287(23): 19377-19385.
https://doi.org/10.1074/jbc.M111.321448
PMid:22505713 PMCid:PMC3365976
 
8. Oda, Y. (1999) Choline acetyltransferase: The structure, distribution and pathologic changes in the central nervous system. Pathol. Int., 49(11): 921-937.
https://doi.org/10.1046/j.1440-1827.1999.00977.x
 
9. Ichikawa, T., Ajiki, K., Matsuura, J. and Misawa, H. (1997) Localization of two cholinergic markers, choline acetyltransferase and vesicular acetylcholine transporter in the central nervous system of the rat: In situ hybridization histochemistry and immunohistochemistry. J. Chem. Neuroanat., 13(1): 23-39.
https://doi.org/10.1016/S0891-0618(97)00021-5
 
10. Tang, F., Nag, S., Shiu, S.Y.W. and Pang, S.F. (2002) The effects of melatonin and Ginkgo biloba extract on memory loss and choline acetyltransferase activities in the brain of rats infused intracerebroventricularly with h-amyloid 1-40. Life Sci., 71: 2625-2631.
https://doi.org/10.1016/S0024-3205(02)02105-7
 
11. Raut, S., Rege, N., Malve, H. and Marathe, P. (2014) Effect of combination of Phyllanthus emblica, Tinospora cordifolia, and Ocimum sanctum on spatial learning and memory in rats. J. Ayurveda Integr. Med., 5(4): 209.
https://doi.org/10.4103/0975-9476.146564
 
12. Kadian, R., Parle, M., Noida, G. and Division, P. (2012) Therapeutic potential and phytopharmacology of tulsi. Int. J. Pharm. Life Sci., 3(7): 1858-1867.
 
13. Gupta, S.K., Prakash, J. and Srivastava, S. (2002) Validation of traditional claim of Tulsi, Ocimum sanctum Linn. As a medicinal plant. Indian J. Exp. Biol., 40(7): 765-773.
PMid:12597545
 
14. Ramesh, B. and Satakopan, V.N. (2010) Antioxidant activities of hydroalcoholic extract of Ocimum sanctum against cadmium induced toxicity in rats. Indian J. Clin. Biochem., 25(3): 307-310.
https://doi.org/10.1007/s12291-010-0039-5
PMid:21731203 PMCid:PMC3001835
 
15. Uma, D.P. (2001) Radioprotective, anticarcinogenic and antioxidant properties of the Indian holy basil, Ocimum sanctum (Tulasi). Indian J. Exp. Biol., 39(3): 185-190.
 
16. Jagetia, G.C. (2007) Radioprotective potential of plants and herbs against the effects of ionizing radiation. J. Clin. Biochem. Nutr., 40(2): 74-81.
https://doi.org/10.3164/jcbn.40.74
PMid:18188408 PMCid:PMC2127223
 
17. Adhvaryu, M.R., Reddy, N. and Parabia, M.H. (2008) Anti-tumor activity of four Ayurvedic herbs in Dalton lymphoma ascites bearing mice and their short-term in vitro cytotoxicity on DLA-cell-line. Afr. J. Tradit. Complement. Altern. Med. Afr. Networks Ethnomed., 5(4): 409-418.
https://doi.org/10.4314/ajtcam.v5i4.31297
 
18. Venuprasad, M.P., Kumar, K.H. and Khanum, F. (2013) Neuroprotective effects of hydroalcoholic extract of Ocimum sanctum against H2O2 induced neuronal cell damage in SH-SY5Y cells via its antioxidative defence mechanism. Neurochem. Res., 38(10): 2190-2200.
https://doi.org/10.1007/s11064-013-1128-7
PMid:23996399
 
19. Porter, N.M., Thibault, O., Thibault, V., Chen, K.C. and Landfield, P.W. (1997) Calcium channel density and hippocampal cell death with age in long-term culture. J. Neurosci., 17(14): 5629-5639.
PMid:9204944
 
20. Schneider, E.L., Sternberg, H., Tice, R.R., Senula, G.C., Kram, D., Smith, J.R. and Bynum, G. (1979) Cellular replication and aging. Mech. Ageing Dev., 9: 313-324.
https://doi.org/10.1016/0047-6374(79)90108-8
 
21. Norgall, S., Papoutsi, M., Rössler, J., Schweigerer, L., Wilting, J. and Weich, H.A. (2007) Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas. BMC Cancer, 7: 105.
https://doi.org/10.1186/1471-2407-7-105
PMid:17584927 PMCid:PMC1925108
 
22. Hajra, L., Evans, A.I., Chen, M., Hyduk, S.J., Collins, T. and Cybulsky, M.I. (2000) The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl. Acad. Sci. U S A., 97(16): 9052-9057.
https://doi.org/10.1073/pnas.97.16.9052
 
23. Bennett, J.S. (2005) Structure and function of the platelet integrin alphaIIbbeta3. J. Clin. Invest., 115(12): 3363-3369.
https://doi.org/10.1172/JCI26989
PMid:16322781 PMCid:PMC1297263
 
24. Cohen, M. (2014) Tulsi-Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 5(4): 251.
https://doi.org/10.4103/0975-9476.146554
 
25. Devi, P.U., Bisht, K.S. and Vinitha, M. (1998) A comparative study of radioprotection by Ocimum flavonoids and synthetic aminothiol protectors in the mouse. Br. J. Radiol., 71(847): 782-784.
https://doi.org/10.1259/bjr.71.847.9771390
PMid:9771390
 
26. Mondal, S., Mirdha, B.R. and Mahapatra, S.C. (2009) The science behind sacredness of Tulsi (Ocimum sanctum Linn.). Indian J. Physiol. Pharmacol., 53(4): 291-306.
PMid:20509321
 
27. Weksler, B., Romero, I.A. and Couraud, P.O. (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS., 10(1): 16.
https://doi.org/10.1186/2045-8118-10-16
 
28. Janzer, R.C. and Raff, M.C. (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature, 325: 253-257.
https://doi.org/10.1038/325253a0
PMid:3543687
 
29. Cabezas, R., Avila, M., Gonzalez, J., El-Bachá, R.S., Báez, E., García-Segura, L.M., Coronel, J.C.J., Capani, F., Cardona-Gomez, G.P. and Barreto, G.E. (2014) Astrocytic modulation of blood brain barrier: Perspectives on Parkinson's disease. Front. Cell. Neurosci., 8: 211.
https://doi.org/10.3389/fncel.2014.00211
PMid:25136294 PMCid:PMC4120694
 
30. Abbott, N.J., Rönnbäck, L. and Hansson, E. (2006) Astrocyte–endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci., 7(1): 41-53.
https://doi.org/10.1038/nrn1824
PMid:16371949
 
31. Badder S, Klein J. Diener M (2014) Choline acetyltransferase and organic cation transportes are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium. Eur. J. Pharmacol 733:23-33 .
https://doi.org/10.1016/j.ejphar.2014.03.036
PMid:24698650
 
32. Lips, K.S., Lührmann, A., Tschernig, T., Stoeger, T., Alessandrini, F., Grau, V. Haberberger RV, Kopesell H, Pabst R, and Kummer W (2007) Down-regulation of the non-neuronal acetylcholine synthesis and release machinery in acute allergic airway inflammation of rat and mouse. Life Sci., 80(24-25): 2263-2269.
https://doi.org/10.1016/j.lfs.2007.01.026
PMid:17328924
 
33. Hannan, J.M.A., Marenah, L., Ali, L., Rokeya, B., Flatt, P.R. and Abdel-Wahab, Y.H.A. (2006) Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic beta-cells. J. Endocrinol., 189(1): 127-136.
https://doi.org/10.1677/joe.1.06615
PMid:16614387
 
34. Khanna, A., Shukla, P. and Tabassum, S. (2011) Role of Ocimum sanctum as a genoprotective agent on chlorpyrifos-induced genotoxicity. Toxicol. Int., 18(1): 9-13.
https://doi.org/10.4103/0971-6580.75845
PMid:21430913 PMCid:PMC3052594
 
35. Bader, S., Klein, J. and Diener, M. (2014) Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium. Eur. J. Pharmacol., 733(1): 23-33.
https://doi.org/10.1016/j.ejphar.2014.03.036
PMid:24698650
 
36. Lips, K.S., Brüggmann, D., Pfeil, U., Vollerthun, R., Grando, S.A. and Kummer, W. (2005) Nicotinic acetylcholine receptors in rat and human placenta. Placenta, 26(10): 735-746.
https://doi.org/10.1016/j.placenta.2004.10.009
PMid:16226123
 
37. Lips, K.S., Pfeil, U., Reiners, K., Rimasch, C., Kuchelmeister, K., Braun-Dullaeus, R.C., Haberberger, R.V., Schmidt, R. and Kummer, W. (2016) Expression of the high-affinity choline transporter CHT1 in rat and human arteries. J. Histochem. Cytochem., 51(12): 1645-1654.
https://doi.org/10.1177/002215540305101208
 
38. Armstrong, D.M. (1986) Ultrastructural characterization of choline acetyltransferase-containing neurons in the basal forebrain of rat: Evidence for a cholinergic innervation of intracerebral blood vessels. J. Comp. Neurol., 250(1): 81-92.
https://doi.org/10.1002/cne.902500108
PMid:3734170
 
39. Kirkpatrick, C.J., Bittinger, F., Nozadze, K. and Wessler, I. (2003) Expression and function of the non-neuronal cholinergic system in endothelial cells. Life Sci., 72(18-19): 2111-2116.
https://doi.org/10.1016/S0024-3205(03)00069-9
 
40. Lan, C.T., Shieh, J.Y., Wen, C.Y., Tan, C.K. and Ling, E.A. (1996) Ultrastructural localization of acetylcholinesterase and choline acetyltransferase in oligodendrocytes, glioblasts and vascular endothelial cells in the external cuneate nucleus of the gerbil. Anat. Embryol., 194(2): 177-185.
https://doi.org/10.1007/bf00195011
 
41. Arnerić, S.P., Honig, M.A., Milner, T.A., Greco, S., Iadecola, C. and Reis, D.J. (1988) Neuronal and endothelial sites of acetylcholine synthesis and release associated with microvessels in rat cerebral cortex: Ultrastructural and neurochemical studies. Brain Res., 454(1-2): 11-30.
https://doi.org/10.1016/0006-8993(88)90799-8
 
42. Yasuhara, O., Matsuo, A., Bellier, J.P. and Aimi, Y. (2006) Demonstration of choline acetyltransferase of a peripheral type in the rat heart. J. Histochem. Cytochem., 55(3): 287-299.
https://doi.org/10.1369/jhc.6A7092.2006
PMid:17142806
 
43. Iwamoto, K., Mata, D., Linn, D.M. and Linn, C.L. (2013) Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors. Neuroscience, 237: 184-198.
https://doi.org/10.1016/j.neuroscience.2013.02.003
PMid:23402849 PMCid:PMC3609885