Open Access
Research
(Published
online:
03-02-2016)
1.
Effect of heat shock protein 70
polymorphism on thermotolerance in Tharparkar cattle -
Sandip Bhat, Pushpendra Kumar, Neeraj Kashyap, Bharti Deshmukh,
Mahesh Shivanand Dige, Bharat Bhushan, Anuj Chauhan, Amit Kumar
and Gyanendra Singh
Veterinary World, 9(2): 113-117
doi:
10.14202/vetworld.2016.113-117
Sandip Bhat:
Division of Animal Genetics, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India; sandipivri@gmail.com
Pushpendra Kumar:
Division of Animal Genetics, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India; pushpendra64@gmail.com
Neeraj Kashyap:
Division of Animal Genetics, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India; neeraj.vety@gmail.com
Bharti Deshmukh:
Department of Animal Genetics and Breeding, Govind Ballabh Pant
University of Agriculture and Technology, Pantnagar, Uttarakhand,
India; bharti.vet@gmail.com
Mahesh Shivanand Dige:
Division of Animal Genetics, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India; maheshdige@gmail.com
Bharat Bhushan:
Division of Animal Genetics, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India; bbhushan_ivri2003@yahoo.co.in
Anuj Chauhan:
Division of Animal Genetics, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India; anuj_vet99@rediffmail.com
Amit Kumar:
Division of Animal Genetics, Indian Veterinary Research
Institute, Izatnagar, Uttar Pradesh, India; vetamitchandan07@gmail.com
Gyanendra Singh:
Division of Physiology and Climatology, Indian Veterinary
Research Institute, Izatnagar, Uttar Pradesh, India; gyanendra@ivri.res.in
Received: 17-05-2015, Revised: 05-12-2015, Accepted: 18-12-2015,
Published online: 03-02-2016
Corresponding author:
Sandip Bhat, e-mail: sandipivri@gmail.com
Citation:
Bhat S, Kumar P, Kashyap N, Deshmukh B, Dige MS, Bhushan B,
Chauhan A, Kumar A, Singh G (2016) Effect of heat shock protein
70 polymorphism on thermotolerance in Tharparkar cattle,
Veterinary World 9(2):
113-117.
Abstract
Aim:
Out of various members of heat shock protein (HSP) superfamily
which act a molecular chaperon by binding to the denaturing
protein thus stabilizing them and preserving their activity,
HSP70 are of major importance in thermotolerance development.
Thus, present investigation aimed at a screening of HSP70 gene
for polymorphisms and possible differences in thermotolerance in
Tharparkar breed of cattle.
Materials and Methods:
A 295 bp fragment of HSP70 gene was subjected to polymerase
chain reaction-singlestrand conformation polymorphism (SSCP)
followed by sequencing of different SSCP patterns in 64
Tharparkar cattle. A comparative thermotolerance of identified
genotypes was analyzed using heat tolerance coefficients (HTCs)
of animals for different seasons.
Results:
Three SSCP patterns and consequently two alleles namely A and B
were documented in one fragment of HSP70 gene. On sequencing,
one single-nucleotide polymorphism with G > T substitution was
found at a position that led to a change of amino acid aspartate
to tyrosine in allele A. It was found that in maintaining near
normal average rectal temperature, genotype AA was superior
(p≤0.01). Genotype AA, thus, was found to be most thermotolerant
genotype with the highest HTC (p≤0.01).
Conclusion:
The polymorphism at HSP70 is expected to be a potent determinant
for heat tolerance in cattle, which may aid in selection for
thermotolerance in cattle.
Keywords:
cattle, heat tolerance, heat shock protein 70, polymorphism,
Tharparkar.
References
1. David, K., Murgo, A.J. and Faith, R.E. (1990) Effects of
stress on the immune system. Immunol. Today, 11(10): 348. |
|
2. Tao, S., Monteiro, A., Thompson, I., Hayen, M. and Dahl,
G. (2012) Effect of late-gestation maternal heat stress on
growth and immune function of dairy calves. J. Dairy Sci.,
95(12): 7128-7136.
http://dx.doi.org/10.3168/jds.2012-5697
PMid:23021751 |
|
3. Boonkum, W., Misztal, I., Duangjinda, M., Pattarajinda,
V., Tumwasorn, S. and Sanpote, J. (2011) Genetic effects of
heat stress on milk yield of Thai Holstein crossbreds. J.
Dairy Sci., 94(1): 487-492.
http://dx.doi.org/10.3168/jds.2010-3421
PMid:21183060 |
|
4. Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A.,
Lacetera, N. and Nardone, A. (2014) The effects of heat
stress in Italian Holstein dairy cattle. J. Dairy Sci.,
97(1): 471-486.
http://dx.doi.org/10.3168/jds.2013-6611
PMid:24210494 |
|
5. Avenda-o-Reyes, L., Fuquay, J.W., Moore, R.B., Liu, Z.,
Clark, B.L. and Vierhout, C. (2010) Relationship between
accumulated heat stress during the dry period, body
condition score, and reproduction parameters of Holstein
cows in tropical conditions. Trop. Anim. Health Prod.,
42(2): 265-273.
http://dx.doi.org/10.1007/s11250-009-9415-7
PMid:19680774 |
|
6. Ferreira, R., Ayres, H., Chiaratti, M., Ferraz, M.,
Araújo, A., Rodrigues, C., Watanabe, Y., Vireque, A.,
Joaquim, D. and Smith, L. (2011) The low fertility of
repeat-breeder cows during summer heat stress is related to
a low oocyte competence to develop into blastocysts. J.
Dairy Sci., 94(5): 2383-2392.
http://dx.doi.org/10.3168/jds.2010-3904
PMid:21524528 |
|
7. Carroll, J., Burdick, N., Chase, C., Coleman, S. and
Spiers, D. (2012) Influence of environmental temperature on
the physiological, endocrine, and immune responses in
livestock exposed to a provocative immune challenge. Domest.
Anim. Endocrinol., 43(2): 146-153.
http://dx.doi.org/10.1016/j.domaniend.2011.12.008
PMid:22425434 |
|
8. Dikmen, S., Alava, E., Pontes, E., Fear, J.M., Dikmen,
B.Y., Olson, T.A. and Hansen, P.J. (2008) Differences in
thermoregulatory ability between slick-haired and wild-type
lactating Holstein cows in response to acute heat stress. J.
Dairy Sci., 91(9): 3395-3402.
http://dx.doi.org/10.3168/jds.2008-1072
PMid:18765598 |
|
9. Liu, Y.X., Li, D.Q., Li, H.X., Zhou, X. and Wang, G.L.
(2011) A novel SNP of the ATP1A1 gene is associated with
heat tolerance traits in dairy cows. Mol. Biol. Rep., 38(1):
83-88.
http://dx.doi.org/10.1007/s11033-010-0080-8
PMid:20336380 |
|
10. Kashyap, N., Kumar, P., Deshmukh, B., Dige, M.S., Sarkar,
M., Kumar, A., Chauhan, A. and Singh, G. (2014) Influence of
ambient temperature and humidity on ATP I Al gene expression
in Tharparkar and Vrindavani cattle. Indian J. Anim. Res.,
48(6): 541-544.
http://dx.doi.org/10.5958/0976-0555.2014.00028.4 |
|
11. Wang, Z., Wang, G., Huang, J., Li, Q., Wang, C. and
Zhong, J. (2011) Novel SNPs in the ATP1B2 gene and their
associations with milk yield, milk composition and
heat-resistance traits in Chinese Holstein cows. Mol. Biol.
Rep., 38(3): 1749-1755.
http://dx.doi.org/10.1007/s11033-010-0289-6
PMid:20842439 |
|
12. Yang, M., Tan, H., Yang, Q.L., Wang, F., Yao, H.L., Wei,
Q.Y., Tanguay, R.M. and Wu, T.C. (2006) Association of HSP70
polymorphisms with risk of noise-induced hearing loss in
Chinese automobile workers. Cell Stress Chaperon, 11:
233-239.
http://dx.doi.org/10.1379/CSC-192R.1
PMCid:PMC1576471 |
|
13. Ellis, R.J. (1987) Proteins as molecular chaperones.
Nat. Insects, 328: 378-379.
http://dx.doi.org/10.1038/328378a0 |
|
14. Lindquist, S. and Craig, D. (1988) The heat shock
proteins. Annu. Rev. Genet., 22: 631-677.
http://dx.doi.org/10.1146/annurev.ge.22.120188.003215
PMid:2853609 |
|
15. Parsell, D.A. and Lindquist, S. (1993) The function of
heat-shock proteins in stress tolerance: Degradation and
reactivation of damaged proteins. Annu. Rev. Genet., 27:
437-496.
http://dx.doi.org/10.1146/annurev.ge.27.120193.002253
PMid:8122909 |
|
16. Neuer, A., Spandorfer, S.D., Giraldo, P., Dieterle, S.,
Rosenwaks1, Z. and Witkin, S.S. (2000) The role of heat
shock proteins in reproduction. Eur. Soc. Hum. Reprod.
Embryol., 6(2): 149-159.
http://dx.doi.org/10.1093/humupd/6.2.149 |
|
17. Garrido, C., Gurbuxani, S., Ravagnan, L. and Kroemer, G.
(2001) Heat shock proteins: Endogenous modulators of
apoptotic cell death. Biochem. Biophys. Res. Commun., 286:
433-442.
http://dx.doi.org/10.1006/bbrc.2001.5427
PMid:11511077 |
|
18. Tsuruma, T., Yaagihashi, A., Matsuno, T., Zou, X.N. and
Hirata, K. (1996) The heat shock protein 70 family reduces
ischemia reperfusion injury in small intestine. Trans.
Process, 28: 2629-2630. |
|
19. Yenari, M.A., Gffard, R.G., Sapolsky, R.N. and
Steinberg, G.K. (1999) The neuroprotective potential of heat
shock protein 70. Mol. Med. Today, 5: 525-531.
http://dx.doi.org/10.1016/S1357-4310(99)01599-3 |
|
20. Beck, F., Neuhafer, W. and Nuller, E. (2000) Molecular
chaperones in the kidney: Distribution, putative roles and
regulation. Am. J. Physiol., 279: F203-F215. |
|
21. Luft, J.E. and Disc, D.J. (1999) HSP 70 expression and
function during embryogenesis. Cell Stress Chaperon, 43:
162-170.
http://dx.doi.org/10.1379/1466-1268(1999)004<0162:HEAFDE>2.3.CO;2 |
|
22. Hansen, P.J. (2004) Physiological and cellular
adaptations of zebu cattle to thermal stress. Anim. Reprod.
Sci., 82: 349-360.
http://dx.doi.org/10.1016/j.anireprosci.2004.04.011
PMid:15271465 |
|
23. Adamowicz, T., Pers, E. and Lechniak, D. (2005) A new
SNP in the 3' -UTR of the HSP 70-1 gene in Bos taurus and
Bos indicus. Biochem. Genet., 43: 623-627.
http://dx.doi.org/10.1007/s10528-005-9119-2
PMid:16382367 |
|
24. Li, Q., Han, J., Du, F., Ju, Z., Huang, J., Wang, J.,
Li, R., Wang, C. and Zhong, J. (2011) Novel SNPs in HSP70A1A
gene and the association of polymorphisms with thermo
tolerance traits and tissue specific expression in Chinese
Holstein cattle. Mol. Biol. Rep., 38(4): 2657-2663.
http://dx.doi.org/10.1007/s11033-010-0407-5
PMid:21082257 |
|
25. Lamb, M., Okimoto, R., Broun, M. and Rosenkranes, C.,
Jr. (2007) Associations between cattle breed and heat shock
protein 70 gene. Res. Ser., 545: 205-206. |
|
26. Green, M.R. and Sambrook, J. (2012) Molecular Cloning: A
Laboratory Manual. Cold Spring Harbor, New York, USA. |
|
27. Bassam, B.J., Caetano-Anollés, G. and Gresshoff, P.M.
(1991) Fast and sensitive silver staining of DNA in
polyacrylamide gels. Anal. Biochem., 196(1): 80-83.
http://dx.doi.org/10.1016/0003-2697(91)90120-I |
|
28. McDowell, R.E., Hooven, N.W. and Camoens, J.K. (1976)
Effect of climate on performance of Holsteins in first
lactation. J. Dairy Sci., 59(5): 965-971.
http://dx.doi.org/10.3168/jds.S0022-0302(76)84305-6 |
|
29. Rhoad, A.O. (1944) The Iberia heat tolerance test for
cattle. Trop. Agric., 21(9): 162-164. |
|
30. Kregel, K.C. (2002) Invited review: Heat shock proteins:
Modifying factors in physiological stress responses and
acquired thermotolerance. J. Appl. Physiol., 92(5):
2177-2186.
http://dx.doi.org/10.1152/japplphysiol.01267.2001
PMid:11960972 |
|
31. Omar, E.A., Kirrella, A.K., Fawzy, S.A. and El-Keraby,
F. (1996) Effect of water spray followed by forced
ventilation on some physiological status and milk production
of post-calving Friesian cows. Alex. J. Agric. Res., 41:
71-81. |
|
32. Basiricò, L., Morera, P., Primi, V., Lacetera, N.,
Nardone, A. and Bernabucci, U. (2011) Cellular
thermotolerance is associated with heat shock protein 70.1
genetic polymorphisms in Holstein lactating cows. Cell
Stress Chaperon, 16(4): 441-448.
http://dx.doi.org/10.1007/s12192-011-0257-7
PMid:21274669 PMCid:PMC3118824 |
|
33. Xiong, Q., Chai, J., Xiong, H., Li, W., Huang, T., Liu,
Y., Suo, X., Zhang, N., Li, X. and Jiang, S. (2013)
Association analysis of HSP70A1A haplotypes with heat
tolerance in Chinese Holstein cattle. Cell Stress Chaperon,
18(6): 711-718.
http://dx.doi.org/10.1007/s12192-013-0421-3
PMid:23543596 PMCid:PMC3789873 |
|