Open Access
Research
(Published
online:
08-02-2016)
5.
Developmental neurotoxicity of
monocrotophos and lead is linked to thyroid disruption -
B. Kala Kumar, A. Gopala Reddy, A. Vamsi Krishna, S. S. Y. H.
Quadri and P. Shiva Kumar
Veterinary World, 9(2): 133-141
doi:
10.14202/vetworld.2016.133-141
B. Kala Kumar:
Department of Veterinary Pharmacology & Toxicology, College of
Veterinary Science, Sri P.V. Narsimha Rao Telangana State
University for Veterinary, Animal and Fishery Science, Hyderabad
- 500 030, Telangana, India; bkalakumar@rediffmail.com
A. Gopala Reddy:
Department of Veterinary Pharmacology & Toxicology, College of
Veterinary Science, Sri P.V. Narsimha Rao Telangana State
University for Veterinary, Animal and Fishery Science, Hyderabad
- 500 030, Telangana, India; gopalaredddy123@rediffmail.com
A. Vamsi Krishna:
Department of Bio-technology, Ministry of Science & Technology,
New Delhi, India; vk.addanki@nic.in
S. S. Y. H. Quadri:
Department of Pathology, National Institute of Nutrition (ICMR),
Hyderabad, Telangana, India; ssyhq@yahoo.com
P. Shiva Kumar:
Sri P.V. Narsimha Rao Telangana State University for Veterinary,
Animal and Fishery Science, Hyderabad - 500 030, Telangana,
India; drshiva40@gmail.com
Received: 01-08-2015, Revised: 14-12-2015, Accepted: 25-12-2015,
Published online: 08-02-2016
Corresponding author:
P. Shiva Kumar, e-mail: drshiva40@gmail.com
Citation:
Kumar BK, Reddy AG, Krishna AV, Quadri SSYH, Kumar PS (2016)
Developmental neurotoxicity of monocrotophos and lead is linked
to thyroid disruption,
Veterinary World 9(2):
133-141.
Abstract
Aim:
A
role of thyroid disruption in developmental neurotoxicity of
monocrotophos (MCP) and lead is studied.
Materials and Methods:
A
total of 24 female rats after conception were randomized into
four groups of six each and treated as follows: Group I - Sham
was administered distilled water orally. Group II - A positive
control was administered methyl methimazole at 0.02% orally in
drinking water. Group III - MCP orally at 0.3 mg/kg and Group IV
- Lead acetate at 0.2% orally in drinking water. The drug was
administered from gestation day 3 through post-natal day 21 in
all the groups. Acetylcholinesterase (AChE) inhibition, thyroid
profile (thyroid stimulating hormone, T3 and T4),
neurodevelopment (brain wet weights, DNA, RNA and protein), and
neurobehavioral (elevated plus maze, photoactometry, and Morris
water maze) parameters were assessed in pups. A histopathology
of thyroid of dams and brain of progeny was conducted.
Results:
Inhibition of AChE was <20%. Thyroid profile decreased in the
treatment groups. Neurodevelopmental and neurobehavioral
parameters did not reveal any significant changes. Thyroid
architecture was affected significantly with MCP and lead.
Cortical layers too were affected. The three layers of
cerebellum either had abnormal arrangement or decreased
cellularity in all treated groups relating to thyroid
disruption.
Conclusion:
MCP and lead might have affected the development of cerebrum and
cerebellum via thyroid disruption leading to developmental
neurotoxicity.
Keywords:
behavioral alterations, developmental neurotoxicity, lead,
monocrotophos, thyroid disruption.
References
1. Ullah, S., Ullah, N., Rahman, K., Khan, T.M., Jadoon,
M.A. and Ahmad, T. (2014) Study on physicochemical
characterization of Konhaye Stream District Dir Lower,
Khyber Pakhtunkhwa Pakistan. World J. Fish Mar. Sci., 6(5):
461-470. |
|
2. Dey, C. and Saha, S.K. (2014) A comparative study on the
acute toxicity bioassay of dimethoate and lambda-cyhalothrin
and effects on thyroid hormones of freshwater teleost fish
Labeo rohita (Hamilton). Int. J. Environ. Res., 8(4):
1085-1092. |
|
3. Patel, J., Landers, K., Li, H., Mortimer, R.H. and
Richard, K. (2011) Thyroid hormones and fetal neurological
development. J. Endocrinol., 209: 1-8.
http://dx.doi.org/10.1530/JOE-10-0444
PMid:21212091 |
|
4. Dimitrina, Z.Z.D. (2013) Antioxidant and
acetylcholinesterase inhibition properties of Amorpha
fruticosa L. and Phytolacca americana L. Pharmacogn.Mag.,
9(34): 109-113.
http://dx.doi.org/10.4103/0973-1296.111251
PMid:23772105 PMCid:PMC3680849 |
|
5. Habib, S., Aggour, Y. and Taha, H. (2012) Downregulation
of transforming growth factor-β (TGF-β) and vascular
endothelial growth factor (VEGF) in Ehrlich ascites
carcinoma-bearing mice using stearic acid-grafted
carboxymethyl chitosan (SA-CMC). Nat. Sci., 4: 808-818. |
|
6. Adekunle, A.S., Oyewo, B.E. and Afolabi, O.K. (2012)
Therapeutic efficacy of Tapinanthus globiferus on
acetaminophen induced nephrotoxicity, inflammatory reactions
and oxidative stress in albino rats. Int. Res. J. Biochem.
Bioinformatics, 2(2): 41-45. |
|
7. Haritha, C., Gopala Reddy, A., Ramana Reddy, Y. and
Anilkumar,B. (2015) Pharmacodynamic interaction of
fenugreek, insulin and glimepiride on sero-biochemical
parameters in diabetic Sprague-Dawley rats. Vet. World,
8(5): 656-663.
http://dx.doi.org/10.14202/vetworld.2015.656-663 |
|
8. Gal, N., Kolusheva, S., Kedei, N., Telek, A., Naeem,
T.A., Lewin, N.E., Lim, L., Mannan, P., Garfield, S.H., El
Kazzouli, S., Sigano, D.M., Marquez, V.E., Blumberg, P.M.
and Jelinek, R.(2011) N-methyl-substituted fluorescent
DAG-indololactone isomers exhibit dramatic differences in
membrane interactions and biological activity. Chem.
Biochem., 12(15): 2331-2340.
http://dx.doi.org/10.1002/cbic.201100246 |
|
9. Bharani, K.K. and Reddy, K.S. (2001) Effect of
monocrotophos on development of brain in chick. Indian. J.
Vet. Med., 29: 211-212. |
|
10. Zaharan, M.M., Abdel-Aziz, K.B., Abdel-Raof, A. and
Nahas, E.M. (2005) The effect of sub-acute doses of
organophosphate nuvacron on the biochemical and cytogenetic
parameters of mice and their embryos. Res. J. Agric. Biol.
Sci., 1: 277-283. |
|
11. Syed, M.N. and Shafiullah, M. (2012) Teratogenicity and
embryotoxicity of organophosphorus compounds in animal
models - A short review. Mil. Med. Sci. Lett., 81(1): 16-26. |
|
12. Jason, R.R. and Janice, E.C. (2014) Effects of
gestational exposure to chlorpyrifos on postnatal central
and peripheral cholinergic neurochemistry. J. Toxicol.
Environ. HealthPart A., 66(3): 275-289. |
|
13. Valera, P., Zavattari, P., Albanese, S., Cicchella, D.,
Dinelli, E., Lima, A. and De Vivo, B. (2014) A correlation
study between multiple sclerosis and type 1 diabetes
incidences and geochemical data in Europe. Environ. Geochem.
Health, 36: 79-98.
http://dx.doi.org/10.1007/s10653-013-9520-4
PMid:23567975 |
|
14. Brigitte, G., Nathalie, A., Cecile, C.R., Frederic, L.,
Laurence, N. and Luc, B. (2012) Specific conditions for
resveratrol neuroprotection against ethanol-induced
toxicity. J. Toxicol., 2012: 1-12. |
|
15. Mahboob, M., Rahman, M.F., Danadevi, K., Saleha, B.B.
and Grover, P. (2002) Detection of DNA damage in mouse
peripheral blood leukocytes by the comet assay after oral
administration of monocrotophos. Drug Chem. Toxicol., 25:
65-74.
http://dx.doi.org/10.1081/DCT-100108472
PMid:11850970 |
|
16. Ozcan, O.E., Uner, N., Sevgiler, Y., Usta, D. and
Durmaz, H. (2015) Sublethal effects of organophosphate
diazinon on the brain of Cyprinus Carpio.Drug Chem.
Toxicol., 29(1): 57-67.
http://dx.doi.org/10.1080/01480540500408622
PMid:16455590 |
|
17. Deb, N., Das, S. (2013) Chlorpyrifos toxicity in fish: A
review. Curr. World Environ., 8(1): 77-84.
http://dx.doi.org/10.12944/cwe.8.1.17 |
|
18. Doliney, D.C., Weidman, J.R., Waterland, R.A. and
Jirtle, R.L. (2006) Maternal genistein alters coat colour
and protects A (vy) mouse offspring from obesity by
modifying the foetal epigenome. Environ. Health Perspect.,
114: 567-572.
http://dx.doi.org/10.1289/ehp.8700
PMCid:PMC1440782 |
|
19. Bolognesi, C., Creus, A., Ostrosky-Wegman, P. and
Marcos, R. (2011) Micronuclei and pesticide exposure.
Mutagenesis, 26(1): 19-26.
http://dx.doi.org/10.1093/mutage/geq070
PMid:21164178 |
|
20. Palus, J., Rydzynski, K., Dziubaltowska, E., Wyszynska,
K., Natarajan, A.T. and Nilsson, R. (2003) Genotoxic effects
of occupational exposure to lead and cadmium. Mutat. Res.
Genet. Toxicol. Environ. Mutagen., 540: 19-28.
http://dx.doi.org/10.1016/S1383-5718(03)00167-0 |
|
21. Qiao, D., Seidler, F.J. and Slotkin, T.A. (2001)
Developmental neurotoxicity of chlorpyrifos modeled in
vitro: Comparative effects of metabolites and other
cholinesterase inhibitors on DNA synthesis in PC12 and C6
cells. Environ. Health Perspect., 109: 909-913.
http://dx.doi.org/10.1289/ehp.01109909 |
|
22. Bernal, J., Guadano-Ferraz, A. and Morte, B. (2003)
Perspectives in the study of thyroid hormone action on brain
development and function. Thyroid, 13: 1005-1012.
http://dx.doi.org/10.1089/105072503770867174
PMid:14651784 |
|
23. Carter, W.G., Tarhoni, M., Rathbone, A.J. and Ray, D.E.
(2007) Differential protein adduction by seven OP pesticides
in both brain and thymus. Hum. Exp. Toxicol., 26: 347-353.
http://dx.doi.org/10.1177/0960327107074617
PMid:17615116 |
|
24. Zoeller, R.T. and Tan, S.W. (2007) Implications of
research on assays to characterize thyroid toxicants. Critc.
Rev. Toxicol., 37: 195-210.
http://dx.doi.org/10.1080/10408440601123578
PMid:17364709 |
|
25. Morse, D.C., Weehler, E.K., Wesseling, W., Koeman, J.H.
and Brouwer, A. (1996) Alterations in rat brain thyroid
hormone status pre and postnatal exposures to PCBs (Aroclor
1254). Toxicol. Appl. Pharmacol., 136: 269-279.
http://dx.doi.org/10.1006/taap.1996.0034
PMid:8619235 |
|
26. Alvarez-Pedrerol, M., Ribas-Fito, N., Torrent, M.,
Carrizo, D., Grimalt, J.O. and Sunyer, J. (2008) Effects of
PCBs, p,p'-DDT, p,p'-DDE, HCB and ß-HCH on thyroid function
in preschool children. Occup. Environ. Med., 65: 452-457.
http://dx.doi.org/10.1136/oem.2007.032763
PMid:17933884 |
|
27. Builee, T.L. and Hatherill, J.R. (2004) The role of
polyhalogenated aromatic hydrocarbons on thyroid hormone
disruption and cognitive function: A review. Drug Chem.
Toxicol., 27: 405-424.
http://dx.doi.org/10.1081/dct-200039780 |
|
28. Porterfield, S.P. (2000)Thyroid dysfunction and
environmental chemicals-Potential impact on brain
development. Health Perspect., 108: 433-438. |
|
29. Zoeller, R.T. (2010) Environmental chemicals targeting
thyroid. Hormones, 9(1): 28-40.
http://dx.doi.org/10.14310/horm.2002.1250 |
|
30. Lopez, C.M., Pineiro, A.E., Nunenz, N., Abagnina, A.M.,
Villaamil, E.C. and Roses, O.E. (2000) Thyroid hormone
changes in males exposed to lead in the Beunos-Aires area
(Argentina). Pharmacol. Res., 42: 599-602.
http://dx.doi.org/10.1006/phrs.2000.0734
PMid:11058414 |
|
31. Erfurth, E.M., Gerhardsson, L., Nilsson, A., Rylander,
L., Schtuz, A., Skerfving, S. (2001) Effects of lead on the
endocrine system in lead smelter workers. Arch. Environ.
Health, 56: 449-455.
http://dx.doi.org/10.1080/00039890109604481
PMid:11777027 |
|
32. Kuriyama, S.N., Talsness, C.E., Grote, K. and Chahoud,
I. (2005) Developmental exposure to low dose PBDE-99:
Effects on male fertility and neuro behaviour in rat off
spring. Environ. Health Perspect., 113: 149-154.
http://dx.doi.org/10.1289/ehp.7421
PMid:15687051 PMCid:PMC1277857 |
|
33. Carr, R.L., Chambers, H.W., Guarisco, J.A., Richardson,
J.R., Tang, J. and Chamber, J.E. (2001) Effects of repeated
oral postnatal exposure to CPS on open field behaviour in
juvenile rats. Toxicol. Sci., 59: 260-267.
http://dx.doi.org/10.1093/toxsci/59.2.260
PMid:11158719 |
|
34. Sanchez-Amate, M.C., Flores, P. and Sanchez-Santed, F.
(2001) Effects of CPF in the plus-maze model of anxiety.
Behav. Pharmacol., 12: 285-292.
http://dx.doi.org/10.1097/00008877-200107000-00007
PMid:11548114 |
|
35. Temerowski, M. and Van der Staay, F.J. (2005) Absence of
long term behavioural effects after sub-chronic
administration of low doses of methamidophos in male and
female rats. Neurotoxicol. Teratol., 27: 279-297.
http://dx.doi.org/10.1016/j.ntt.2004.12.004
PMid:15734279 |
|
36. Ricceri, L., Venerosi, A., Capone, F., Cometa, M.F.,
Lorenzini, P., Fortuna, S. and Calamandrei, G. (2006)
Developmental neurotoxicity of organophosphorus pesticides:
Fetal and neonatal exposure to chllorpyrifos alters
sex-specific behaviors at adulthood in mice. Toxicol. Sci.,
93: 105-113.
http://dx.doi.org/10.1093/toxsci/kfl032
PMid:16760416 |
|
37. Levin, E., Sato, K., Freedman, J.H., Skene, J. and
Harry, G. (2004) Developmental lead exposure impacts on
spatial learning and memory: Cholinergic and glutamatergic
involvement. Toxicology, 78: 893. |
|
38. Slotkin, T.A., Seidler, F.J. and Fumagalli, F. (2007)
Exposure to organophosphates reduces the expression of
neurotrophic factors in neonatal rat brain regions:
Similarities and differences in the effects of chlorpyrifos
and diazinon on the fibroblast growth factor superfamily.
Environ. Health Perspect., 115: 909-916.
http://dx.doi.org/10.1289/ehp.9901 |
|
39. Castillo, C.G., Montante, M., Dufour, L., Martinez, M.L.
and Jiminez, C.M.E. (2002) Behavioural effects of exposure
to endosulfan and methyl parathion in adult rats.
Neurotoxicol. Teratol., 24: 797-804.
http://dx.doi.org/10.1016/S0892-0362(02)00268-4 |
|
40. Stone, J.D., Terry, A.V., Pauly, J.R., Prendergast, M.A.
and Buccafusco, J.J. (2000) Protractive effects of chronic
treatment with an acutely subtoxic regimen of
diisopropylfluorophosphate on the expression of cholinergic
receptor densities in rats. Brain Res., 882: 9-18.
http://dx.doi.org/10.1016/S0006-8993(00)02689-5 |
|
41. Guilarte, T.R., Toscano, C.D., Glothan, J.L. and Weaver,
S.A. (2003) Environmental enrichment reverses cognitive and
molecular deficits induced by developmental Pb exposure.
Ann. Neurol., 53: 50-56.
http://dx.doi.org/10.1002/ana.10399
PMid:12509847 |
|
42. Gilbert, M.E., Kelly, M.E., Samson, T.E. and Goodman,
J.H. (2005) Chronic developmental Pb exposure reduces
neurogenesis in adult rat hippocampus but does not impair
spatial learning. Toxicol. Sci., 86: 365-374.
http://dx.doi.org/10.1093/toxsci/kfi156
PMid:15788721 |
|
43. Ranjan, D.S., Mohan Rao, B.R. and Sanjeeva Rao, E.
(2015) Carbimazole-induced histomorphological changes
simulating malignancy in toxic goiter. Thyroid Res. Rep.,
12(1): 29-31.
http://dx.doi.org/10.4103/0973-0354.147287 |
|