Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 13-02-2016)

9. Expression of biologically active bovine interleukin 7 and evaluating the activity in vitro - J. Lijo, N. Vijay, H. J. Dechamma and G. R. Reddy

Veterinary World, 9(2): 160-165

 

 

   doi: 10.14202/vetworld.2016.160-165

 

 

J. Lijo: FMD Research Laboratory, Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka, India; lijo1john@gmail.com

N. Vijay: FMD Research Laboratory, Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka, India; vijvetco@gmail.com

H. J. Dechamma: FMD Research Laboratory, Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka, India; dechammahj@yahoo.com

G. R. Reddy: FMD Research Laboratory, Indian Veterinary Research Institute, Hebbal, Bengaluru, Karnataka, India; drreddygr@gmail.com

 

Received: 28-09-2015, Revised: 26-12-2015, Accepted: 31-12-2015, Published online: 13-02-2016

 

Corresponding author: G. R. Reddy, e-mail: drreddygr@gmail.com


Citation: Lijo J, Vijay N, Dechamma HJ, Reddy GR (2016) Expression of biologically active bovine interleukin 7 and evaluating the activity in vitro, Veterinary World 9(2); 160-165.



Aim: Interleukin 7 (IL-7) is a ϒc family cytokine involved in the homeostatic proliferation and maintenance of immune cells. In the present study, we report the expression of bovine IL-7 (bIL-7) in Escherichia coli and evaluated for its biological activity.

Materials and Methods: The sequence coding for bIL-7 (mature protein) was amplified from primary bovine kidney cell culture and cloned into pET28-a vector and expressed in E.coli (BL 21 DE3). The expressed protein was purified by nickel-nitrilotriacetatechromatography, and the reactivity of the protein was confirmed by western blotting using monoclonal antibodies raised against human IL-7. The biological activity of expressed bIL-7 was evaluated by analyzing its effect on the expression of a nuclear factor for activated T-cells c1 (NFATc1), B-cell lymphoma 2 (Bcl2), suppressor of cytokine signaling 3 (SOCS3) molecules in bovine peripheral blood mononuclear cells (PBMCs) by quantitative polymerase chain reaction. Ability of the expressed protein was also analyzed by its effect on phosphorylating signal transducer and activator 3 (STAT3) molecule by immunostaining in human embryonic kidney cells 293 (HEK293) cells.

Results: The bIL-7 was able to induce the expression of Bcl2 and NFATc1expression in bovine PBMCs by 7 and 5-folds, respectively, whereas a 2-fold decrease was observed in the case of SOCS3 expression. Immunostaining studies in HEK293 cells using antihuman phospho-STAT3 showed activation and nuclear translocation of STAT3 molecule on bIL-7 treatment.

Conclusion: bIL-7 gene was successfully amplified, cloned, and expressed in a prokaryotic expression system. The biological activity study showed that the E.coli expressed bIL-7 protein is biologically active. Considering the role of IL-7 in T-cell homeostasis and memory cell generation, this molecule can be used for enhancing the vaccine response and that has to be proved by further experiments.

Keywords: B-cell lymphoma 2, nuclear factor for activated T-cells c1, recombinant bovine interleukin 7, signal transducer and activator 3.



1. Jiang, Q., Li, Q.W., Aiello, F.B., Mazzucchelli, R., Asefa, B., Annette, R., Khaled, A.R. and Durum, S.K. (2005) Cell biology of IL-7, a key lymphotropin. Cytokine Growth F R., 16: 513-533.
http://dx.doi.org/10.1016/j.cytogfr.2005.05.004
PMid:15996891
 
2. Amos, C.L., Woetmann, A., Nielsen, M., Geisler, C., Odum, N., Brown, B.L. and Dobson, P.R.M. (1998) Therole of caspase 3 and BclxL in the action of interleukin 7 (IL-7): A survival factor in activated human T cells. Cytokine, 10:662-668.
http://dx.doi.org/10.1006/cyto.1998.0351
PMid:9770327
 
3. Mazzucchelli, R. and Durum, S.K. (2007) Interleukin-7 receptor expression: Intelligent design. Nat. Rev.Immunol., 7:144-154.
http://dx.doi.org/10.1038/nri2023
PMid:17259970
 
4. Seckinger, P. andFougereau, M. (1994) Activation of src family kinases in human pre-B cells by IL-7. J.Immunol., 153: 97-109.
PMid:7515933
 
5. VonFreeden-Jeffry, U., Vieira, P., Lucian, L.A., McNeil, T., Burdach, S.E. and Murray, R. (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a non redundant cytokine. J. Exp. Med., 181:1519-1526.
http://dx.doi.org/10.1084/jem.181.4.1519
 
6. Chetoui, N., Boisvert, M., Gendron, S. andAoudjit, F. (2009) Interleukin 7 promotes the survival of human CD4+ effector/memory T cells by up- regulating Bcl-2 proteins and activating the JAK/STAT signaling pathway. Immunology, 130: 418-426.
http://dx.doi.org/10.1111/j.1365-2567.2009.03244.x
PMid:20465565 PMCid:PMC2913221
 
7. Opferman, J.T., Letai, A., Beard, C., Sorcinelli, M.D., Ong, C.C. andKorsmeyer, S.J. (2003) Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature, 426:671-676.
http://dx.doi.org/10.1038/nature02067
PMid:14668867
 
8. Rathmell, J.C., Farkash, E.A., Gao, W. and Thompson, C.B.(2001) IL-7 enhances the survival and maintains the size of naive T cells. J.Immunol., 167:6869-6876.
http://dx.doi.org/10.4049/jimmunol.167.12.6869
PMid:11739504
 
9. Khaled, A.R. andDurum, S.K. (2003) Death and baxes: Mechanisms of lymphotrophic cytokines. Immunol. Rev., 193:48-57.
http://dx.doi.org/10.1034/j.1600-065X.2003.00050.x
PMid:12752670
 
10. Bradley, L.M., Haynes, L. and Swain, S.L. (2005) IL-7: Maintaining T-cell memory and achieving homeostasis. Trends Immunol, 26(3): 172-176.
http://dx.doi.org/10.1016/j.it.2005.01.004
PMid:15745860
 
11. Cui, G., Staron, M.M., Gray, S.M., Ho, P.C., Amezquita, R.A., Wu, J. and Kaech, S.M. (2015) IL-7 induced glycerol transport and TAG synthesis promotes memory CD8+ T cells longevity. Cell, 161: 750-761.
http://dx.doi.org/10.1016/j.cell.2015.03.021
PMid:25957683 PMCid:PMC4704440
 
12. McElory, C.A., Holland, P.J., Zhao, P., Lim, J.M., Wells, L., Eisenstein, E. and Walsh, S.T.R. (2012) Structural reorganization of the interleukin-7 signaling complex. Proc. Nat. Acad. Sci.,109(7): 2503-2508.
http://dx.doi.org/10.1073/pnas.1116582109
PMid:22308406 PMCid:PMC3289338
 
13. Livak, K.J. andSchmittgen, T.D. (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2-∆∆cT method. Methods, 25: 402-402.
http://dx.doi.org/10.1006/meth.2001.1262
PMid:11846609
 
14. Greyson, J.M., Zajac, A.J.A. and Ahmed, R. (2000) Increased expression of Bcl2 in antigen specific memory CD8+ T cells. J.Immunol., 164: 3950-3954.
http://dx.doi.org/10.4049/jimmunol.164.8.3950
 
15. Serfling, E., Siebelt, F.B., Chuvpilo, S., Jankevies, E., Hessling, S.K., Twardzik, K.T. andAvots, A. (2000) The role of NF-AT transcription factors in T cell activation and differentiation. Biochem.Biophys.Acta, 1498: 1-18.
http://dx.doi.org/10.1016/S0167-4889(00)00082-3
 
16. Macian, F. (2005) NFAT proteins: Key regulators of T-cell development and function. Nat.Rev.Immunol.,5: 472-484.
http://dx.doi.org/10.1038/nri1632
PMid:15928679
 
17. Patra, A.K., Avots, A., Zahedi, R.P., Schuler, T., Sickmann, A., Bommhardt, U. andSerfling, E. (2013)An alternative NFATC-activation pathway mediated by IL-7 is critical for early thymocyte development. Nat.Immunol., 14: 127-135.
http://dx.doi.org/10.1038/ni.2507
PMid:23263556
 
18. Pellegrini, M., Calzascia, T., Toe, J.G., Preston, S.P., Lin, A.E., Elford, A.R., Shahinian,A., Lang, P.A., Morre, M., Assouline, B., Lahl,K., Sparwasser, T., Tedder,T.F., Paik, J.H., Depinho, R.A., Basta, S., Ohashi, P.S. andMak, T.W. (2011) IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell, 144: 601-613.
http://dx.doi.org/10.1016/j.cell.2011.01.011
PMid:21295337
 
19. Chou, W.C., Levy, D.E. and Lee, C.K. (2006) STAT3 positively regulates an early step in B cell development. Blood, 108(9): 3005-3011.
http://dx.doi.org/10.1182/blood-2006-05-024430
PMid:16825489 PMCid:PMC1895520
 
20. Michel, M.L., Pang, D.J., Haque, S.F.Y., Potocnik, A.J., Pennington, D.J. andHayday, A.C. (2012) Interleukin 7 (IL-7) selectively promotes mouse and human IL-17 producing ϒδ cell. Proc. Nat. Acad. Sci., 109(43): 17549-17554.
http://dx.doi.org/10.1073/pnas.1204327109
PMid:23047700 PMCid:PMC3491488
 
21. Hand, T.W., Cui, W., Jung, Y.W., Sefik, E., Joshi, N.S., Chandele, A., Liu, Y. and Kaech, S.M. (2010) Differential effects of STAT5 and PI3/AKT signalling on effector and memory CD8 T cell survival. Proc. Nat. Acad. Sci.,107(38): 16601-16606.
http://dx.doi.org/10.1073/pnas.1003457107
PMid:20823247 PMCid:PMC2944719
 
22. Park, S.H., Song,M.Y., Nam, H.J., Im, S.J. and Sung, Y.C. (2010)Codelivery of IL-7 augments multigenic HCV DNA vaccine induced antibody as well as broad T cel response in cynomolgus monkeys. Immune Netw.,10(6):198-205.
http://dx.doi.org/10.4110/in.2010.10.6.198
PMid:21286380 PMCid:PMC3026939
 
23. Seo, Y.B., Im, S.J., Namkoong, H., Kim, S.W., Choi, Y.W., Kang, M.C., Lim, H.S., Jin, H.T., Yang, S.H., Cho, M.L., Kim, Y.M., Lee, S.W., Choi, Y.K., Surh, C.D. and Sung, Y.C. (2014) Crucial role of IL-7 in the development of T follicular helper T cells as well as the induction of humoral immunity. J.Virol.,88(16): 8998-9009.
http://dx.doi.org/10.1128/JVI.00534-14
PMid:24899182 PMCid:PMC4136280
 
24. Limaye, A., Iketani, A., Boohaker, R., Oyer, J., Nemec, K., Solh, M., Copik, A. and Khaled, A.R. (2013) A modified IL-7 protein is a potent agent for immune reconstitution. Cytokine, 63(3): 282.
http://dx.doi.org/10.1016/j.cyto.2013.06.169
 
25. Kimura, M.Y., Pobezinsky, L.A., Guinter, T.I., Thomas, J., Adams, A., Park, J.H., Tai, X. and Singer, A. (2013) IL-7 signalling must be intermittent, not continuous, during CD8+ T cell homeostasis to promote cell survival instead of cell death. Nat. Immunol., 14(2):143-151.
http://dx.doi.org/10.1038/ni.2494
PMid:23242416 PMCid:PMC3552087