Open Access
R esearch
(Published
online:
15-01-2016)
10.
Genetic structure of
Mugil cephalus
L. populations from the northern coast of
Egypt -
Mahmoud Magdy, Mariam Gergis Eshak and Mohamed Abdel-Salam
Rashed
Veterinary World, 9(1): 53-59
doi:
10.14202/vetworld.2016.53-59
Mahmoud Magdy:
Department of Genetics, Faculty of Agriculture, Ain Shams
University, 68 Hadayek Shubra, 11241 Cairo, Egypt; m.elmosallamy@agr.asu.edu.eg
Mariam Gergis Eshak:
Department of Cell Biology, National Research Centre, Dokki,
Giza, Egypt; mgergis@yahoo.com
Mohamed Abdel-Salam Rashed:
Department of Cell Biology, National Research Centre, Dokki,
Giza, Egypt; rashed50@yahoo.com
Received: 19-06-2015, Revised: 15-11-2015, Accepted: 30-11-2015,
Published online: 15-01-2016
Corresponding author:
Mariam Gergis Eshak, e-mail: mgergis@yahoo.com
Citation:
Magdy M, Eshak MG, Rashed MA (2016), Genetic structure of
Mugil cephalus
L. populations from the northern coast of Egypt,
Veterinary World 9(1):
53-59 .
Abstract
Aim:
The gray mullet,
Mugil cephalus,
has been farmed in semi-intensive ponds with tilapia and carps
in Egypt for years. The current study used the fluorescent
amplified fragment length polymorphism (F-AFLP) technique to
search for genetic differences between the populations of
M. cephalus
in the northern region of Egypt and to detect the gene flow
between sampled locations and the homogeneity within
M. cephalus
genetic pool in Egypt.
Materials and Methods:
To fulfill the study objectives 60 (15/location) samples were
collected from four northern coast governorates of Egypt
(Alexandria “sea,” Kafr El-Sheikh “farm,” Damietta “farm” and
Port Said “sea”). Three replicates of bulked DNA (5
samples/replicate) for each location were successfully amplified
using the standard AFLP protocol using fluorescent primers. DNA
polymorphism, genetic diversity, and population structure were
assessed while positive outlier loci were successfully detected
among the sampled locations. Based on the geographical
distribution of sampling sites, the gene flow, the genetic
differentiation, and correlations to sampling locations were
estimated.
Results:
A total of 1890 polymorphic bands were scored for all locations,
where 765, 1054, 673, and 751 polymorphic bands were scored
between samples from Alexandria, Kafr El-Sheikh, Damietta and
Port Said, respectively. The effective number of alleles (ne)
for all bulked samples combined together was 1.42. The expected
heterozygosity under Hardy–Weinberg assumption (He) for all
bulked samples combined together was 0.28. Bulked samples from
Damietta yielded the lowest ne (1.35) and the lowest He (0.23)
when inbreeding coefficient (FIS) = 1. Bulked samples from Kafr
El-Sheikh scored the highest ne (1.55) and the highest He
(0.37). Bulked samples from Alexandria scored 1.40 for ne and
0.26 for He, while bulked samples from Port Said scored 1.39 for
ne and 0.26 for He. The observed bulked samples formed three
sub-population groups, where none is limited to a certain
sampling location. A high differentiation among locations was
detected, however, is not fully isolating the locations. Gene
flow was 0.58. Positive outliers loci (117) were detected among
the four sampled locations while weak significant correlation
(r=0.15, p=0.03) was found for the distance between them.
Conclusion:
Even though this species is cultivated in Egypt, the wild
population is still present and by the current study a flow of
its genes is still exchanged through the northern coast of
Egypt. Which contribute to the cultivated populations leading to
heterogeneity in its genetic pool and consequently affects the
production consistency of
M. cephalus
in Egypt.
Keywords:
fluorescent amplified fragment length polymorphism, isolation by
distance, Mantel test, marine fish,
Mugil
cephalus,
natural selection pressure, population structure.
References
1. Nelson, J.S., Crossman, E.J., Espinosa-Pérez, H.,
Findley, L.T., Gilbert, C.R., Lea, R.N. and Williams, J.D.
(2004) Common and scientific names of fishes from the United
States, Canada and Mexico. American Fisheries Society,
Bethesda, Maryland |
|
2. FAO. (2015) Aquaculture feed and fertilizers resources
information system, special profiles: Flathead grey mullet –
Mugil cephalus. Available from: http://www.fao.org/fishery/culturedspecies/Mugil_cephalus/en.
Accessed on 11-01-2015. |
|
3. Thomson, J.M. (1963) Synopsis of Biological Data on the
Grey Mullet: Mugil Cephalus Linnaeus 1758. Division of
Fisheries and Oceanography. CSIRO, Australia. p78. |
|
4. Crosetti, D., Avise, J.C., Placidi, F., Rossi, A.R. and
Sola, L. (1993) Geographic variability in the grey mullet
Mugil cephalus: Preliminary results of mtDNA and chromosome
analyses. Aquaculture, 111(1): 95-101.
http://dx.doi.org/10.1016/0044-8486(93)90028-W |
|
5. Crosetti, D., Nelson, W.S. and Avise, J.C. (1994)
Pronounced genetic structure of mitochondrial DNA among
populations of the circumglobally distributed grey mullet
(Mugil cephalus). J. Fish Biol., 44(1): 47-58.
http://dx.doi.org/10.1111/j.1095-8649.1994.tb01584.x |
|
6. Corti, M. and Crosetti, D. (1996) Geographic variation in
the grey mullet: A geometric morphometric analysis using
partial warp scores. J. Fish Biol., 48(2): 255-269.
http://dx.doi.org/10.1111/j.1095-8649.1996.tb01117.x |
|
7. Rossi, A.R., Capula, M., Crosetti, D., Sola, L. and
Campton, D.E. (1998a) Allozyme variation in global
populations of striped mullet, Mugil cephalus (Pisces:
Mugilidae). Mar Biol, 131(2): 203-212.
http://dx.doi.org/10.1007/s002270050312 |
|
8. Rossi, A.R., Capula, M., Crosetti, D., Campton, D.E., and
Sola, L. (1998b) Genetic divergence and phylogenetic
inferences in five species of Mugilidae (Pisces:
Perciformes). Mar Biol, 131(2): 213-218.
http://dx.doi.org/10.1007/s002270050313 |
|
9. Rocha‐Olivares, A., Garber, N.M. and Stuck, K.C. (2000)
High genetic diversity, large inter‐oceanic divergence and
historical demography of the striped mullet. J. Fish Biol.,
57(5): 1134-1149.
http://dx.doi.org/10.1111/j.1095-8649.2000.tb00476.x |
|
10. Huang, C., Weng, C. and Lee, S. (2001) Distinguishing
two types of gray mullet, Mugil cephalus L. (Mugiliformes:
Mugilidae), by using glucose-6-phosphate isomerase (GPI)
allozymes with special reference to enzyme activities. J.
Comp. Physiol. B., 171(5): 387-394.
http://dx.doi.org/10.1007/s003600100187
PMid:11497126 |
|
11. Shen, K.N., Jamandre, B.W., Hsu, C.C., Tzeng, W.N. and
Durand, J.D. (2011) Plio-Pleistocene sea level and
temperature fluctuations in the northwestern Pacific
promoted speciation in the globally- distributed flathead
mullet Mugil cephalus. BMC Evol. Biol., 11(1): 83.
http://dx.doi.org/10.1186/1471-2148-11-83 |
|
12. Durand, J.D., Blel, H., Shen, K.N., Koutrakis, E.T., and
Guinand, B. (2013) Population genetic structure of Mugil
cephalus in the mediterranean and Black Seas: A single
mitochondrial clade and many nuclear barriers. Mar. Ecol.
Prog. Ser., 474: 243-61.
http://dx.doi.org/10.3354/meps10080 |
|
13. Liu, J.Y., Lun, Z.R., Zhang, J.B. and Yang, T.B. (2009)
Population genetic structure of striped mullet, Mugil
cephalus, along the coast of China, inferred by AFLP
fingerprinting. Biochem. Syst. Ecol., 37(4): 266-274.
http://dx.doi.org/10.1016/j.bse.2009.04.010 |
|
14. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de
Lee, T., Hornes, M., Friters, A., Pot, J., Paleman, J.,
Kuiper, M. and Zabeau, M. (1995) AFLP: A new technique for
DNA fingerprinting. Nuc. Acids Res., 23(21): 4407-4414.
http://dx.doi.org/10.1093/nar/23.21.4407
PMid:7501463 PMCid:PMC307397 |
|
15. Storz, J.F. (2005) Using genome scans of DNA
polymorphism to infer adaptive population divergence. Mol.
Ecol., 14(3): 671-688.
http://dx.doi.org/10.1111/j.1365-294X.2005.02437.x
PMid:15723660 |
|
16. Wilding, C.S., Butlin, R.K. and Grahame, J. (2001)
Differential gene exchange between parapatric morphs of
Littorina saxatilis detected using AFLP markers. J. Evol.
Biol., 14(4): 611-619.
http://dx.doi.org/10.1046/j.1420-9101.2001.00304.x |
|
17. Campbell, D. and Bernatchez, L. (2004) Generic scan
using AFLP markers as a means to assess the role of
directional selection in the divergence of sympatric
whitefish ecotypes. Mol. Biol. Evol., 21(5): 945-956.
http://dx.doi.org/10.1093/molbev/msh101
PMid:15014172 |
|
18. Bonin, A., Taberlet, P., Miaud, C. and Pompanon, F.
(2006) Explorative genome scan to detect candidate loci for
adaptation along a gradient of altitude in the common frog
(Rana temporaria). Mol. Biol. Evol., 23(4): 773-783.
http://dx.doi.org/10.1093/molbev/msj087
PMid:16396915 |
|
19. Savolainen, V., Anstett, M.C., Lexer, C., Hutton, I.,
Clarkson, J.J., Norup, M.V., Powell, M.P., Springate, D.,
Salamin, N. Baker, W.J. (2006) Sympatric speciation in palms
on an oceanic island. Nature, 441(7090): 210-213.
http://dx.doi.org/10.1038/nature04566
PMid:16467788 |
|
20. Meyer, C.L., Vitalis, R., Saumitou-Laprade, P. and
Castric, V. (2009) Genomic pattern of adaptive divergence in
Arabidopsis halleri, a model species for tolerance to heavy
metal. Mol. Ecol., 18(9): 2050-2062.
http://dx.doi.org/10.1111/j.1365-294X.2009.04159.x |
|
21. Paris, M., Boyer, S., Bonin, A., Collado, A., David,
J.P. and Despres, L. (2010) Genome scan in the mosquito
Aedes rusticus: Population structure and detection of
positive selection after insecticide treatment. Mol. Ecol.,
19(2): 325-337.
http://dx.doi.org/10.1111/j.1365-294X.2009.04437.x
PMid:20015143 |
|
22. Poncet, B.N., Herrmann, D., Gugerli, F., Taberlet, P.,
Holderegger, R., Gielly, L., Rioux, D., Thuiller, W.,
Aubert, S. and Manel, S. (2010) Tracking genes of ecological
relevance using a genome scan in two independent regional
population samples of Arabis alpina. Mol. Ecol., 19(14):
2896-2907.
http://dx.doi.org/10.1111/j.1365-294X.2010.04696.x
PMid:20609082 |
|
23. Nosil, P., Funk, D.J. and Ortiz-Barrientos, D. (2009)
Divergent selection and heterogeneous genomic divergence.
Mol. Ecol., 18(3): 375-402.
http://dx.doi.org/10.1111/j.1365-294X.2008.03946.x
PMid:19143936 |
|
24. Bonin, A., Ehrich, D. and Manel, S. (2007) Statistical
analysis of amplified fragment length polymorphism data: A
toolbox for molecular ecologists and evolutionists. Mol.
Ecol., 16(18): 3737-3758.
http://dx.doi.org/10.1111/j.1365-294X.2007.03435.x
PMid:17850542 |
|
25. Hubisz, M.J., Falush, D., Stephens, M. and Pritchard,
J.K. (2009) Inferring weak population structure with the
assistance of sample group information. Mol. Ecol. Resour.,
9(5): 1322-1332.
http://dx.doi.org/10.1111/j.1755-0998.2009.02591.x
PMid:21564903 PMCid:PMC3518025 |
|
26. Antao, T. and Beaumont, M.A. (2011) Mcheza: A workbench
to detect selection using dominant markers. Bioinformatics,
27(12): 1717-1718.
http://dx.doi.org/10.1093/bioinformatics/btr253
PMid:21505032 |
|
27. Excoffier, L. and Lischer, H.E. (2010) Arlequin suite
ver 3.5: A new series of programs to perform population
genetics analyses under Linux and Windows. Mol. Ecol.
Resour., 10(3): 564-567.
http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
PMid:21565059 |
|
28. Vekemans, X., Beauwens, T., Lemaire, M. and Roldán‐Ruiz,
I. (2002) Data from amplified fragment length polymorphism
(AFLP) markers show indication of size homoplasy and of a
relationship between degree of homoplasy and fragment size.
Mol. Ecol., 11(1): 139-151.
http://dx.doi.org/10.1046/j.0962-1083.2001.01415.x
PMid:11903911 |
|
29. Peakall, R. and Smouse, P.E. (2012) Gen Al Ex 6.5:
Genetic analysis in excel. Population genetic software for
teaching and research-an update. Bioinformatics, 28(19):
2537-2539.
http://dx.doi.org/10.1093/bioinformatics/bts460
PMid:22820204 PMCid:PMC3463245 |
|
30. Bohonak, A.J. (2002) IBD (Isolation by Distance): A
program for analyses of isolation by distance. J. Hered.,
93(2): 153-154.
http://dx.doi.org/10.1093/jhered/93.2.153
PMid:12140277 |
|
31. Bahnasawy, M., Khidr, A.A. and Dheina, N. (2009)
Seasonal variations of heavy metals concentrations in
mullet, Mugil cephalus and Liza ramada (Mugilidae) from Lake
Manzala, Egypt J. Aquat. Biol. & Fish, 13(2): 81-100. |
|
32. Pritchard, J.K., Stephens, M. and Donnelly, P. (2000)
Inference of population structure using multilocus genotype
data. Genetics, 155(2): 945-959.
PMid:10835412 PMCid:PMC1461096 |
|
33. Falush, D., Stephens, M. and Pritchard, J.K. (2003)
Inference of population structure using multilocus genotype
data: Linked loci and correlated allele frequencies.
Genetics, 164(4): 1567-1587.
PMid:12930761 PMCid:PMC1462648 |
|
34. Falush, D., Stephens, M. and Pritchard, J.K. (2007)
Inference of population structure using multilocus genotype
data: Dominant markers and null alleles. Mol. Ecol. Notes,
7(4): 574-578.
http://dx.doi.org/10.1111/j.1471-8286.2007.01758.x
PMid:18784791 PMCid:PMC1974779 |
|
35. Nosil, P., Egan, S.P. and Funk, D.J. (2008)
Heterogeneous genomic differentiation between walking‐stick
ecotypes: "Isolation by adaptation" and multiple roles for
divergent selection. Evolution, 62(2): 316-336.
http://dx.doi.org/10.1111/j.1558-5646.2007.00299.x
PMid:17999721 |
|
36. Manel, S., Joost, S., Epperson, B.K., Holderegger, R.,
Storfer, A., Rosenberg, M.S., Scribner, K.T., Bonin, A. and
Fortin, M.J. (2010) Perspectives on the use of landscape
genetics to detect genetic adaptive variation in the field.
Mol. Ecol., 19(17): 3760-3772.
http://dx.doi.org/10.1111/j.1365-294X.2010.04717.x
PMid:20723056 |
|
37. Black IV, W.C., Baer, C.F., Antolin, M.F. and DuTeau,
N.M. (2001) Population genomics: genome-wide sampling of
insect populations. Annu. Rev. Entomol., 46(1): 441-469.
http://dx.doi.org/10.1146/annurev.ento.46.1.441
PMid:11112176 |
|
38. Luikart, G., England, P.R., Tallmon, D., Jordan, S. and
Taberlet, P. (2003) The power and promise of population
genomics: From genotyping to genome typing. Nat. Rev.
Genet., 4(12): 981-994.
http://dx.doi.org/10.1038/nrg1226
PMid:14631358 |
|
39. Magdy, M., Werner, O., McDaniel, S.F., Goffinet, B. and
Ros, R.M. (2015). Genomic scanning using AFLP to detect loci
under selection in the moss Funaria hygrometrica along a
climate gradient in the Sierra Nevada Mountains, Spain.
Plant Biol., doi: 10.1111/plb.12381.
http://dx.doi.org/10.1111/plb.12381 |
|
40. Excoffier, L., Smouse, P.E. and Quattro, J.M. (1992)
Analysis of molecular variance inferred from metric
distances among DNA haplotypes: Application to human
mitochondrial DNA restriction data. Genetics, 131(2):
479-491.
PMid:1644282 PMCid:PMC1205020 |
|
41. Wright, S. (1931) Evolution in Mendelian populations.
Genetics, 16(2): 97.
PMid:17246615 PMCid:PMC1201091 |
|
42. Jensen, J.L., Bohonak, A.J. and Kelley, S.T. (2005)
Isolation by distance, web service. BMC Genet., 6(1): 13.
http://dx.doi.org/10.1186/1471-2156-6-13
PMid:15760479 PMCid:PMC1079815 |
|
43. Schlötterer, C. (2003) Hitchhiking mapping–functional
genomics from the population genetics perspective. Trends
Genet., 19(1): 32-38.
http://dx.doi.org/10.1016/S0168-9525(02)00012-4 |
|
44. Hohenlohe, P.A., Catchen, J., Cresko, W. A. (2012)
Population genomic analysis of model and non model organisms
using sequenced RAD tags. In: Pompanon, F., Bonin, A.,
editors. Data Production and Analysis in Population
Genomics. Humana Press, New York, U.S.A. p235-260.
http://dx.doi.org/10.1007/978-1-61779-870-2_14
PMid:22665285 |
|