Open Access
R eview
(Published
online:
29-01-2016)
15.
Recent developments in receptor tyrosine
kinases targeted anticancer therapy -
Samir H. Raval, Ratn D. Singh, Dilip V. Joshi, Hitesh B. Patel
and Shailesh K. Mody
Veterinary World, 9(1): 80-90
doi:
10.14202/vetworld.2016.80-90
Samir H. Raval:
Department of Veterinary Pathology, College of Veterinary
Science and Animal Husbandry, Sardarkrushinagar Dantiwada
Agricultural University, Sardarkrushinagar, Banaskantha - 385
506, Gujarat, India; samirraval81@gmail.com
Ratn D. Singh:
Department of Pharmacology and Toxicology, College of Veterinary
Science and Animal Husbandry, Sardarkrushinagar Dantiwada
Agricultural University, Sardarkrushinagar, Banaskantha - 385
506, Gujarat, India; ratn1709@yahoo.com
Dilip V. Joshi:
Department of Veterinary Pathology, College of Veterinary
Science and Animal Husbandry, Sardarkrushinagar Dantiwada
Agricultural University, Sardarkrushinagar, Banaskantha - 385
506, Gujarat, India; drdvjoshi@rediffmail.com
Hitesh B. Patel:
Department of Pharmacology and Toxicology, College of Veterinary
Science and Animal Husbandry, Sardarkrushinagar Dantiwada
Agricultural University, Sardarkrushinagar, Banaskantha - 385
506, Gujarat, India; drhitesh2002@rediffmail.com
Shailesh K. Mody:
Department of Pharmacology and Toxicology, College of Veterinary
Science and Animal Husbandry, Sardarkrushinagar Dantiwada
Agricultural University, Sardarkrushinagar, Banaskantha - 385
506, Gujarat, India; skm12_ad1@yahoo.com
Received: 04-09-2015, Revised: 04-12-2015, Accepted: 09-12-2015,
Published online: 29-01-2016
Corresponding author:
Samir H. Raval, e-mail: samirraval81@gmail.com
Citation:
Raval SH, Singh RD, Joshi DV, Patel HB, Mody SK (2016) Recent
developments in receptor tyrosine kinases targeted anticancer
therapy,
Veterinary World
9(1): 80-90.
Abstract
Novel concepts and understanding of receptors lead to
discoveries and optimization of many small molecules and
antibodies as anti-cancerous drugs. Receptor tyrosine kinases (RTKs)
are such a promising class of receptors under the investigation
in past three decades. RTKs are one of the essential mediators
of cell signaling mechanism for various cellular processes.
Transformations such as overexpression, dysregulation, or
mutations of RTKs may result into malignancy, and thus are an
important target for anticancer therapy. Numerous subfamilies of
RTKs, such as epidermal growth factor receptor, vascular
endothelial growth factor receptor, fibroblast growth factor
receptors, insulin-like growth factor receptor, and hepatocyte
growth factor receptor, have been being investigated in recent
years as target for anticancer therapy. The present review
focuses several small molecules drugs as well as monoclonal
antibodies targeting aforesaid subfamilies either approved or
under investigation to treat the various cancers.
Keywords:
cancer, monoclonal antibodies, small molecule drugs, receptor
tyrosine kinases, targeted therapy.
References
1. Gschwind, A., Fischer, O.M. and Ullrich, A. (2004) The
discovery of receptor tyrosine kinases: Targets for cancer
therapy. Nat. Rev. Cancer, 4(5): 361-370.
http://dx.doi.org/10.1038/nrc1360
PMid:15122207 |
|
2. Lemmon, M.A. and Schlessinger, J. (2010) Cell signaling
by receptor tyrosine kinases. Cell, 141(7): 1117-1134.
http://dx.doi.org/10.1016/j.cell.2010.06.011
PMid:20602996 PMCid:PMC2914105 |
|
3. Arora, A. and Scholar, E.M. (2005) Role of tyrosine
kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther.,
315(3): 971-979.
http://dx.doi.org/10.1124/jpet.105.084145
PMid:16002463 |
|
4. Li, E. and Hristova, K. (2006) Role of receptor tyrosine
kinase transmembrane domains in cell signaling and human
pathologies. Biochemistry, 45(20): 6241-6251.
http://dx.doi.org/10.1021/bi060609y
PMid:16700535 PMCid:PMC4301406 |
|
5. Paul, M.K. and Mukhopadhyay, A.K. (2004) Tyrosine kinase
– Role and significance in Cancer. Int. J. Med. Sci.,
1(283): 101-115.
http://dx.doi.org/10.7150/ijms.1.101 |
|
6. Pytel, D., Sliwinski, T., Poplawski, T., Ferriola, D. and
Majsterek, I. (2009) Tyrosine kinase blockers: New hope for
successful cancer therapy. Anticancer. Agents Med. Chem., 9:
66-76.
http://dx.doi.org/10.2174/187152009787047752
PMid:19149483 |
|
7. Porter, A.C. and Vaillancourt, R.R. (1998) Tyrosine
kinase receptor-activated signal transduction pathways which
lead to oncogenesis. Oncogene, 17(11): 1343-1352.
http://dx.doi.org/10.1038/sj.onc.1202171
PMid:9779982 |
|
8. Wu, H., Chang, D. and Huang, C. (2006) Targeted-therapy
for cancer. J. Cancer Mol., 2: 57-66. |
|
9. Urruticoechea, A., Alemany, R., Balart, J., Villanueva,
A., Vi-als, F. and Capellá, G. (2010) Recent advances in
cancer therapy: An overview. Curr. Pharm. Des., 16: 3-10.
http://dx.doi.org/10.2174/138161210789941847
PMid:20214614 |
|
10. Grassot, J. (2003) RTKdb: Database of receptor tyrosine
kinase. Nuc. Acids Res., 31(1): 353-358.
http://dx.doi.org/10.1093/nar/gkg036 |
|
11. Bari, S.B., Adhikari, S. and Surana, S.J. (2012)
Tyrosine kinase receptor inhibitors: A new target for
anticancer drug development. J. Pharm. Sci. Technol., 1(2):
36-45. |
|
12. Eckstein, N., Röper, L., Haas, B., Potthast, H., Hermes,
U., Unkrig, C., Naumann-Winter, F. and Enzmann, H. (2014)
Clinical pharmacology of tyrosine kinase inhibitors becoming
generic drugs: The regulatory perspective. J. Exp. Clin.
Cancer Res., 33(1): 15.
http://dx.doi.org/10.1186/1756-9966-33-15 |
|
13. Levitzki, A. and Klein, S. (2010) Signal transduction
therapy of cancer. Mol. Aspects Med., 31(4): 287-329.
http://dx.doi.org/10.1016/j.mam.2010.04.001
PMid:20451549 |
|
14. Maruyama, I.N. (2014) Mechanisms of activation of
receptor tyrosine kinases: Monomers or dimers. Cells, 3:
304-330.
http://dx.doi.org/10.3390/cells3020304
PMid:24758840 PMCid:PMC4092861 |
|
15. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P.,
Baltimore, D. and Darnell, J. (2000) Molecular Cell Biology.
4th ed. W. H. Freeman, New York. |
|
16. Haj, F.G., Markova, B., Klaman, L.D., Bohmer, F.D. and
Neel, B.G. (2003) Regulation of receptor tyrosine kinase
signaling by protein tyrosine phosphatase-1B. J. Biol.
Chem., 278(2): 739-744.
http://dx.doi.org/10.1074/jbc.M210194200
PMid:12424235 |
|
17. Ostman, A., Hellberg, C. and Böhmer, F.D. (2006)
Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer,
6(4): 307-320.
http://dx.doi.org/10.1038/nrc1837
PMid:16557282 |
|
18. Schmidt-Arras, D.E., Böhmer, A., Markova, B., Choudhary,
C., Serve, H. and Böhmer, F.D. (2005) Tyrosine
phosphorylation regulates maturation of receptor tyrosine
kinases. Mol. Cell. Biol., 25(9): 3690-3703.
http://dx.doi.org/10.1128/MCB.25.9.3690-3703.2005
PMid:15831474 PMCid:PMC1084288 |
|
19. Schmidt, M.H.H., Furnari, F.B., Cavenee, W.K. and Bögler,
O. (2003) Epidermal growth factor receptor signaling
intensity determines intracellular protein interactions,
ubiquitination, and internalization. Proc. Natl. Acad. Sci.
U.S.A., 100(11): 6505-6510.
http://dx.doi.org/10.1073/pnas.1031790100
PMid:12734385 PMCid:PMC164476 |
|
20. Goh, L.K. and Sorkin, A. (2013) Endocytosis of receptor
tyrosine kinases. Cold Spring Harb. Perspect. Biol., 5(5):
1-17.
http://dx.doi.org/10.1101/cshperspect.a017459 |
|
21. Wiley, H.S. and Burke, P.M. (2001) Regulation of
receptor tyrosine kinase signaling by endocytic trafficking.
Traffic, 2(1): 12-18.
http://dx.doi.org/10.1034/j.1600-0854.2001.020103.x |
|
22. Harmey, J.H., Dimitriadis, E., Kay, E., Redmond, H.P.
and Bouchier-Hayes, D. (1998) Regulation of macrophage
production of vascular endothelial growth factor (VEGF) by
hypoxia and transforming growth factor beta-1. Ann. Surg.
Oncol., 5(3): 271-278.
http://dx.doi.org/10.1007/BF02303785 |
|
23. Molhoek, K.R., Shada, A.L., Smolkin, M., Chowbina, S.,
Papin, J., Brautigan, D.L. and Slingluff, C.L. (2011)
Comprehensive analysis of receptor tyrosine kinase
activation in human melanomas reveals autocrine signaling
through IGF-1R. Melanoma Res., 21(4): 274-284.
http://dx.doi.org/10.1097/CMR.0b013e328343a1d6
PMid:21654344 PMCid:PMC3131461 |
|
24. Hollmén, M., Määttä, J.A., Bald, L., Sliwkowski, M.X.
and Elenius, K. (2009) Suppression of breast cancer cell
growth by a monoclonal antibody targeting cleavable ErbB4
isoforms. Oncogene, 28(10): 1309-1319.
http://dx.doi.org/10.1038/onc.2008.481
PMid:19151766 |
|
25. Greulich, H., Kaplan, B., Mertins, P., Chen, T.H.,
Tanaka, K.E., Yun, C.H., Zhang, X., Lee, S.H., Cho, J.,
Ambrogio, L., Liao, R., Imielinski, M., Banerji, S., Berger,
A.H., Lawrence, M.S., Zhang, J., Pho, N.H., Walker, S.R.,
Winckler, W., Getz, G., Frank, D., Hahn, W.C., Eck, M.J.,
Mani, D.R., Jaffe, J.D., Carr, S.A., Wong, K.K. and
Meyerson, M. (2012) Functional analysis of receptor tyrosine
kinase mutations in lung cancer identifies oncogenic
extracellular domain mutations of ERBB2. Proc. Natl. Acad.
Sci., 109(36): 14476-14481.
http://dx.doi.org/10.1073/pnas.1203201109
PMid:22908275 PMCid:PMC3437859 |
|
26. Ozer, B.H., Wiepz, G.J. and Bertics, P.J. (2010)
Activity and cellular localization of an oncogenic
glioblastoma multiforme-associated EGF receptor mutant
possessing a duplicated kinase domain. Oncogene, 29(6):
855-864.
http://dx.doi.org/10.1038/onc.2009.385
PMid:19915609 PMCid:PMC2820599 |
|
27. Szerlip, N.J., Pedraza, A., Chakravarty, D., Azim, M.,
McGuire, J., Fang, Y., Ozawa, T., Holland, E.C., Huse, J.T.,
Jhanwar, S., Leversha, M.A., Mikkelsen, T. and Brennan, C.W.
(2012) Intratumoral heterogeneity of receptor tyrosine
kinases EGFR and PDGFRA amplification in glioblastoma
defines subpopulations with distinct growth factor response.
Proc. Natl. Acad. Sci., 109(8): 3041-3046.
http://dx.doi.org/10.1073/pnas.1114033109
PMid:22323597 PMCid:PMC3286976 |
|
28. Bhargava, R., Gerald, W.L., Li, A.R., Pan, Q., Lal, P.,
Ladanyi, M. and Chen, B. (2005) EGFR gene amplification in
breast cancer: Correlation with epidermal growth factor
receptor mRNA and protein expression and HER-2 status and
absence of EGFR-activating mutations. Mod. Pathol., 18(8):
1027-1033.
http://dx.doi.org/10.1038/modpathol.3800438
PMid:15920544 |
|
29. Sholl, L.M., Yeap, B.Y., Iafrate, A.J., Holmes-Tisch,
A.J., Chou, Y.P., Wu, M.T., Goan, Y.G., Su, L., Benedettini,
E., Yu, J., Loda, M., Jänne, P.A., Christiani, D.C. and
Chirieac, L. R. (2009) Lung adenocarcinoma with EGFR
amplification has distinct clinicopathologic and molecular
features in never-smokers. Cancer Res., 69(21): 8341-8348.
http://dx.doi.org/10.1158/0008-5472.CAN-09-2477
PMid:19826035 PMCid:PMC2783286 |
|
30. Gunby, R.H., Sala, E., Tartari, C.J., Puttini, M.,
Gambacorti-Passerini, C. and Mologni, L. (2007) Oncogenic
fusion tyrosine kinases as molecular targets for anti-cancer
therapy. Anticancer. Agents Med. Chem., 7(6): 594-611.
http://dx.doi.org/10.2174/187152007784111340 |
|
31. Shaw, A.T., Hsu, P.P., Awad, M.M. and Engelman, J.A.
(2013) Tyrosine kinase gene rearrangements in epithelial
malignancies. Nat. Rev. Cancer, 13(11): 772-787.
http://dx.doi.org/10.1038/nrc3612
PMid:24132104 PMCid:PMC3902129 |
|
32. Gerber, D.E. (2008) Targeted therapies: A new generation
of cancer treatments. Am. Fam. Phys., 77(3): 311-319. |
|
33. Joo, W.D., Visintin, I. and Mor, G. (2013) Targeted
cancer therapy - Are the days of systemic chemotherapy
numbered? Maturitas, 76(4): 308-314.
http://dx.doi.org/10.1016/j.maturitas.2013.09.008
PMid:24128673 PMCid:PMC4610026 |
|
34. Giaccone, G. (2004) The role of gefitinib in lung cancer
treatment. Clin. Cancer Res., 10: 4233s-4237s.
http://dx.doi.org/10.1158/1078-0432.CCR-040005
PMid:15217964 |
|
35. Gridelli, C., Bareschino, M.A., Schettino, C., Rossi,
A., Maione, P. and Ciardiello, F. (2007) Erlotinibin
non-small cell lung cancer treatment: Current status and
future development. Oncologist, 12: 840-849.
http://dx.doi.org/10.1634/theoncologist.12-7-840
PMid:17673615 |
|
36. Bilancia, D., Rosati, G., Dinota, A., Germano, D.,
Romano, R. and Manzione, L. (2007) Lapatinib in breast
cancer. Ann. Oncol., 18(6): 26-30.
http://dx.doi.org/10.1093/annonc/mdm220 |
|
37. Nelson, V., Ziehr, J., Agulnik, M. and Johnson, M.
(2013) Afatinib: Emerging next-generation tyrosine kinase
inhibitor for NSCLC. Onco. Targets. Ther., 6: 135-143.
PMid:23493883 PMCid:PMC3594037 |
|
38. Martin, P., Kelly, C.M.A. and Carney, D. (2006)
Epidermal growth factor receptor-targeted agents for lung
cancer. Cancer Control, 13(2): 129-140. |
|
39. Tiseo, M., Bartolotti, M., Gelsomino, F. and Bordi, P.
(2010) Emerging role of gefitinib in the treatment of
non-small-cell lung cancer (NSCLC). Drug Des. Dev. Ther., 4:
81-98.
http://dx.doi.org/10.2147/DDDT.S6594
PMid:20531963 PMCid:PMC2880339 |
|
40. Scott, A.M., Wolchok, J.D. and Old, L.J. (2012) Antibody
therapy of cancer. Nat. Rev. Cancer, 12(4): 278-287.
http://dx.doi.org/10.1038/nrc3236
PMid:22437872 |
|
41. Carter, P. (2001) Improving the efficacy of
antibody-based cancer therapies. Nat. Rev. Cancer, 1(2):
118-129.
http://dx.doi.org/10.1038/35101072
PMid:11905803 |
|
42. Pierotti, M.A., Negri, T., Tamborini, E., Perrone, F.,
Pricl, S. and Pilotti, S. (2010) Targeted therapies: The
rare cancer paradigm. Mol. Oncol., 4(1): 19-37.
http://dx.doi.org/10.1016/j.molonc.2009.10.003
PMid:19913465 |
|
43. Yarden, Y. and Sliwkowski, M.X. (2001) Untangling the
ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2:
127-137.
http://dx.doi.org/10.1038/35052073
PMid:11252954 |
|
44. Dziadziuszko, R. and Jassem, J. (2012) Epidermal growth
factor receptor (EGFR) inhibitors and derived treatments.
Ann. Oncol., 23 10 Suppl: x193-x196.
http://dx.doi.org/10.1093/annonc/mds351 |
|
45. Sasaki, T., Hiroki, K. and Yamashita, Y. (2013) The role
of epidermal growth factor receptor in cancer metastasis and
microenvironment. Biomed. Res. Int., 2013: 1-8.
http://dx.doi.org/10.1155/2013/546318
PMid:23986907 PMCid:PMC3748428 |
|
46. Mendelsohn, J. and Baselga, J. (2000) The EGF receptor
family as targets for cancer therapy. Oncogene, 19:
6550-6565.
http://dx.doi.org/10.1038/sj.onc.1204082
PMid:11426640 |
|
47. Hynes, N.E. and Lane, H.A. (2005) ERBB receptors and
cancer: The complexity of targeted inhibitors. Nat. Rev.
Cancer, 5: 341-354.
http://dx.doi.org/10.1038/nrc1609
PMid:15864276 |
|
48. Normanno, N., De Luca, A., Bianco, C., Strizzi, L.,
Mancino, M., Maiello, M.R., Carotenuto, A., De Feo, G.,
Caponigro, F. and Salomon, D.S. (2006) Epidermal growth
factor receptor (EGFR) signaling in cancer. Gene, 366: 2-16.
http://dx.doi.org/10.1016/j.gene.2005.10.018
PMid:16377102 |
|
49. Spector, N., Xia, W., El-Hariry, I., Yarden, Y. and
Bacus, S. (2007) HER2 therapy. Small molecule HER-2 tyrosine
kinase inhibitors. Breast Cancer Res., 9: 205.
http://dx.doi.org/10.1186/bcr1652
PMCid:PMC1868927 |
|
50. Yarom, N. and Jonker, D.J. (2011) The role of the
epidermal growth factor receptor in the mechanism and
treatment of colorectal cancer. Discov. Med., 11(57):
95-105.
PMid:21356164 |
|
51. Jiang, N., Saba, N.F. and Chen, Z.G. (2012) Advances in
targeting HER3 as an anticancer therapy. Chemother. Res.
Pract., 2012: 1-9.
http://dx.doi.org/10.1155/2012/817304
PMid:23198146 PMCid:PMC3502787 |
|
52. Biswas, B. (2015) Erlotinib versus docetaxel as second-
or third-line therapy in patients with advanced
non-small-cell lung cancer in the era of personalized
medicine. J. Clin. Oncol., 33: 524-524.
http://dx.doi.org/10.1200/JCO.2014.57.5621
PMid:25584001 |
|
53. Lee, S.M., Lewanski, C.R., Counsell, N., Ottensmeier,
C., Bates, A., Patel, N., Wadsworth, C., Ngai, Y., Hackshaw,
A. and Faivre-Finn, C. (2014) Randomized trial of erlotinib
plus whole-brain radiotherapy for NSCLC patients with
multiple brain metastases. J. Natl. Cancer Inst., 106(7):
pii: dju151.
http://dx.doi.org/10.1093/jnci/dju151 |
|
54. Coudert, B., Ciuleanu, T., Park, K., Wu, Y.L., Giaccone,
G., Brugger, W., Gopalakrishna, P. and Cappuzzo, F. (2012)
Survival benefit with erlotinib maintenance therapy in
patients with advanced non-small-cell lung cancer (NSCLC)
according to response to first-line chemotherapy. Ann.
Oncol., 23: 388-394.
http://dx.doi.org/10.1093/annonc/mdr125
PMid:21610154 |
|
55. Gemmete, J.J. and Mukherji, S.K. (2011) Trastuzumab
(Herceptin). Am. J. Neuroradiol., 32: 1373-1374.
http://dx.doi.org/10.3174/ajnr.A2619
PMid:21816914 |
|
56. Bang, Y.J., Van Cutsem, E., Feyereislova, A., Chung,
H.C., Shen, L., Sawaki, A., Lordick, F., Ohtsu, A., Omuro,
Y., Satoh, T., Aprile, G., Kulikov, E., Hill, J., Lehle, M.,
Rüschoff, J. and Kang, Y.K. (2010) Trastuzumab in
combination with chemotherapy versus chemotherapy alone for
treatment of HER2-positive advanced gastric or
gastro-oesophageal junction cancer (ToGA): A phase 3,
open-label, randomised controlled trial. Lancet, 376(9742):
687-697.
http://dx.doi.org/10.1016/S0140-6736(10)61121-X |
|
57. Hansen, A.R. and Siu, L.L. (2013) Epidermal growth
factor receptor targeting in head and neck cancer: Have we
been just skimming the surface? J. Clin. Oncol., 31(11):
1381-1383.
http://dx.doi.org/10.1200/JCO.2012.47.9220
PMid:23460713 |
|
58. Hitt, R., Irigoyen, A., Cortes-Funes, H., Grau, J.J.,
García-Sáenz, J.A. and Cruz-Hernandez, J.J. (2012) Phase II
study of the combination of cetuximab and weekly paclitaxel
in the first-line treatment of patients with recurrent
and/or metastatic squamous cell carcinoma of head and neck.
Ann. Oncol., 23: 1016-1022.
http://dx.doi.org/10.1093/annonc/mdr367
PMid:21865152 |
|
59. Vermorken, J.B. and Specenier, P. (2010) Optimal
treatment for recurrent/metastatic head and neck cancer.
Ann. Oncol., 21 Suppl 7: 252-261.
http://dx.doi.org/10.1093/annonc/mdq453
PMid:20943624 |
|
60. Van Cutsem, E., Köhne, C.H., Hitre, E., Zaluski, J.,
Chang Chien, C.R., Makhson, A., D'Haens, G., Pintér, T.,
Lim, R., Bodoky, G., Roh, J.K., Folprecht, G., Ruff, P.,
Stroh, C., Tejpar, S., Schlichting, M., Nippgen, J. and
Rougier, P. (2009) Cetuximab and chemotherapy as initial
treatment for metastatic colorectal cancer. N. Engl. J.
Med., 360(14): 1408-1417.
http://dx.doi.org/10.1056/NEJMoa0805019
PMid:19339720 |
|
61. Gemmete, J.J. and Mukherji, S.K. (2011) Panitumumab (Vectibix).
Am. J. Neuroradiol., 32(6): 1002-1003.
http://dx.doi.org/10.3174/ajnr.A2601
PMid:21596817 |
|
62. Olsson, A.K., Dimberg, A., Kreuger, J. and Claesson-Welsh,
L. (2006) VEGF receptor signalling - in control of vascular
function. Nat. Rev. Mol. Cell Biol., 7(5): 359-371.
http://dx.doi.org/10.1038/nrm1911
PMid:16633338 |
|
63. Ferrara, N., Gerber, H.P. and LeCouter, J. (2003) The
biology of VEGF and its receptors. Nat. Med., 9: 669-676.
http://dx.doi.org/10.1038/nm0603-669
PMid:12778165 |
|
64. Takahashi, H. and Shibuya, M. (2005) The vascular
endothelial growth factor (VEGF)/VEGF receptor system and
its role under physiological and pathological conditions.
Clin. Sci. (Lond), 109: 227-241.
http://dx.doi.org/10.1042/CS20040370
PMid:16104843 |
|
65. Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H.,
Van Oosterom, A.T. and De Bruijn, E.A. (2004) Vascular
endothelial growth factor and angiogenesis. Pharmacol. Rev.,
56(4): 549-580.
http://dx.doi.org/10.1124/pr.56.4.3
PMid:15602010 |
|
66. Roberts, E., Cossigny, D.A.F. and Quan, G.M.Y. (2013)
The role of vascular endothelial growth factor in metastatic
prostate cancer to the skeleton. Prostate Cancer, 2013: 1-8.
http://dx.doi.org/10.1155/2013/418340
PMid:24396604 PMCid:PMC3874956 |
|
67. Shibuya, M. (2001) Structure and dual function of
vascular endothelial growth factor receptor-1 (Flt-1). Int.
J. Biochem. Cell Biol., 33(4): 409-420.
http://dx.doi.org/10.1016/S1357-2725(01)00026-7 |
|
68. Iljin, K., Karkkainen, M.J., Lawrence, E.C., Kimak,
M.A., Uutela, M., Taipale, J., Pajusola, K., Alhonen, L.,
Halmekytö, M., Finegold, D.N., Ferrell, R.E. and Alitalo, K.
(2001) VEGFR3 gene structure, regulatory region, and
sequence polymorphisms. FASEB J., 15(6): 1028-1036.
http://dx.doi.org/10.1096/fj.00-0383com |
|
69. Rosen, L.S. (2005) VEGF-targeted therapy: Therapeutic
potential and recent advances. Oncologist, 10(6): 382-391.
http://dx.doi.org/10.1634/theoncologist.10-6-382
PMid:15967832 |
|
70. Folkman, J. (1990) What is the evidence that tumors are
angiogenesis dependent? J. Natl. Cancer Inst., 82(1): 4-6.
http://dx.doi.org/10.1093/jnci/82.1.4
|
71. Ellis, L.M. and Hicklin, D.J. (2008) VEGF-targeted
therapy: Mechanisms of anti-tumour activity. Nat.
Rev. Cancer, 8(8): 579-591.
http://dx.doi.org/10.1038/nrc2403
PMid:18596824 |
|
72. Rosen, L.S. (2002) Clinical experience with
angiogenesis signaling inhibitors: Focus on vascular
endothelial growth factor (VEGF) blockers. Cancer
Control., 9 Suppl 2: 36-44. |
|
73. Jost, L.M., Gschwind, H.P., Jalava, T., Wang,
Y., Guenther, C., Souppart, C., Rottmann, A., Denner,
K., Waldmeier, F., Gross, G., Masson, E. and
Laurent, D. (2006) Metabolism and disposition of
vatalanib (PTK787/ZK-222584) in cancer patients.
Drug Metab. Dispos., 34(11): 1817-1828.
http://dx.doi.org/10.1124/dmd.106.009944
PMid:16882767 |
|
74. Morgan, B., Thomas, A.L., Drevs, J., Hennig, J.,
Buchert, M., Jivan, A., Horsfield, M.A., Mross, K.,
Ball, H.A., Lee, L., Mietlowski, W., Fuxuis, S.,
Unger, C., O'Byrne, K., Henry, A., Cherryman, G.R.,
Laurent, D., Dugan, M., Marmé, D. and Steward, W.P.
(2003) Dynamic contrast-enhanced magnetic resonance
imaging as a biomarker for the pharmacological
response of PTK787/ZK 222584, an inhibitor of the
vascular endothelial growth factor receptor tyrosine
kinases, in patients with advanced colorectal cancer
and liv. J. Clin. Oncol., 21(21): 3955-3964.
http://dx.doi.org/10.1200/JCO.2003.08.092
PMid:14517187 |
|
75. Dragovich, T., Laheru, D., Dayyani, F., Bolejack,
V., Smith, L., Seng, J., Burris, H., Rosen, P.,
Hidalgo, M., Ritch, P., Baker, A.F., Raghunand, N.,
Crowley, J. and Von Hoff, D.D. (2014) Phase II trial
of vatalanib in patients with advanced or metastatic
pancreatic adenocarcinoma after first-line
gemcitabine therapy (PCRT O4-001). Cancer Chemother.
Pharmacol., 74(2): 379-387.
http://dx.doi.org/10.1007/s00280-014-2499-4
PMid:24939212 PMCid:PMC4461053 |
|
76. Sobrero, A.F. and Bruzzi, P. (2011) Vatalanib in
advanced colorectal cancer: Two studies with
identical results. J. Clin. Oncol., 29(15):
1938-1940.
http://dx.doi.org/10.1200/JCO.2010.33.2429
PMid:21464409 |
|
77. Giatromanolaki, A., Koukourakis, M.I., Sivridis,
E., Gatter, K.C., Trarbach, T., Folprecht, G., Shi,
M.M., Lebwohl, D., Jalava, T., Laurent, D.,
Meinhardt, G. and Harris, A.L. (2012) Vascular
density analysis in colorectal cancer patients
treated with vatalanib (PTK787/ZK222584) in the
randomised confirm trials. Br. J. Cancer, 107(7):
1044-1050.
http://dx.doi.org/10.1038/bjc.2012.369
PMid:22910317 PMCid:PMC3461163 |
|
78. Gauler, T.C., Besse, B., Mauguen, A., Meric, J.B.,
Gounant, V., Fischer, B., Overbeck, T.R., Krissel,
H., Laurent, D., Tiainen, M., Commo, F., Soria, J.C.
and Eberhardt, W.E.E. (2012) Phase II trial of
ptk787/zk 222584 (vatalanib) administered orally
once-daily or in two divided daily doses as
second-line monotherapy in relapsed or progressing
patients with stage IIIB/IV non-small-cell lung
cancer (NSCLC). Ann. Oncol., 23(3): 678-687.
http://dx.doi.org/10.1093/annonc/mdr255
PMid:21617019 |
|
79. Bachelier, R., Confavreux, C.B., Peyruchaud, O.,
Croset, M., Goehrig, D., Van Der Pluijm, G. and
Clézardin, P. (2014) Combination of anti-angiogenic
therapies reduces osteolysis and tumor burden in
experimental breast cancer bone metastasis. Int. J.
Cancer, 135(6): 1319-1329.
http://dx.doi.org/10.1002/ijc.28787
PMid:24615579 |
|
80. Motzer, R.J., Hutson, T.E., Tomczak, P.,
Michaelson, M.D., Bukowski, R.M., Rixe, O., Oudard,
S., Negrier, S., Szczylik, C., Kim, S.T., Chen, I.,
Bycott, P.W., Baum, C.M. and Figlin, R.A. (2007)
Sunitinib versus interferon alfa in metastatic
renal-cell carcinoma. N. Engl. J. Med., 356(2):
115-124.
http://dx.doi.org/10.1056/NEJMoa065044
PMid:17215529 |
|
81. Porta, C., Paglino, C. and Grünwald, V. (2014)
Sunitinib re-challenge in advanced renal-cell
carcinoma. Br. J. Cancer, 111(6): 1047-1053.
http://dx.doi.org/10.1038/bjc.2014.214
PMid:24800947 PMCid:PMC4453836 |
|
82. Younus, J., Verma, S., Franek, J. and Coakley,
N. (2010) Sunitinib malate for gastrointestinal
stromal tumour in imatinib mesylate-resistant
patients: Recommendations and evidence. Curr.
Oncol., 17(4): 4-10.
http://dx.doi.org/10.3747/co.v17i4.560 |
|
83. Mukherji, S.K. (2010) Bevacizumab (Avastin).
AJNR. Am. J. Neuroradiol., 31: 235-236.
http://dx.doi.org/10.3174/ajnr.A1987
PMid:20037132 |
|
84. Loupakis, F., Cremolini, C., Masi, G., Lonardi,
S., Zagonel, V., Salvatore, L., Cortesi, E.,
Tomasello, G., Ronzoni, M., Spadi, R., Zaniboni, A.,
Tonini, G., Buonadonna, A., Amoroso, D., Chiara, S.,
Carlomagno, C., Boni, C., Allegrini, G., Boni, L.
and Falcone, A. (2014) Initial therapy with
foleoxiri and bevacizumab for metastatic colorectal
cancer. N. Engl. J. Med., 371(17): 1609-1618.
http://dx.doi.org/10.1056/NEJMoa1403108
PMid:25337750 |
|
85. McCormack, P.L. and Keam, S.J. (2008)
Bevacizumab: A review of its use in metastatic
colorectal cancer. Drugs, 68(4): 487-506.
http://dx.doi.org/10.2165/00003495-200868040-00009 |
|
86. Barlesi, F., Scherpereel, A., Gorbunova, V.,
Gervais, R., Vikström, A., Chouaid, C., Chella, A.,
Kim, J.H., Ahn, M.J., Reck, M., Pazzola, A., Kim,
H.T., Aerts, J.G., Morando, C., Loundou, A., Groen,
H.J.M. and Rittmeyer, A. (2014) Maintenance
bevacizumab-pemetrexed after first-line
cisplatin-pemetrexed-bevacizumab for advanced
nonsquamous nonsmall-cell lung cancer: Updated
survival analysis of the AVAPERL (MO22089)
randomized phase III trial. Ann. Oncol., 25(5):
1044-1052.
http://dx.doi.org/10.1093/annonc/mdu098
PMid:24585722 |
|
87. Vu, T., Sliwkowski, M.X. and Claret, F.X. (2014)
Personalized drug combinations to overcome
trastuzumab resistance in HER2-positive breast
cancer. Biochim. Biophys. Acta, 1846(2): 353-365.
http://dx.doi.org/10.1016/j.bbcan.2014.07.007 |
|
88. Escudier, B., Pluzanska, A., Koralewski, P.,
Ravaud, A., Bracarda, S., Szczylik, C., Chevreau,
C., Filipek, M., Melichar, B., Bajetta, E.,
Gorbunova, V., Bay, J.O., Bodrogi, I.,
Jagiello-Gruszfeld, A. and Moore, N. (2007)
Bevacizumab plus interferon alfa-2a for treatment of
metastatic renal cell carcinoma: A randomised,
double-blind phase III trial. Lancet, 370(9605):
2103-2111.
http://dx.doi.org/10.1016/S0140-6736(07)61904-7 |
|
89. Fu, W., Madan, E., Yee, M. and Zhang, H. (2012)
Progress of molecular targeted therapies for
prostate cancers. Biochim. Biophys. Acta Rev.
Cancer, 1825(2): 140-152.
http://dx.doi.org/10.1016/j.bbcan.2011.11.003
PMid:22146293 PMCid:PMC3307854 |
|
90. Chamberlain, M.C. (2011) Bevacizumab for the
treatment of recurrent glioblastoma. Clin. Med.
Insights Oncol., 5: 117-129.
http://dx.doi.org/10.4137/CMO.S7232
PMid:21603247 PMCid:PMC3095028 |
|
91. Eswarakumar, V.P., Lax, I. and Schlessinger, J.
(2005) Cellular signaling by fibroblast growth
factor receptors. Cytokine Growth Factor Rev.,
16(2): 139-149.
http://dx.doi.org/10.1016/j.cytogfr.2005.01.001
PMid:15863030 |
|
92. Du, Y., Hsu, J.L., Wang, Y.N. and Hung, M.C.
(2014) Nuclear functions of receptor tyrosine
kinases. In: Wheeler DL, Yarden Y, editors. Receptor
Tyrosine Kinase: Structure, Functions and Role in
Human Disease. 2015th ed. Springer, Heidelberg
Dordrecht, New York, London, p77-109. |
|
93. Greulich, H. and Pollock, P.M. (2011) Targeting
mutant fibroblast growth factor receptors in cancer.
Trends Mol. Med., 17(5): 283-292.
http://dx.doi.org/10.1016/j.molmed.2011.01.012
PMid:21367659 PMCid:PMC3809064 |
|
94. Gru, A.A. and Allred, D.C. (2012) FGFR1
amplification and the progression of non-invasive to
invasive breast cancer. Breast Cancer Res., 14: 116.
http://dx.doi.org/10.1186/bcr3340
PMid:23151501 PMCid:PMC4053127 |
|
95. Dutt, A., Ramos, A.H., Hammerman, P.S., Mermel,
C., Cho, J., Sharifnia, T., Chande, A., Tanaka, K.E.,
Stransky, N., Greulich, H., Gray, N.S. and Meyerson,
M. (2011) Inhibitor-sensitive fgfr1 amplification in
human non-small cell lung cancer. PLoS One, 6(6):
e20351.
http://dx.doi.org/10.1371/journal.pone.0020351 |
|
96. Freier, K., Schwaenen, C., Sticht, C.,
Flechtenmacher, C., Mühling, J., Hofele, C.,
Radlwimmer, B., Lichter, P. and Joos, S. (2007)
Recurrent FGFR1 amplification and high FGFR1 protein
expression in oral squamous cell carcinoma (OSCC).
Oral Oncol., 43(1): 60-66.
http://dx.doi.org/10.1016/j.oraloncology.2006.01.005
PMid:16807070 |
|
97. McLendon, R., Friedman, A., Bigner, D., Van Meir,
E.G., Brat, D.J.M., Mastrogianakis, G., Olson, J.J.,
Mikkelsen, T., Lehman, N., Aldape, K., Alfred Yung,
W.K., Bogler, O., Vanden Berg, S., Berger, M.,
Prados, M., Muzny, D., Morgan, M., Scherer, S.,
Sabo, A., Nazareth, L., Lewis, L., Hall, O., Zhu,
Y., Ren, Y., Alvi, O., Yao, J., Hawes, A., Jhangiani,
S., Fowler, G., San Lucas, A., Kovar, C., Cree, A.,
Dinh, H., Santibanez, J., Joshi, V., Gonzalez-Garay,
M.L., Miller, C.A., Milosavljevic, A., Donehower,
L., Wheeler, D.A., Gibbs, R.A., Cibulskis, K.,
Sougnez, C., Fennell, T., Mahan, S., Wilkinson, J.,
Ziaugra, L., Onofrio, R., Bloom, T., Nicol, R.,
Ardlie, K., Baldwin, J., Gabriel, S., Lander, E.S.,
Ding, L., Fulton, R.S., McLellan, M.D., Wallis, J.,
Larson, D.E., Shi, X., Abbott, R., Fulton, L., Chen,
K., Koboldt, D.C., Wendl, M.C., Meyer, R., Tang, Y.,
Lin, L., Osborne, J.R., Dunford-Shore, B.H., Miner,
T.L., Delehaunty, K., Markovic, C., Swift, G.,
Courtney, W., Pohl, C., Abbott, S., Hawkins, A.,
Leong, S., Haipek, C., Schmidt, H., Wiechert, M.,
Vickery, T., Scott, S., Dooling, D.J., Chinwalla,
A., Weinstock, G.M., Mardis, E.R., Wilson, R.K.,
Getz, G., Winckler, W., Verhaak, R.G.W., Lawrence,
M.S., O'Kelly, M., Robinson, J., Alexe, G.,
Beroukhim, R., Carter, S., Chiang, D., Gould, J.,
Gupta, S., Korn, J., Mermel, C., Mesirov, J., Monti,
S., Nguyen, H., Parkin, M., Reich, M., Stransky, N.,
Weir, B.A., Garraway, L., Golub, T., Meyerson, M.,
Chin, L., Protopopov, A., Zhang, J., Perna, I.,
Aronson, S., Sathiamoorthy, N., Ren, G., Yao, J.,
Wiedemeyer, W.R., Kim, H., Won Kong, S., Xiao, Y.,
Kohane, I.S., Seidman, J., Park, P.J., Kucherlapati,
R., Laird, P.W., Cope, L., Herman, J.G.,
Weisenberger, D.J., Pan, F., Van Den Berg, D., Van
Neste, L., Yi, J.M., Schuebel, K.E., Baylin, S.B.,
Absher, D.M., Li, J.Z., Southwick, A., Brady, S.,
Aggarwal, A., Chung, T., Sherlock, G., Brooks, J.D.,
Myers, R.M., Spellman, P.T., Purdom, E., Jakkula,
L.R., Lapuk, A.V., Marr, H., Dorton, S., Gi Choi,
Y., Han, J., Ray, A., Wang, V., Durinck, S.,
Robinson, M., Wang, N.J., Vranizan, K., Peng, V.,
Van Name, E., Fontenay, G.V., Ngai, J., Conboy, J.G.,
Parvin, B., Feiler, H.S., Speed, T.P., Gray, J.W.,
Brennan, C., Socci, N.D., Olshen, A., Taylor, B.S.,
Lash, A., Schultz, N., Reva, B., Antipin, Y.,
Stukalov, A., Gross, B., Cerami, E., Qing Wang, W.,
Qin, L.X., Seshan, V.E., Villafania, L., Cavatore,
M., Borsu, L., Viale, A., Gerald, W., Sander, C.,
Ladanyi, M., Perou, C.M., Neil Hayes, D., Topal, M.D.,
Hoadley, K.A., Qi, Y., Balu, S., Shi, Y., Wu, J.,
Penny, R., Bittner, M., Shelton, T., Lenkiewicz, E.,
Morris, S., Beasley, D., Sanders, S., Kahn, A.,
Sfeir, R., Chen, J., Nassau, D., Feng, L., Hickey,
E., Zhang, J., Weinstein, J.N., Barker, A., Gerhard,
D.S., Vockley, J., Compton, C., Vaught, J.,
Fielding, P., Ferguson, M.L., Schaefer, C., Madhavan,
S., Buetow, K.H., Collins, F., Good, P., Guyer, M.,
Ozenberger, B., Peterson, J. and Thomson, E. (2008)
Comprehensive genomic characterization defines human
glioblastoma genes and core pathways. Nature,
455(7216): 1061-1068.
http://dx.doi.org/10.1038/nature07385
PMid:18772890 PMCid:PMC2671642 |
|
98. Bai, A., Meetze, K., Vo, N.Y., Kollipara, S.,
Mazsa, E.K., Winston, W.M., Weiler, S., Poling, L.L.,
Chen, T., Ismail, N.S., Jiang, J., Lerner, L.,
Gyuris, J. and Weng, Z. (2010) GP369, an
FGFR2-IIIb-specific antibody, exhibits potent
antitumor activity against human cancers driven by
activated FGFR2 signaling. Cancer Res., 70(19):
7630-7639.
http://dx.doi.org/10.1158/0008-5472.CAN-10-1489
PMid:20709759 |
|
99. Katoh, Y. and Katoh, M. (2009) FGFR2-related
pathogenesis and FGFR2-targeted therapeutics
(review). Int. J. Mol. Med., 23(3): 307-311.
http://dx.doi.org/10.3892/ijmm_00000132 |
|
100. Dutt, A., Salvesen, H.B., Chen, T.H., Ramos,
A.H., Onofrio, R.C., Hatton, C., Nicoletti, R.,
Winckler, W., Grewal, R., Hanna, M., Wyhs, N.,
Ziaugra, L., Richter, D.J., Trovik, J., Engelsen,
I.B., Stefansson, I.M., Fennell, T., Cibulskis, K.,
Zody, M.C., Akslen, L.A., Gabriel, S., Wong, K.K.,
Sellers, W.R., Meyerson, M. and Greulich, H. (2008)
Drug-sensitive FGFR2 mutations in endometrial
carcinoma. Proc. Natl. Acad. Sci. U.S.A., 105(25):
8713-8717.
http://dx.doi.org/10.1073/pnas.0803379105
PMid:18552176 PMCid:PMC2438391 |
|
101. Cappellen, D., De Oliveira, C., Ricol, D., de
Medina, S., Bourdin, J., Sastre-Garau, X., Chopin,
D., Thiery, J.P. and Radvanyi, F. (1999) Frequent
activating mutations of FGFR3 in human bladder and
cervix carcinomas. Nat. Genet., 23(1): 18-20.
http://dx.doi.org/10.1038/12615
PMid:10471491 |
|
102. Qing, J., Du, X., Chen, Y., Chan, P., Li, H.,
Wu, P., Marsters, S., Stawicki, S., Tien, J., Totpal,
K., Ross, S., Stinson, S., Dornan, D., French, D.,
Wang, Q.R., Stephan, J.P., Wu, Y., Wiesmann, C. and
Ashkenazi, A. (2009) Antibody-based targeting of
FGFR3 in bladder carcinoma and t(4;14)-positive
multiple myeloma in mice. J. Clin. Invest., 119(5):
1216-1229.
http://dx.doi.org/10.1172/JCI38017
PMid:19381019 PMCid:PMC2673861 |
|
103. Tomlinson, D.C., Baldo, O., Hamden, P. and
Knowles, M.A. (2007) FGFR3 protein expression and
its relationship to mutation status and prognostic
variables in bladder cancer. J. Pathol., 213(1):
91-98.
http://dx.doi.org/10.1002/path.2207
PMid:17668422 PMCid:PMC2443273 |
|
104. Trudel, S., Stewart, A.K., Rom, E., Wei, E.,
Zhi, H.L., Kotzer, S., Chumakov, I., Singer, Y.,
Chang, H., Liang, S.B., Yayon, A., Li, Z.H., Kotzer,
S., Chumakov, I. and Singer, Y. (2006) The
inhibitory anti-FGFR3 antibody, PRO-001, is
cytotoxic to t(4;14) multiple myeloma cells. Blood,
107(10): 4039-4046.
http://dx.doi.org/10.1182/blood-2005-10-4179
PMid:16467200 |
|
105. Hernández, S., de Muga, S., Agell, L., Juanpere,
N., Esgueva, R., Lorente, J. A., Mojal, S., Serrano,
S. and Lloreta, J. (2009) FGFR3 mutations in
prostate cancer: Association with low-grade tumors.
Mod. Pathol., 22(6): 848-856.
http://dx.doi.org/10.1038/modpathol.2009.46 |
|
106. Bange, J., Prechtl, D., Cheburkin, Y., Specht,
K., Harbeck, N., Schmitt, M., Knyazeva, T., Müller,
S., Gärtner, S., Sures, I., Wang, H., Imyanitov, E.,
Häring, H. U., Knayzev, P., Iacobelli, S., Höfler,
H. and Ullrich, A. (2002) Cancer progression and
tumor cell motility are associated with the FGFR4
Arg388 allele. Cancer Res., 62(3): 840-847.
PMid:11830541 |
|
107. Roidl, A., Berger, H. J., Kumar, S., Bange, J.,
Knyazev, P. and Ullrich, A. (2009) Resistance to
chemotherapy is associated with fibroblast growth
factor receptor 4 up-regulation. Clin. Cancer Res.,
15(6): 2058-2066.
http://dx.doi.org/10.1158/1078-0432.CCR-08-0890
PMid:19240166 |
|
108. Roidl, A., Foo, P., Wong, W., Mann, C.,
Bechtold, S., Berger, H.J., Streit, S., Ruhe, J.E.,
Hart, S., Ullrich, A. and Ho, H.K. (2010) The FGFR4
Y367C mutant is a dominant oncogene in MDA-MB453
breast cancer cells. Oncogene, 29(10): 1543-1552.
http://dx.doi.org/10.1038/onc.2009.432
PMid:19946327 |
|
109. Mohammadi, M., Froum, S., Hamby, J.M.,
Schroeder, M.C., Panek, R.L., Lu, G.H., Eliseenkova,
A.V, Green, D., Schlessinger, J. and Hubbard, S.R.
(1998) Crystal structure of an angiogenesis
inhibitor bound to the FGF receptor tyrosine kinase
domain. EMBO J., 17(20): 5896-5904.
http://dx.doi.org/10.1093/emboj/17.20.5896
PMid:9774334 PMCid:PMC1170917 |
|
110. Koziczak, M., Holbro, T. and Hynes, N.E. (2004)
Blocking of FGFR signaling inhibits breast cancer
cell proliferation through downregulation of D-type
cyclins. Oncogene, 23(20): 3501-3508.
http://dx.doi.org/10.1038/sj.onc.1207331
PMid:15116089
|
111. Fischer, H., Taylor, N., Allerstorfer,
S., Grusch, M., Sonvilla, G., Holzmann, K.,
Setinek, U., Elbling, L., Cantonati, H.,
Grasl-Kraupp, B., Gauglhofer, C., Marian,
B., Micksche, M. and Berger, W. (2008)
Fibroblast growth factor receptor-mediated
signals contribute to the malignant
phenotype of non-small cell lung cancer
cells: Therapeutic implications and
synergism with epidermal growth factor
receptor inhibition. Mol. Cancer Ther.,
7(10): 3408-3419.
http://dx.doi.org/10.1158/1535-7163.MCT-08-0444
PMid:18852144 PMCid:PMC2879863 |
|
112. Lamont, F.R., Tomlinson, D.C., Cooper,
P.A., Shnyder, S.D., Chester, J.D. and
Knowles, M.A. (2011) Small molecule FGF
receptor inhibitors block FGFR-dependent
urothelial carcinoma growth in vitro and in
vivo. Br. J. Cancer, 104(1): 75-82.
http://dx.doi.org/10.1038/sj.bjc.6606016
PMid:21119661 PMCid:PMC3039817 |
|
113. Wedge, S.R., Kendrew, J., Hennequin,
L.F., Valentine, P.J., Barry, S.T., Brave,
S.R., Smith, N.R., James, N.H., Dukes, M.,
Curwen, J.O., Chester, R., Jackson, J.A.,
Boffey, S.J., Kilburn, L.L., Barnett, S.,
Richmond, G.H.P., Wadsworth, P.F., Walker,
M., Bigley, A.L., Taylor, S.T., Cooper, L.,
Beck, S., Jürgensmeier, J.M. and Ogilvie,
D.J. (2005) AZD2171: A highly potent, orally
bioavailable, vascular endothelial growth
factor receptor-2 tyrosine kinase inhibitor
for the treatment of cancer. Cancer Res.,
65(10): 4389-4400.
http://dx.doi.org/10.1158/0008-5472.CAN-04-4409
PMid:15899831 |
|
114. Nakamura, K., Yashiro, M., Matsuoka,
T., Tendo, M., Shimizu, T., Miwa, A. and
Hirakawa, K. (2006) A novel molecular
targeting compound as K-samII/FGF-R2
phosphorylation inhibitor, Ki23057, for
scirrhous gastric cancer. Gastroenterology,
131(5): 1530-1541.
http://dx.doi.org/10.1053/j.gastro.2006.08.030
PMid:17101326 |
|
115. Yashiro, M., Shinto, O., Nakamura, K.,
Tendo, M., Matsuoka, T., Matsuzaki, T.,
Kaizaki, R., Miwa, A. and Hirakawa, K.
(2010) Synergistic antitumor effects of
FGFR2 inhibitor with 5-fluorouracil on
scirrhous gastric carcinoma. Int. J. Cancer,
126(4): 1004-1016.
PMid:19621385 |
|
116. Dienstmann, R., Rodon, J., Prat, A.,
Perez-Garcia, J., Adamo, B., Felip, E.,
Cortes, J., Iafrate, A.J., Nuciforo, P. and
Tabernero, J. (2014) Genomic aberrations in
the FGFR pathway: Opportunities for targeted
therapies in solid tumors. Ann. Oncol.,
25(3): 552-563.
http://dx.doi.org/10.1093/annonc/mdt419
PMid:24265351 PMCid:PMC4433501 |
|
117. Harding, T.C., Long, L., Palencia, S.,
Zhang, H., Sadra, A., Hestir, K., Patil, N.,
Levin, A., Hsu, A. W., Charych, D., Brennan,
T., Zanghi, J., Halenbeck, R., Marshall, S.A,
Qin, M., Doberstein, S.K., Hollenbaugh, D.,
Kavanaugh, W.M., Williams, L.T. and Baker,
K.P. (2013) Blockade of nonhormonal
fibroblast growth factors by FP-1039
inhibits growth of multiple types of cancer.
Sci. Trans. Med., 5(178): 178ra39.
http://dx.doi.org/10.1126/scitranslmed.3005414 |
|
118. Baker, K.P. and Los, G. (2013)
Targeting fibroblast growth factors in
cancer: The key is what not to block.
Oncotarget, 4(7): 950-951.
http://dx.doi.org/10.18632/oncotarget.1054 |
|
119. Mansoor, Q., Fayyaz, S., Farooqi, A.A.,
Bhatti, S. and Ismail, M. (2013)
Re-evaluating the FGFR4 (G388R) germline
mutation in different cancers in Pakistani
population. J. Exp. Ther. Oncol., 10(3):
215-217.
PMid:24416997 |
|
120. Olmos, D., Basu, B. and de Bono, J.S.
(2010) Targeting insulin-like growth factor
signaling: Rational combination strategies.
Mol. Cancer Ther., 9(9): 2447-2449.
http://dx.doi.org/10.1158/1535-7163.MCT-10-0719
PMid:20807783 |
|
121. Ryan, P.D. and Goss, P.E. (2008) The
emerging role of the insulin-like growth
factor pathway as a therapeutic target in
cancer. Oncologist, 13(1): 16-24.
http://dx.doi.org/10.1634/theoncologist.2007-0199
PMid:18245009 |
|
122. Reinmuth, N., Fan, F., Liu, W., Parikh,
A.A., Stoeltzing, O., Jung, Y.D., Bucana,
C.D., Radinsky, R., Gallick, G.E. and Ellis,
L.M. (2002) Impact of insulin-like growth
factor receptor-I function on angiogenesis,
growth, and metastasis of colon cancer. Lab.
Invest., 82(10): 1377-1389.
http://dx.doi.org/10.1097/01.LAB.0000032411.41603.C2 |
|
123. Yee, D. (2012) Insulin-like growth
factor receptor inhibitors: Baby or the
bathwater? J. Natl. Cancer Inst., 104(13):
975-981.
http://dx.doi.org/10.1093/jnci/djs258
PMid:22761272 PMCid:PMC3634550 |
|
124. Nakamura, T. and Mizuno, S. (2010) The
discovery of hepatocyte growth factor (HGF)
and its significance for cell biology, life
sciences and clinical medicine. Proc. Jpn.
Acad. Ser. B. Phys. Biol. Sci., 86(6):
588-610.
http://dx.doi.org/10.2183/pjab.86.588
PMCid:PMC3081175 |
|
125. Edakuni, G., Sasatomi, E., Satoh, T.,
Tokunaga, O. and Miyazaki, K. (2001)
Expression of the hepatocyte growth
factor/c-Met pathway is increased at the
cancer front in breast carcinoma. Pathol.
Int., 51(3): 172-178.
http://dx.doi.org/10.1046/j.1440-1827.2001.01182.x |
|
126. Maulik, G., Kijima, T., Ma, P.C.,
Ghosh, S.K., Lin, J., Shapiro, G.I.,
Schaefer, E., Tibaldi, E., Johnson, B.E. and
Salgia, R. (2002) Modulation of the
c-Met/hepatocyte growth factor pathway in
small cell lung cancer. Clin. Cancer Res.,
8(2): 620-627.
PMid:11839685 |
|
127. Inoue, T., Kataoka, H., Goto, K.,
Nagaike, K., Igami, K., Naka, D., Kitamura,
N. and Miyazawa, K. (2004) Activation of
c-Met (hepatocyte growth factor receptor) in
human gastric cancer tissue. Cancer Sci.,
95(10): 803-808.
http://dx.doi.org/10.1111/j.1349-7006.2004.tb02185.x |
|
128. Liu, Y., Li, Q. and Zhu, L. (2012)
Expression of the hepatocyte growth factor
and c-Met in colon cancer: Correlation with
clinicopathological features and overall
survival. Tumori, 98(1): 105-112.
PMid:22495710 |
|
129. Harshman, L.C. and Choueiri, T.K.
(2013) Targeting the hepatocyte growth
factor/c-Met signaling pathway in renal cell
carcinoma. Cancer J., 19(4): 316-323.
http://dx.doi.org/10.1097/PPO.0b013e31829e3c9a
PMid:23867513 |
|
130. Blumenschein, G.R., Mills, G.B. and
Gonzalez-Angulo, A.M. (2012) Targeting the
hepatocyte growth factor-cMET axis in cancer
therapy. J. Clin. Oncol., 30(26): 3287-3296.
http://dx.doi.org/10.1200/JCO.2011.40.3774
PMid:22869872 PMCid:PMC3434988 |
|
131. Green, J.L., Kuntz, S.G. and Sternberg,
P.W. (2008) Ror receptor tyrosine kinases:
Orphans no more. Trends Cell Biol., 18(11):
536-544.
http://dx.doi.org/10.1016/j.tcb.2008.08.006
PMid:18848778 PMCid:PMC4672995 |
|
132. Matsuda, T., Nomi, M., Ikeya, M., Kani,
S., Oishi, I., Terashima, T., Takada, S. and
Minami, Y. (2001) Expression of the receptor
tyrosine kinase genes, Ror1 and Ror2, during
mouse development. Mech. Dev., 105(1-2):
153-156.
http://dx.doi.org/10.1016/S0925-4773(01)00383-5 |
|
133. Al-Shawi, R., Ashton, S.V., Underwood,
C. and Simons, J.P. (2001) Expression of the
Ror1 and Ror2 receptor tyrosine kinase genes
during mouse development. Dev. Genes Evol.,
211(4): 161-171.
http://dx.doi.org/10.1007/s004270100140 |
|
134. Uhrmacher, S., Schmidt, C., Erdfelder,
F., Poll-Wolbeck, S.J., Gehrke, I., Hallek,
M. and Kreuzer, K.A. (2011) Use of the
receptor tyrosine kinase-like orphan
receptor 1 (ROR1) as a diagnostic tool in
chronic lymphocytic leukemia (CLL). Leuk.
Res., 35(10): 1360-1366.
http://dx.doi.org/10.1016/j.leukres.2011.04.006
PMid:21531460 |
|
135. Daneshmanesh, A.H., Porwit, A.,
Hojjat-Farsangi, M., Jeddi-Tehrani, M., Tamm,
K.P., Grandér, D., Lehmann, S., Norin, S.,
Shokri, F., Rabbani, H., Mellstedt, H. and
Österborg, A. (2012) Orphan receptor
tyrosine kinases ROR1 and ROR2 in
hematological malignancies. Leuk. Lymphoma,
54(4): 1-8. |
|
136. Zhang, S., Cui, B., Lai, H., Liu, G.,
Ghia, E.M., Widhopf, G.F., Zhang, Z., Wu,
C.C.N., Chen, L., Wu, R., Schwab, R.,
Carson, D.A. and Kipps, T.J. (2014) Ovarian
cancer stem cells express ROR1, which can be
targeted for anti–cancer-stem-cell therapy.
Proc. Natl. Acad. Sci., 111(48):
17266-17271.
http://dx.doi.org/10.1073/pnas.1419599111
PMid:25411317 PMCid:PMC4260559 |
|
137. Hojjat-Farsangi, M., Ghaemimanesh, F.,
Daneshmanesh, A.H., Bayat, A.A., Mahmoudian,
J., Jeddi-Tehrani, M., Rabbani, H. and
Mellstedt, H. (2013) Inhibition of the
receptor tyrosine kinase ROR1 by anti-ROR1
monoclonal antibodies and siRNA induced
apoptosis of melanoma cells. PLoS One, 8(4):
e61167.
http://dx.doi.org/10.1371/journal.pone.0061167 |
|
138. Marchetti, C., Gasparri, M.L., Ruscito,
I., Palaia, I., Perniola, G., Carrone, A.,
Farooqi, A.A., Pecorini, F., Muzii, L. and
Panici, P.B. (2015) Advances in anti-angiogenic
agents for ovarian cancer treatment: The
role of trebananib (AMG 386). Critc. Rev.
Oncol. Hematol., 94(3): 302-310.
http://dx.doi.org/10.1016/j.critrevonc.2015.02.001
PMid:25783620 |
|
139. Farooqi, A.A., Waseem, S., Riaz, A.M.,
Dilawar, B.A., Mukhtar, S., Minhaj, S.,
Waseem, M.S., Daniel, S., Malik, B.A., Nawaz,
A. and Bhatti, S. (2011) PDGF: The nuts and
bolts of signalling toolbox. Tumor Biol.,
32(6): 1057-1070.
http://dx.doi.org/10.1007/s13277-011-0212-3
PMid:21769672 |
|
140. Farooqi, A.A. and Siddik, Z.H. (2015)
Platelet-derived growth factor (PDGF)
signalling in cancer: Rapidly emerging
signalling landscape. Cell Biochem. Funct.,
33(5): 257-265.
http://dx.doi.org/10.1002/cbf.3120
PMid:26153649 |
|
|
|