Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Review (Published online: 29-01-2016)

15. Recent developments in receptor tyrosine kinases targeted anticancer therapy - Samir H. Raval, Ratn D. Singh, Dilip V. Joshi, Hitesh B. Patel and Shailesh K. Mody

Veterinary World, 9(1): 80-90

 

 

   doi: 10.14202/vetworld.2016.80-90

 

 

Samir H. Raval: Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India; samirraval81@gmail.com

Ratn D. Singh: Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India; ratn1709@yahoo.com

Dilip V. Joshi: Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India; drdvjoshi@rediffmail.com

Hitesh B. Patel: Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India; drhitesh2002@rediffmail.com

Shailesh K. Mody: Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, Banaskantha - 385 506, Gujarat, India; skm12_ad1@yahoo.com

 

Received: 04-09-2015, Revised: 04-12-2015, Accepted: 09-12-2015, Published online: 29-01-2016

 

Corresponding author: Samir H. Raval, e-mail: samirraval81@gmail.com


Citation: Raval SH, Singh RD, Joshi DV, Patel HB, Mody SK (2016) Recent developments in receptor tyrosine kinases targeted anticancer therapy, Veterinary World 9(1): 80-90.



Novel concepts and understanding of receptors lead to discoveries and optimization of many small molecules and antibodies as anti-cancerous drugs. Receptor tyrosine kinases (RTKs) are such a promising class of receptors under the investigation in past three decades. RTKs are one of the essential mediators of cell signaling mechanism for various cellular processes. Transformations such as overexpression, dysregulation, or mutations of RTKs may result into malignancy, and thus are an important target for anticancer therapy. Numerous subfamilies of RTKs, such as epidermal growth factor receptor, vascular endothelial growth factor receptor, fibroblast growth factor receptors, insulin-like growth factor receptor, and hepatocyte growth factor receptor, have been being investigated in recent years as target for anticancer therapy. The present review focuses several small molecules drugs as well as monoclonal antibodies targeting aforesaid subfamilies either approved or under investigation to treat the various cancers.

Keywords: cancer, monoclonal antibodies, small molecule drugs, receptor tyrosine kinases, targeted therapy.



1. Gschwind, A., Fischer, O.M. and Ullrich, A. (2004) The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 4(5): 361-370.
http://dx.doi.org/10.1038/nrc1360
PMid:15122207
 
2. Lemmon, M.A. and Schlessinger, J. (2010) Cell signaling by receptor tyrosine kinases. Cell, 141(7): 1117-1134.
http://dx.doi.org/10.1016/j.cell.2010.06.011
PMid:20602996 PMCid:PMC2914105
 
3. Arora, A. and Scholar, E.M. (2005) Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 315(3): 971-979.
http://dx.doi.org/10.1124/jpet.105.084145
PMid:16002463
 
4. Li, E. and Hristova, K. (2006) Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies. Biochemistry, 45(20): 6241-6251.
http://dx.doi.org/10.1021/bi060609y
PMid:16700535 PMCid:PMC4301406
 
5. Paul, M.K. and Mukhopadhyay, A.K. (2004) Tyrosine kinase – Role and significance in Cancer. Int. J. Med. Sci., 1(283): 101-115.
http://dx.doi.org/10.7150/ijms.1.101
 
6. Pytel, D., Sliwinski, T., Poplawski, T., Ferriola, D. and Majsterek, I. (2009) Tyrosine kinase blockers: New hope for successful cancer therapy. Anticancer. Agents Med. Chem., 9: 66-76.
http://dx.doi.org/10.2174/187152009787047752
PMid:19149483
 
7. Porter, A.C. and Vaillancourt, R.R. (1998) Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene, 17(11): 1343-1352.
http://dx.doi.org/10.1038/sj.onc.1202171
PMid:9779982
 
8. Wu, H., Chang, D. and Huang, C. (2006) Targeted-therapy for cancer. J. Cancer Mol., 2: 57-66.
 
9. Urruticoechea, A., Alemany, R., Balart, J., Villanueva, A., Vi-als, F. and Capellá, G. (2010) Recent advances in cancer therapy: An overview. Curr. Pharm. Des., 16: 3-10.
http://dx.doi.org/10.2174/138161210789941847
PMid:20214614
 
10. Grassot, J. (2003) RTKdb: Database of receptor tyrosine kinase. Nuc. Acids Res., 31(1): 353-358.
http://dx.doi.org/10.1093/nar/gkg036
 
11. Bari, S.B., Adhikari, S. and Surana, S.J. (2012) Tyrosine kinase receptor inhibitors: A new target for anticancer drug development. J. Pharm. Sci. Technol., 1(2): 36-45.
 
12. Eckstein, N., Röper, L., Haas, B., Potthast, H., Hermes, U., Unkrig, C., Naumann-Winter, F. and Enzmann, H. (2014) Clinical pharmacology of tyrosine kinase inhibitors becoming generic drugs: The regulatory perspective. J. Exp. Clin. Cancer Res., 33(1): 15.
http://dx.doi.org/10.1186/1756-9966-33-15
 
13. Levitzki, A. and Klein, S. (2010) Signal transduction therapy of cancer. Mol. Aspects Med., 31(4): 287-329.
http://dx.doi.org/10.1016/j.mam.2010.04.001
PMid:20451549
 
14. Maruyama, I.N. (2014) Mechanisms of activation of receptor tyrosine kinases: Monomers or dimers. Cells, 3: 304-330.
http://dx.doi.org/10.3390/cells3020304
PMid:24758840 PMCid:PMC4092861
 
15. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D. and Darnell, J. (2000) Molecular Cell Biology. 4th ed. W. H. Freeman, New York.
 
16. Haj, F.G., Markova, B., Klaman, L.D., Bohmer, F.D. and Neel, B.G. (2003) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J. Biol. Chem., 278(2): 739-744.
http://dx.doi.org/10.1074/jbc.M210194200
PMid:12424235
 
17. Ostman, A., Hellberg, C. and Böhmer, F.D. (2006) Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer, 6(4): 307-320.
http://dx.doi.org/10.1038/nrc1837
PMid:16557282
 
18. Schmidt-Arras, D.E., Böhmer, A., Markova, B., Choudhary, C., Serve, H. and Böhmer, F.D. (2005) Tyrosine phosphorylation regulates maturation of receptor tyrosine kinases. Mol. Cell. Biol., 25(9): 3690-3703.
http://dx.doi.org/10.1128/MCB.25.9.3690-3703.2005
PMid:15831474 PMCid:PMC1084288
 
19. Schmidt, M.H.H., Furnari, F.B., Cavenee, W.K. and Bögler, O. (2003) Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc. Natl. Acad. Sci. U.S.A., 100(11): 6505-6510.
http://dx.doi.org/10.1073/pnas.1031790100
PMid:12734385 PMCid:PMC164476
 
20. Goh, L.K. and Sorkin, A. (2013) Endocytosis of receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol., 5(5): 1-17.
http://dx.doi.org/10.1101/cshperspect.a017459
 
21. Wiley, H.S. and Burke, P.M. (2001) Regulation of receptor tyrosine kinase signaling by endocytic trafficking. Traffic, 2(1): 12-18.
http://dx.doi.org/10.1034/j.1600-0854.2001.020103.x
 
22. Harmey, J.H., Dimitriadis, E., Kay, E., Redmond, H.P. and Bouchier-Hayes, D. (1998) Regulation of macrophage production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann. Surg. Oncol., 5(3): 271-278.
http://dx.doi.org/10.1007/BF02303785
 
23. Molhoek, K.R., Shada, A.L., Smolkin, M., Chowbina, S., Papin, J., Brautigan, D.L. and Slingluff, C.L. (2011) Comprehensive analysis of receptor tyrosine kinase activation in human melanomas reveals autocrine signaling through IGF-1R. Melanoma Res., 21(4): 274-284.
http://dx.doi.org/10.1097/CMR.0b013e328343a1d6
PMid:21654344 PMCid:PMC3131461
 
24. Hollmén, M., Määttä, J.A., Bald, L., Sliwkowski, M.X. and Elenius, K. (2009) Suppression of breast cancer cell growth by a monoclonal antibody targeting cleavable ErbB4 isoforms. Oncogene, 28(10): 1309-1319.
http://dx.doi.org/10.1038/onc.2008.481
PMid:19151766
 
25. Greulich, H., Kaplan, B., Mertins, P., Chen, T.H., Tanaka, K.E., Yun, C.H., Zhang, X., Lee, S.H., Cho, J., Ambrogio, L., Liao, R., Imielinski, M., Banerji, S., Berger, A.H., Lawrence, M.S., Zhang, J., Pho, N.H., Walker, S.R., Winckler, W., Getz, G., Frank, D., Hahn, W.C., Eck, M.J., Mani, D.R., Jaffe, J.D., Carr, S.A., Wong, K.K. and Meyerson, M. (2012) Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2. Proc. Natl. Acad. Sci., 109(36): 14476-14481.
http://dx.doi.org/10.1073/pnas.1203201109
PMid:22908275 PMCid:PMC3437859
 
26. Ozer, B.H., Wiepz, G.J. and Bertics, P.J. (2010) Activity and cellular localization of an oncogenic glioblastoma multiforme-associated EGF receptor mutant possessing a duplicated kinase domain. Oncogene, 29(6): 855-864.
http://dx.doi.org/10.1038/onc.2009.385
PMid:19915609 PMCid:PMC2820599
 
27. Szerlip, N.J., Pedraza, A., Chakravarty, D., Azim, M., McGuire, J., Fang, Y., Ozawa, T., Holland, E.C., Huse, J.T., Jhanwar, S., Leversha, M.A., Mikkelsen, T. and Brennan, C.W. (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc. Natl. Acad. Sci., 109(8): 3041-3046.
http://dx.doi.org/10.1073/pnas.1114033109
PMid:22323597 PMCid:PMC3286976
 
28. Bhargava, R., Gerald, W.L., Li, A.R., Pan, Q., Lal, P., Ladanyi, M. and Chen, B. (2005) EGFR gene amplification in breast cancer: Correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod. Pathol., 18(8): 1027-1033.
http://dx.doi.org/10.1038/modpathol.3800438
PMid:15920544
 
29. Sholl, L.M., Yeap, B.Y., Iafrate, A.J., Holmes-Tisch, A.J., Chou, Y.P., Wu, M.T., Goan, Y.G., Su, L., Benedettini, E., Yu, J., Loda, M., Jänne, P.A., Christiani, D.C. and Chirieac, L. R. (2009) Lung adenocarcinoma with EGFR amplification has distinct clinicopathologic and molecular features in never-smokers. Cancer Res., 69(21): 8341-8348.
http://dx.doi.org/10.1158/0008-5472.CAN-09-2477
PMid:19826035 PMCid:PMC2783286
 
30. Gunby, R.H., Sala, E., Tartari, C.J., Puttini, M., Gambacorti-Passerini, C. and Mologni, L. (2007) Oncogenic fusion tyrosine kinases as molecular targets for anti-cancer therapy. Anticancer. Agents Med. Chem., 7(6): 594-611.
http://dx.doi.org/10.2174/187152007784111340
 
31. Shaw, A.T., Hsu, P.P., Awad, M.M. and Engelman, J.A. (2013) Tyrosine kinase gene rearrangements in epithelial malignancies. Nat. Rev. Cancer, 13(11): 772-787.
http://dx.doi.org/10.1038/nrc3612
PMid:24132104 PMCid:PMC3902129
 
32. Gerber, D.E. (2008) Targeted therapies: A new generation of cancer treatments. Am. Fam. Phys., 77(3): 311-319.
 
33. Joo, W.D., Visintin, I. and Mor, G. (2013) Targeted cancer therapy - Are the days of systemic chemotherapy numbered? Maturitas, 76(4): 308-314.
http://dx.doi.org/10.1016/j.maturitas.2013.09.008
PMid:24128673 PMCid:PMC4610026
 
34. Giaccone, G. (2004) The role of gefitinib in lung cancer treatment. Clin. Cancer Res., 10: 4233s-4237s.
http://dx.doi.org/10.1158/1078-0432.CCR-040005
PMid:15217964
 
35. Gridelli, C., Bareschino, M.A., Schettino, C., Rossi, A., Maione, P. and Ciardiello, F. (2007) Erlotinibin non-small cell lung cancer treatment: Current status and future development. Oncologist, 12: 840-849.
http://dx.doi.org/10.1634/theoncologist.12-7-840
PMid:17673615
 
36. Bilancia, D., Rosati, G., Dinota, A., Germano, D., Romano, R. and Manzione, L. (2007) Lapatinib in breast cancer. Ann. Oncol., 18(6): 26-30.
http://dx.doi.org/10.1093/annonc/mdm220
 
37. Nelson, V., Ziehr, J., Agulnik, M. and Johnson, M. (2013) Afatinib: Emerging next-generation tyrosine kinase inhibitor for NSCLC. Onco. Targets. Ther., 6: 135-143.
PMid:23493883 PMCid:PMC3594037
 
38. Martin, P., Kelly, C.M.A. and Carney, D. (2006) Epidermal growth factor receptor-targeted agents for lung cancer. Cancer Control, 13(2): 129-140.
 
39. Tiseo, M., Bartolotti, M., Gelsomino, F. and Bordi, P. (2010) Emerging role of gefitinib in the treatment of non-small-cell lung cancer (NSCLC). Drug Des. Dev. Ther., 4: 81-98.
http://dx.doi.org/10.2147/DDDT.S6594
PMid:20531963 PMCid:PMC2880339
 
40. Scott, A.M., Wolchok, J.D. and Old, L.J. (2012) Antibody therapy of cancer. Nat. Rev. Cancer, 12(4): 278-287.
http://dx.doi.org/10.1038/nrc3236
PMid:22437872
 
41. Carter, P. (2001) Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer, 1(2): 118-129.
http://dx.doi.org/10.1038/35101072
PMid:11905803
 
42. Pierotti, M.A., Negri, T., Tamborini, E., Perrone, F., Pricl, S. and Pilotti, S. (2010) Targeted therapies: The rare cancer paradigm. Mol. Oncol., 4(1): 19-37.
http://dx.doi.org/10.1016/j.molonc.2009.10.003
PMid:19913465
 
43. Yarden, Y. and Sliwkowski, M.X. (2001) Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol., 2: 127-137.
http://dx.doi.org/10.1038/35052073
PMid:11252954
 
44. Dziadziuszko, R. and Jassem, J. (2012) Epidermal growth factor receptor (EGFR) inhibitors and derived treatments. Ann. Oncol., 23 10 Suppl: x193-x196.
http://dx.doi.org/10.1093/annonc/mds351
 
45. Sasaki, T., Hiroki, K. and Yamashita, Y. (2013) The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed. Res. Int., 2013: 1-8.
http://dx.doi.org/10.1155/2013/546318
PMid:23986907 PMCid:PMC3748428
 
46. Mendelsohn, J. and Baselga, J. (2000) The EGF receptor family as targets for cancer therapy. Oncogene, 19: 6550-6565.
http://dx.doi.org/10.1038/sj.onc.1204082
PMid:11426640
 
47. Hynes, N.E. and Lane, H.A. (2005) ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer, 5: 341-354.
http://dx.doi.org/10.1038/nrc1609
PMid:15864276
 
48. Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M.R., Carotenuto, A., De Feo, G., Caponigro, F. and Salomon, D.S. (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366: 2-16.
http://dx.doi.org/10.1016/j.gene.2005.10.018
PMid:16377102
 
49. Spector, N., Xia, W., El-Hariry, I., Yarden, Y. and Bacus, S. (2007) HER2 therapy. Small molecule HER-2 tyrosine kinase inhibitors. Breast Cancer Res., 9: 205.
http://dx.doi.org/10.1186/bcr1652
PMCid:PMC1868927
 
50. Yarom, N. and Jonker, D.J. (2011) The role of the epidermal growth factor receptor in the mechanism and treatment of colorectal cancer. Discov. Med., 11(57): 95-105.
PMid:21356164
 
51. Jiang, N., Saba, N.F. and Chen, Z.G. (2012) Advances in targeting HER3 as an anticancer therapy. Chemother. Res. Pract., 2012: 1-9.
http://dx.doi.org/10.1155/2012/817304
PMid:23198146 PMCid:PMC3502787
 
52. Biswas, B. (2015) Erlotinib versus docetaxel as second- or third-line therapy in patients with advanced non-small-cell lung cancer in the era of personalized medicine. J. Clin. Oncol., 33: 524-524.
http://dx.doi.org/10.1200/JCO.2014.57.5621
PMid:25584001
 
53. Lee, S.M., Lewanski, C.R., Counsell, N., Ottensmeier, C., Bates, A., Patel, N., Wadsworth, C., Ngai, Y., Hackshaw, A. and Faivre-Finn, C. (2014) Randomized trial of erlotinib plus whole-brain radiotherapy for NSCLC patients with multiple brain metastases. J. Natl. Cancer Inst., 106(7): pii: dju151.
http://dx.doi.org/10.1093/jnci/dju151
 
54. Coudert, B., Ciuleanu, T., Park, K., Wu, Y.L., Giaccone, G., Brugger, W., Gopalakrishna, P. and Cappuzzo, F. (2012) Survival benefit with erlotinib maintenance therapy in patients with advanced non-small-cell lung cancer (NSCLC) according to response to first-line chemotherapy. Ann. Oncol., 23: 388-394.
http://dx.doi.org/10.1093/annonc/mdr125
PMid:21610154
 
55. Gemmete, J.J. and Mukherji, S.K. (2011) Trastuzumab (Herceptin). Am. J. Neuroradiol., 32: 1373-1374.
http://dx.doi.org/10.3174/ajnr.A2619
PMid:21816914
 
56. Bang, Y.J., Van Cutsem, E., Feyereislova, A., Chung, H.C., Shen, L., Sawaki, A., Lordick, F., Ohtsu, A., Omuro, Y., Satoh, T., Aprile, G., Kulikov, E., Hill, J., Lehle, M., Rüschoff, J. and Kang, Y.K. (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet, 376(9742): 687-697.
http://dx.doi.org/10.1016/S0140-6736(10)61121-X
 
57. Hansen, A.R. and Siu, L.L. (2013) Epidermal growth factor receptor targeting in head and neck cancer: Have we been just skimming the surface? J. Clin. Oncol., 31(11): 1381-1383.
http://dx.doi.org/10.1200/JCO.2012.47.9220
PMid:23460713
 
58. Hitt, R., Irigoyen, A., Cortes-Funes, H., Grau, J.J., García-Sáenz, J.A. and Cruz-Hernandez, J.J. (2012) Phase II study of the combination of cetuximab and weekly paclitaxel in the first-line treatment of patients with recurrent and/or metastatic squamous cell carcinoma of head and neck. Ann. Oncol., 23: 1016-1022.
http://dx.doi.org/10.1093/annonc/mdr367
PMid:21865152
 
59. Vermorken, J.B. and Specenier, P. (2010) Optimal treatment for recurrent/metastatic head and neck cancer. Ann. Oncol., 21 Suppl 7: 252-261.
http://dx.doi.org/10.1093/annonc/mdq453
PMid:20943624
 
60. Van Cutsem, E., Köhne, C.H., Hitre, E., Zaluski, J., Chang Chien, C.R., Makhson, A., D'Haens, G., Pintér, T., Lim, R., Bodoky, G., Roh, J.K., Folprecht, G., Ruff, P., Stroh, C., Tejpar, S., Schlichting, M., Nippgen, J. and Rougier, P. (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med., 360(14): 1408-1417.
http://dx.doi.org/10.1056/NEJMoa0805019
PMid:19339720
 
61. Gemmete, J.J. and Mukherji, S.K. (2011) Panitumumab (Vectibix). Am. J. Neuroradiol., 32(6): 1002-1003.
http://dx.doi.org/10.3174/ajnr.A2601
PMid:21596817
 
62. Olsson, A.K., Dimberg, A., Kreuger, J. and Claesson-Welsh, L. (2006) VEGF receptor signalling - in control of vascular function. Nat. Rev. Mol. Cell Biol., 7(5): 359-371.
http://dx.doi.org/10.1038/nrm1911
PMid:16633338
 
63. Ferrara, N., Gerber, H.P. and LeCouter, J. (2003) The biology of VEGF and its receptors. Nat. Med., 9: 669-676.
http://dx.doi.org/10.1038/nm0603-669
PMid:12778165
 
64. Takahashi, H. and Shibuya, M. (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin. Sci. (Lond), 109: 227-241.
http://dx.doi.org/10.1042/CS20040370
PMid:16104843
 
65. Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Van Oosterom, A.T. and De Bruijn, E.A. (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev., 56(4): 549-580.
http://dx.doi.org/10.1124/pr.56.4.3
PMid:15602010
 
66. Roberts, E., Cossigny, D.A.F. and Quan, G.M.Y. (2013) The role of vascular endothelial growth factor in metastatic prostate cancer to the skeleton. Prostate Cancer, 2013: 1-8.
http://dx.doi.org/10.1155/2013/418340
PMid:24396604 PMCid:PMC3874956
 
67. Shibuya, M. (2001) Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int. J. Biochem. Cell Biol., 33(4): 409-420.
http://dx.doi.org/10.1016/S1357-2725(01)00026-7
 
68. Iljin, K., Karkkainen, M.J., Lawrence, E.C., Kimak, M.A., Uutela, M., Taipale, J., Pajusola, K., Alhonen, L., Halmekytö, M., Finegold, D.N., Ferrell, R.E. and Alitalo, K. (2001) VEGFR3 gene structure, regulatory region, and sequence polymorphisms. FASEB J., 15(6): 1028-1036.
http://dx.doi.org/10.1096/fj.00-0383com
 
69. Rosen, L.S. (2005) VEGF-targeted therapy: Therapeutic potential and recent advances. Oncologist, 10(6): 382-391.
http://dx.doi.org/10.1634/theoncologist.10-6-382
PMid:15967832
 
70. Folkman, J. (1990) What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst., 82(1): 4-6.
http://dx.doi.org/10.1093/jnci/82.1.4
 
71. Ellis, L.M. and Hicklin, D.J. (2008) VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat. Rev. Cancer, 8(8): 579-591.
http://dx.doi.org/10.1038/nrc2403
PMid:18596824
 
72. Rosen, L.S. (2002) Clinical experience with angiogenesis signaling inhibitors: Focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control., 9 Suppl 2: 36-44.
 
73. Jost, L.M., Gschwind, H.P., Jalava, T., Wang, Y., Guenther, C., Souppart, C., Rottmann, A., Denner, K., Waldmeier, F., Gross, G., Masson, E. and Laurent, D. (2006) Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab. Dispos., 34(11): 1817-1828.
http://dx.doi.org/10.1124/dmd.106.009944
PMid:16882767
 
74. Morgan, B., Thomas, A.L., Drevs, J., Hennig, J., Buchert, M., Jivan, A., Horsfield, M.A., Mross, K., Ball, H.A., Lee, L., Mietlowski, W., Fuxuis, S., Unger, C., O'Byrne, K., Henry, A., Cherryman, G.R., Laurent, D., Dugan, M., Marmé, D. and Steward, W.P. (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liv. J. Clin. Oncol., 21(21): 3955-3964.
http://dx.doi.org/10.1200/JCO.2003.08.092
PMid:14517187
 
75. Dragovich, T., Laheru, D., Dayyani, F., Bolejack, V., Smith, L., Seng, J., Burris, H., Rosen, P., Hidalgo, M., Ritch, P., Baker, A.F., Raghunand, N., Crowley, J. and Von Hoff, D.D. (2014) Phase II trial of vatalanib in patients with advanced or metastatic pancreatic adenocarcinoma after first-line gemcitabine therapy (PCRT O4-001). Cancer Chemother. Pharmacol., 74(2): 379-387.
http://dx.doi.org/10.1007/s00280-014-2499-4
PMid:24939212 PMCid:PMC4461053
 
76. Sobrero, A.F. and Bruzzi, P. (2011) Vatalanib in advanced colorectal cancer: Two studies with identical results. J. Clin. Oncol., 29(15): 1938-1940.
http://dx.doi.org/10.1200/JCO.2010.33.2429
PMid:21464409
 
77. Giatromanolaki, A., Koukourakis, M.I., Sivridis, E., Gatter, K.C., Trarbach, T., Folprecht, G., Shi, M.M., Lebwohl, D., Jalava, T., Laurent, D., Meinhardt, G. and Harris, A.L. (2012) Vascular density analysis in colorectal cancer patients treated with vatalanib (PTK787/ZK222584) in the randomised confirm trials. Br. J. Cancer, 107(7): 1044-1050.
http://dx.doi.org/10.1038/bjc.2012.369
PMid:22910317 PMCid:PMC3461163
 
78. Gauler, T.C., Besse, B., Mauguen, A., Meric, J.B., Gounant, V., Fischer, B., Overbeck, T.R., Krissel, H., Laurent, D., Tiainen, M., Commo, F., Soria, J.C. and Eberhardt, W.E.E. (2012) Phase II trial of ptk787/zk 222584 (vatalanib) administered orally once-daily or in two divided daily doses as second-line monotherapy in relapsed or progressing patients with stage IIIB/IV non-small-cell lung cancer (NSCLC). Ann. Oncol., 23(3): 678-687.
http://dx.doi.org/10.1093/annonc/mdr255
PMid:21617019
 
79. Bachelier, R., Confavreux, C.B., Peyruchaud, O., Croset, M., Goehrig, D., Van Der Pluijm, G. and Clézardin, P. (2014) Combination of anti-angiogenic therapies reduces osteolysis and tumor burden in experimental breast cancer bone metastasis. Int. J. Cancer, 135(6): 1319-1329.
http://dx.doi.org/10.1002/ijc.28787
PMid:24615579
 
80. Motzer, R.J., Hutson, T.E., Tomczak, P., Michaelson, M.D., Bukowski, R.M., Rixe, O., Oudard, S., Negrier, S., Szczylik, C., Kim, S.T., Chen, I., Bycott, P.W., Baum, C.M. and Figlin, R.A. (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med., 356(2): 115-124.
http://dx.doi.org/10.1056/NEJMoa065044
PMid:17215529
 
81. Porta, C., Paglino, C. and Grünwald, V. (2014) Sunitinib re-challenge in advanced renal-cell carcinoma. Br. J. Cancer, 111(6): 1047-1053.
http://dx.doi.org/10.1038/bjc.2014.214
PMid:24800947 PMCid:PMC4453836
 
82. Younus, J., Verma, S., Franek, J. and Coakley, N. (2010) Sunitinib malate for gastrointestinal stromal tumour in imatinib mesylate-resistant patients: Recommendations and evidence. Curr. Oncol., 17(4): 4-10.
http://dx.doi.org/10.3747/co.v17i4.560
 
83. Mukherji, S.K. (2010) Bevacizumab (Avastin). AJNR. Am. J. Neuroradiol., 31: 235-236.
http://dx.doi.org/10.3174/ajnr.A1987
PMid:20037132
 
84. Loupakis, F., Cremolini, C., Masi, G., Lonardi, S., Zagonel, V., Salvatore, L., Cortesi, E., Tomasello, G., Ronzoni, M., Spadi, R., Zaniboni, A., Tonini, G., Buonadonna, A., Amoroso, D., Chiara, S., Carlomagno, C., Boni, C., Allegrini, G., Boni, L. and Falcone, A. (2014) Initial therapy with foleoxiri and bevacizumab for metastatic colorectal cancer. N. Engl. J. Med., 371(17): 1609-1618.
http://dx.doi.org/10.1056/NEJMoa1403108
PMid:25337750
 
85. McCormack, P.L. and Keam, S.J. (2008) Bevacizumab: A review of its use in metastatic colorectal cancer. Drugs, 68(4): 487-506.
http://dx.doi.org/10.2165/00003495-200868040-00009
 
86. Barlesi, F., Scherpereel, A., Gorbunova, V., Gervais, R., Vikström, A., Chouaid, C., Chella, A., Kim, J.H., Ahn, M.J., Reck, M., Pazzola, A., Kim, H.T., Aerts, J.G., Morando, C., Loundou, A., Groen, H.J.M. and Rittmeyer, A. (2014) Maintenance bevacizumab-pemetrexed after first-line cisplatin-pemetrexed-bevacizumab for advanced nonsquamous nonsmall-cell lung cancer: Updated survival analysis of the AVAPERL (MO22089) randomized phase III trial. Ann. Oncol., 25(5): 1044-1052.
http://dx.doi.org/10.1093/annonc/mdu098
PMid:24585722
 
87. Vu, T., Sliwkowski, M.X. and Claret, F.X. (2014) Personalized drug combinations to overcome trastuzumab resistance in HER2-positive breast cancer. Biochim. Biophys. Acta, 1846(2): 353-365.
http://dx.doi.org/10.1016/j.bbcan.2014.07.007
 
88. Escudier, B., Pluzanska, A., Koralewski, P., Ravaud, A., Bracarda, S., Szczylik, C., Chevreau, C., Filipek, M., Melichar, B., Bajetta, E., Gorbunova, V., Bay, J.O., Bodrogi, I., Jagiello-Gruszfeld, A. and Moore, N. (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: A randomised, double-blind phase III trial. Lancet, 370(9605): 2103-2111.
http://dx.doi.org/10.1016/S0140-6736(07)61904-7
 
89. Fu, W., Madan, E., Yee, M. and Zhang, H. (2012) Progress of molecular targeted therapies for prostate cancers. Biochim. Biophys. Acta Rev. Cancer, 1825(2): 140-152.
http://dx.doi.org/10.1016/j.bbcan.2011.11.003
PMid:22146293 PMCid:PMC3307854
 
90. Chamberlain, M.C. (2011) Bevacizumab for the treatment of recurrent glioblastoma. Clin. Med. Insights Oncol., 5: 117-129.
http://dx.doi.org/10.4137/CMO.S7232
PMid:21603247 PMCid:PMC3095028
 
91. Eswarakumar, V.P., Lax, I. and Schlessinger, J. (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev., 16(2): 139-149.
http://dx.doi.org/10.1016/j.cytogfr.2005.01.001
PMid:15863030
 
92. Du, Y., Hsu, J.L., Wang, Y.N. and Hung, M.C. (2014) Nuclear functions of receptor tyrosine kinases. In: Wheeler DL, Yarden Y, editors. Receptor Tyrosine Kinase: Structure, Functions and Role in Human Disease. 2015th ed. Springer, Heidelberg Dordrecht, New York, London, p77-109.
 
93. Greulich, H. and Pollock, P.M. (2011) Targeting mutant fibroblast growth factor receptors in cancer. Trends Mol. Med., 17(5): 283-292.
http://dx.doi.org/10.1016/j.molmed.2011.01.012
PMid:21367659 PMCid:PMC3809064
 
94. Gru, A.A. and Allred, D.C. (2012) FGFR1 amplification and the progression of non-invasive to invasive breast cancer. Breast Cancer Res., 14: 116.
http://dx.doi.org/10.1186/bcr3340
PMid:23151501 PMCid:PMC4053127
 
95. Dutt, A., Ramos, A.H., Hammerman, P.S., Mermel, C., Cho, J., Sharifnia, T., Chande, A., Tanaka, K.E., Stransky, N., Greulich, H., Gray, N.S. and Meyerson, M. (2011) Inhibitor-sensitive fgfr1 amplification in human non-small cell lung cancer. PLoS One, 6(6): e20351.
http://dx.doi.org/10.1371/journal.pone.0020351
 
96. Freier, K., Schwaenen, C., Sticht, C., Flechtenmacher, C., Mühling, J., Hofele, C., Radlwimmer, B., Lichter, P. and Joos, S. (2007) Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol., 43(1): 60-66.
http://dx.doi.org/10.1016/j.oraloncology.2006.01.005
PMid:16807070
 
97. McLendon, R., Friedman, A., Bigner, D., Van Meir, E.G., Brat, D.J.M., Mastrogianakis, G., Olson, J.J., Mikkelsen, T., Lehman, N., Aldape, K., Alfred Yung, W.K., Bogler, O., Vanden Berg, S., Berger, M., Prados, M., Muzny, D., Morgan, M., Scherer, S., Sabo, A., Nazareth, L., Lewis, L., Hall, O., Zhu, Y., Ren, Y., Alvi, O., Yao, J., Hawes, A., Jhangiani, S., Fowler, G., San Lucas, A., Kovar, C., Cree, A., Dinh, H., Santibanez, J., Joshi, V., Gonzalez-Garay, M.L., Miller, C.A., Milosavljevic, A., Donehower, L., Wheeler, D.A., Gibbs, R.A., Cibulskis, K., Sougnez, C., Fennell, T., Mahan, S., Wilkinson, J., Ziaugra, L., Onofrio, R., Bloom, T., Nicol, R., Ardlie, K., Baldwin, J., Gabriel, S., Lander, E.S., Ding, L., Fulton, R.S., McLellan, M.D., Wallis, J., Larson, D.E., Shi, X., Abbott, R., Fulton, L., Chen, K., Koboldt, D.C., Wendl, M.C., Meyer, R., Tang, Y., Lin, L., Osborne, J.R., Dunford-Shore, B.H., Miner, T.L., Delehaunty, K., Markovic, C., Swift, G., Courtney, W., Pohl, C., Abbott, S., Hawkins, A., Leong, S., Haipek, C., Schmidt, H., Wiechert, M., Vickery, T., Scott, S., Dooling, D.J., Chinwalla, A., Weinstock, G.M., Mardis, E.R., Wilson, R.K., Getz, G., Winckler, W., Verhaak, R.G.W., Lawrence, M.S., O'Kelly, M., Robinson, J., Alexe, G., Beroukhim, R., Carter, S., Chiang, D., Gould, J., Gupta, S., Korn, J., Mermel, C., Mesirov, J., Monti, S., Nguyen, H., Parkin, M., Reich, M., Stransky, N., Weir, B.A., Garraway, L., Golub, T., Meyerson, M., Chin, L., Protopopov, A., Zhang, J., Perna, I., Aronson, S., Sathiamoorthy, N., Ren, G., Yao, J., Wiedemeyer, W.R., Kim, H., Won Kong, S., Xiao, Y., Kohane, I.S., Seidman, J., Park, P.J., Kucherlapati, R., Laird, P.W., Cope, L., Herman, J.G., Weisenberger, D.J., Pan, F., Van Den Berg, D., Van Neste, L., Yi, J.M., Schuebel, K.E., Baylin, S.B., Absher, D.M., Li, J.Z., Southwick, A., Brady, S., Aggarwal, A., Chung, T., Sherlock, G., Brooks, J.D., Myers, R.M., Spellman, P.T., Purdom, E., Jakkula, L.R., Lapuk, A.V., Marr, H., Dorton, S., Gi Choi, Y., Han, J., Ray, A., Wang, V., Durinck, S., Robinson, M., Wang, N.J., Vranizan, K., Peng, V., Van Name, E., Fontenay, G.V., Ngai, J., Conboy, J.G., Parvin, B., Feiler, H.S., Speed, T.P., Gray, J.W., Brennan, C., Socci, N.D., Olshen, A., Taylor, B.S., Lash, A., Schultz, N., Reva, B., Antipin, Y., Stukalov, A., Gross, B., Cerami, E., Qing Wang, W., Qin, L.X., Seshan, V.E., Villafania, L., Cavatore, M., Borsu, L., Viale, A., Gerald, W., Sander, C., Ladanyi, M., Perou, C.M., Neil Hayes, D., Topal, M.D., Hoadley, K.A., Qi, Y., Balu, S., Shi, Y., Wu, J., Penny, R., Bittner, M., Shelton, T., Lenkiewicz, E., Morris, S., Beasley, D., Sanders, S., Kahn, A., Sfeir, R., Chen, J., Nassau, D., Feng, L., Hickey, E., Zhang, J., Weinstein, J.N., Barker, A., Gerhard, D.S., Vockley, J., Compton, C., Vaught, J., Fielding, P., Ferguson, M.L., Schaefer, C., Madhavan, S., Buetow, K.H., Collins, F., Good, P., Guyer, M., Ozenberger, B., Peterson, J. and Thomson, E. (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216): 1061-1068.
http://dx.doi.org/10.1038/nature07385
PMid:18772890 PMCid:PMC2671642
 
98. Bai, A., Meetze, K., Vo, N.Y., Kollipara, S., Mazsa, E.K., Winston, W.M., Weiler, S., Poling, L.L., Chen, T., Ismail, N.S., Jiang, J., Lerner, L., Gyuris, J. and Weng, Z. (2010) GP369, an FGFR2-IIIb-specific antibody, exhibits potent antitumor activity against human cancers driven by activated FGFR2 signaling. Cancer Res., 70(19): 7630-7639.
http://dx.doi.org/10.1158/0008-5472.CAN-10-1489
PMid:20709759
 
99. Katoh, Y. and Katoh, M. (2009) FGFR2-related pathogenesis and FGFR2-targeted therapeutics (review). Int. J. Mol. Med., 23(3): 307-311.
http://dx.doi.org/10.3892/ijmm_00000132
 
100. Dutt, A., Salvesen, H.B., Chen, T.H., Ramos, A.H., Onofrio, R.C., Hatton, C., Nicoletti, R., Winckler, W., Grewal, R., Hanna, M., Wyhs, N., Ziaugra, L., Richter, D.J., Trovik, J., Engelsen, I.B., Stefansson, I.M., Fennell, T., Cibulskis, K., Zody, M.C., Akslen, L.A., Gabriel, S., Wong, K.K., Sellers, W.R., Meyerson, M. and Greulich, H. (2008) Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc. Natl. Acad. Sci. U.S.A., 105(25): 8713-8717.
http://dx.doi.org/10.1073/pnas.0803379105
PMid:18552176 PMCid:PMC2438391
 
101. Cappellen, D., De Oliveira, C., Ricol, D., de Medina, S., Bourdin, J., Sastre-Garau, X., Chopin, D., Thiery, J.P. and Radvanyi, F. (1999) Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet., 23(1): 18-20.
http://dx.doi.org/10.1038/12615
PMid:10471491
 
102. Qing, J., Du, X., Chen, Y., Chan, P., Li, H., Wu, P., Marsters, S., Stawicki, S., Tien, J., Totpal, K., Ross, S., Stinson, S., Dornan, D., French, D., Wang, Q.R., Stephan, J.P., Wu, Y., Wiesmann, C. and Ashkenazi, A. (2009) Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice. J. Clin. Invest., 119(5): 1216-1229.
http://dx.doi.org/10.1172/JCI38017
PMid:19381019 PMCid:PMC2673861
 
103. Tomlinson, D.C., Baldo, O., Hamden, P. and Knowles, M.A. (2007) FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. J. Pathol., 213(1): 91-98.
http://dx.doi.org/10.1002/path.2207
PMid:17668422 PMCid:PMC2443273
 
104. Trudel, S., Stewart, A.K., Rom, E., Wei, E., Zhi, H.L., Kotzer, S., Chumakov, I., Singer, Y., Chang, H., Liang, S.B., Yayon, A., Li, Z.H., Kotzer, S., Chumakov, I. and Singer, Y. (2006) The inhibitory anti-FGFR3 antibody, PRO-001, is cytotoxic to t(4;14) multiple myeloma cells. Blood, 107(10): 4039-4046.
http://dx.doi.org/10.1182/blood-2005-10-4179
PMid:16467200
 
105. Hernández, S., de Muga, S., Agell, L., Juanpere, N., Esgueva, R., Lorente, J. A., Mojal, S., Serrano, S. and Lloreta, J. (2009) FGFR3 mutations in prostate cancer: Association with low-grade tumors. Mod. Pathol., 22(6): 848-856.
http://dx.doi.org/10.1038/modpathol.2009.46
 
106. Bange, J., Prechtl, D., Cheburkin, Y., Specht, K., Harbeck, N., Schmitt, M., Knyazeva, T., Müller, S., Gärtner, S., Sures, I., Wang, H., Imyanitov, E., Häring, H. U., Knayzev, P., Iacobelli, S., Höfler, H. and Ullrich, A. (2002) Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Res., 62(3): 840-847.
PMid:11830541
 
107. Roidl, A., Berger, H. J., Kumar, S., Bange, J., Knyazev, P. and Ullrich, A. (2009) Resistance to chemotherapy is associated with fibroblast growth factor receptor 4 up-regulation. Clin. Cancer Res., 15(6): 2058-2066.
http://dx.doi.org/10.1158/1078-0432.CCR-08-0890
PMid:19240166
 
108. Roidl, A., Foo, P., Wong, W., Mann, C., Bechtold, S., Berger, H.J., Streit, S., Ruhe, J.E., Hart, S., Ullrich, A. and Ho, H.K. (2010) The FGFR4 Y367C mutant is a dominant oncogene in MDA-MB453 breast cancer cells. Oncogene, 29(10): 1543-1552.
http://dx.doi.org/10.1038/onc.2009.432
PMid:19946327
 
109. Mohammadi, M., Froum, S., Hamby, J.M., Schroeder, M.C., Panek, R.L., Lu, G.H., Eliseenkova, A.V, Green, D., Schlessinger, J. and Hubbard, S.R. (1998) Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J., 17(20): 5896-5904.
http://dx.doi.org/10.1093/emboj/17.20.5896
PMid:9774334 PMCid:PMC1170917
 
110. Koziczak, M., Holbro, T. and Hynes, N.E. (2004) Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene, 23(20): 3501-3508.
http://dx.doi.org/10.1038/sj.onc.1207331
PMid:15116089
 
111. Fischer, H., Taylor, N., Allerstorfer, S., Grusch, M., Sonvilla, G., Holzmann, K., Setinek, U., Elbling, L., Cantonati, H., Grasl-Kraupp, B., Gauglhofer, C., Marian, B., Micksche, M. and Berger, W. (2008) Fibroblast growth factor receptor-mediated signals contribute to the malignant phenotype of non-small cell lung cancer cells: Therapeutic implications and synergism with epidermal growth factor receptor inhibition. Mol. Cancer Ther., 7(10): 3408-3419.
http://dx.doi.org/10.1158/1535-7163.MCT-08-0444
PMid:18852144 PMCid:PMC2879863
 
112. Lamont, F.R., Tomlinson, D.C., Cooper, P.A., Shnyder, S.D., Chester, J.D. and Knowles, M.A. (2011) Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br. J. Cancer, 104(1): 75-82.
http://dx.doi.org/10.1038/sj.bjc.6606016
PMid:21119661 PMCid:PMC3039817
 
113. Wedge, S.R., Kendrew, J., Hennequin, L.F., Valentine, P.J., Barry, S.T., Brave, S.R., Smith, N.R., James, N.H., Dukes, M., Curwen, J.O., Chester, R., Jackson, J.A., Boffey, S.J., Kilburn, L.L., Barnett, S., Richmond, G.H.P., Wadsworth, P.F., Walker, M., Bigley, A.L., Taylor, S.T., Cooper, L., Beck, S., Jürgensmeier, J.M. and Ogilvie, D.J. (2005) AZD2171: A highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res., 65(10): 4389-4400.
http://dx.doi.org/10.1158/0008-5472.CAN-04-4409
PMid:15899831
 
114. Nakamura, K., Yashiro, M., Matsuoka, T., Tendo, M., Shimizu, T., Miwa, A. and Hirakawa, K. (2006) A novel molecular targeting compound as K-samII/FGF-R2 phosphorylation inhibitor, Ki23057, for scirrhous gastric cancer. Gastroenterology, 131(5): 1530-1541.
http://dx.doi.org/10.1053/j.gastro.2006.08.030
PMid:17101326
 
115. Yashiro, M., Shinto, O., Nakamura, K., Tendo, M., Matsuoka, T., Matsuzaki, T., Kaizaki, R., Miwa, A. and Hirakawa, K. (2010) Synergistic antitumor effects of FGFR2 inhibitor with 5-fluorouracil on scirrhous gastric carcinoma. Int. J. Cancer, 126(4): 1004-1016.
PMid:19621385
 
116. Dienstmann, R., Rodon, J., Prat, A., Perez-Garcia, J., Adamo, B., Felip, E., Cortes, J., Iafrate, A.J., Nuciforo, P. and Tabernero, J. (2014) Genomic aberrations in the FGFR pathway: Opportunities for targeted therapies in solid tumors. Ann. Oncol., 25(3): 552-563.
http://dx.doi.org/10.1093/annonc/mdt419
PMid:24265351 PMCid:PMC4433501
 
117. Harding, T.C., Long, L., Palencia, S., Zhang, H., Sadra, A., Hestir, K., Patil, N., Levin, A., Hsu, A. W., Charych, D., Brennan, T., Zanghi, J., Halenbeck, R., Marshall, S.A, Qin, M., Doberstein, S.K., Hollenbaugh, D., Kavanaugh, W.M., Williams, L.T. and Baker, K.P. (2013) Blockade of nonhormonal fibroblast growth factors by FP-1039 inhibits growth of multiple types of cancer. Sci. Trans. Med., 5(178): 178ra39.
http://dx.doi.org/10.1126/scitranslmed.3005414
 
118. Baker, K.P. and Los, G. (2013) Targeting fibroblast growth factors in cancer: The key is what not to block. Oncotarget, 4(7): 950-951.
http://dx.doi.org/10.18632/oncotarget.1054
 
119. Mansoor, Q., Fayyaz, S., Farooqi, A.A., Bhatti, S. and Ismail, M. (2013) Re-evaluating the FGFR4 (G388R) germline mutation in different cancers in Pakistani population. J. Exp. Ther. Oncol., 10(3): 215-217.
PMid:24416997
 
120. Olmos, D., Basu, B. and de Bono, J.S. (2010) Targeting insulin-like growth factor signaling: Rational combination strategies. Mol. Cancer Ther., 9(9): 2447-2449.
http://dx.doi.org/10.1158/1535-7163.MCT-10-0719
PMid:20807783
 
121. Ryan, P.D. and Goss, P.E. (2008) The emerging role of the insulin-like growth factor pathway as a therapeutic target in cancer. Oncologist, 13(1): 16-24.
http://dx.doi.org/10.1634/theoncologist.2007-0199
PMid:18245009
 
122. Reinmuth, N., Fan, F., Liu, W., Parikh, A.A., Stoeltzing, O., Jung, Y.D., Bucana, C.D., Radinsky, R., Gallick, G.E. and Ellis, L.M. (2002) Impact of insulin-like growth factor receptor-I function on angiogenesis, growth, and metastasis of colon cancer. Lab. Invest., 82(10): 1377-1389.
http://dx.doi.org/10.1097/01.LAB.0000032411.41603.C2
 
123. Yee, D. (2012) Insulin-like growth factor receptor inhibitors: Baby or the bathwater? J. Natl. Cancer Inst., 104(13): 975-981.
http://dx.doi.org/10.1093/jnci/djs258
PMid:22761272 PMCid:PMC3634550
 
124. Nakamura, T. and Mizuno, S. (2010) The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 86(6): 588-610.
http://dx.doi.org/10.2183/pjab.86.588
PMCid:PMC3081175
 
125. Edakuni, G., Sasatomi, E., Satoh, T., Tokunaga, O. and Miyazaki, K. (2001) Expression of the hepatocyte growth factor/c-Met pathway is increased at the cancer front in breast carcinoma. Pathol. Int., 51(3): 172-178.
http://dx.doi.org/10.1046/j.1440-1827.2001.01182.x
 
126. Maulik, G., Kijima, T., Ma, P.C., Ghosh, S.K., Lin, J., Shapiro, G.I., Schaefer, E., Tibaldi, E., Johnson, B.E. and Salgia, R. (2002) Modulation of the c-Met/hepatocyte growth factor pathway in small cell lung cancer. Clin. Cancer Res., 8(2): 620-627.
PMid:11839685
 
127. Inoue, T., Kataoka, H., Goto, K., Nagaike, K., Igami, K., Naka, D., Kitamura, N. and Miyazawa, K. (2004) Activation of c-Met (hepatocyte growth factor receptor) in human gastric cancer tissue. Cancer Sci., 95(10): 803-808.
http://dx.doi.org/10.1111/j.1349-7006.2004.tb02185.x
 
128. Liu, Y., Li, Q. and Zhu, L. (2012) Expression of the hepatocyte growth factor and c-Met in colon cancer: Correlation with clinicopathological features and overall survival. Tumori, 98(1): 105-112.
PMid:22495710
 
129. Harshman, L.C. and Choueiri, T.K. (2013) Targeting the hepatocyte growth factor/c-Met signaling pathway in renal cell carcinoma. Cancer J., 19(4): 316-323.
http://dx.doi.org/10.1097/PPO.0b013e31829e3c9a
PMid:23867513
 
130. Blumenschein, G.R., Mills, G.B. and Gonzalez-Angulo, A.M. (2012) Targeting the hepatocyte growth factor-cMET axis in cancer therapy. J. Clin. Oncol., 30(26): 3287-3296.
http://dx.doi.org/10.1200/JCO.2011.40.3774
PMid:22869872 PMCid:PMC3434988
 
131. Green, J.L., Kuntz, S.G. and Sternberg, P.W. (2008) Ror receptor tyrosine kinases: Orphans no more. Trends Cell Biol., 18(11): 536-544.
http://dx.doi.org/10.1016/j.tcb.2008.08.006
PMid:18848778 PMCid:PMC4672995
 
132. Matsuda, T., Nomi, M., Ikeya, M., Kani, S., Oishi, I., Terashima, T., Takada, S. and Minami, Y. (2001) Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech. Dev., 105(1-2): 153-156.
http://dx.doi.org/10.1016/S0925-4773(01)00383-5
 
133. Al-Shawi, R., Ashton, S.V., Underwood, C. and Simons, J.P. (2001) Expression of the Ror1 and Ror2 receptor tyrosine kinase genes during mouse development. Dev. Genes Evol., 211(4): 161-171.
http://dx.doi.org/10.1007/s004270100140
 
134. Uhrmacher, S., Schmidt, C., Erdfelder, F., Poll-Wolbeck, S.J., Gehrke, I., Hallek, M. and Kreuzer, K.A. (2011) Use of the receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a diagnostic tool in chronic lymphocytic leukemia (CLL). Leuk. Res., 35(10): 1360-1366.
http://dx.doi.org/10.1016/j.leukres.2011.04.006
PMid:21531460
 
135. Daneshmanesh, A.H., Porwit, A., Hojjat-Farsangi, M., Jeddi-Tehrani, M., Tamm, K.P., Grandér, D., Lehmann, S., Norin, S., Shokri, F., Rabbani, H., Mellstedt, H. and Österborg, A. (2012) Orphan receptor tyrosine kinases ROR1 and ROR2 in hematological malignancies. Leuk. Lymphoma, 54(4): 1-8.
 
136. Zhang, S., Cui, B., Lai, H., Liu, G., Ghia, E.M., Widhopf, G.F., Zhang, Z., Wu, C.C.N., Chen, L., Wu, R., Schwab, R., Carson, D.A. and Kipps, T.J. (2014) Ovarian cancer stem cells express ROR1, which can be targeted for anti–cancer-stem-cell therapy. Proc. Natl. Acad. Sci., 111(48): 17266-17271.
http://dx.doi.org/10.1073/pnas.1419599111
PMid:25411317 PMCid:PMC4260559
 
137. Hojjat-Farsangi, M., Ghaemimanesh, F., Daneshmanesh, A.H., Bayat, A.A., Mahmoudian, J., Jeddi-Tehrani, M., Rabbani, H. and Mellstedt, H. (2013) Inhibition of the receptor tyrosine kinase ROR1 by anti-ROR1 monoclonal antibodies and siRNA induced apoptosis of melanoma cells. PLoS One, 8(4): e61167.
http://dx.doi.org/10.1371/journal.pone.0061167
 
138. Marchetti, C., Gasparri, M.L., Ruscito, I., Palaia, I., Perniola, G., Carrone, A., Farooqi, A.A., Pecorini, F., Muzii, L. and Panici, P.B. (2015) Advances in anti-angiogenic agents for ovarian cancer treatment: The role of trebananib (AMG 386). Critc. Rev. Oncol. Hematol., 94(3): 302-310.
http://dx.doi.org/10.1016/j.critrevonc.2015.02.001
PMid:25783620
 
139. Farooqi, A.A., Waseem, S., Riaz, A.M., Dilawar, B.A., Mukhtar, S., Minhaj, S., Waseem, M.S., Daniel, S., Malik, B.A., Nawaz, A. and Bhatti, S. (2011) PDGF: The nuts and bolts of signalling toolbox. Tumor Biol., 32(6): 1057-1070.
http://dx.doi.org/10.1007/s13277-011-0212-3
PMid:21769672
 
140. Farooqi, A.A. and Siddik, Z.H. (2015) Platelet-derived growth factor (PDGF) signalling in cancer: Rapidly emerging signalling landscape. Cell Biochem. Funct., 33(5): 257-265.
http://dx.doi.org/10.1002/cbf.3120
PMid:26153649