Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Review (Published online: 02-01-2016)

3. Intrigues of biofilm: A perspective in veterinary medicine - Umar Faruk Abdullahi, Ephraim Igwenagu, Anas Mu’azu, Sani Aliyu and Maryam Ibrahim Umar

Veterinary World, 9(1): 12-18

 

 

   doi: 10.14202/vetworld.2016.12-18

 

Umar Faruk Abdullahi: Department of Postgraduate, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia; docfaroukxy@yahoo.com

Ephraim Igwenagu: Department of Veterinary Pathology, University of Maiduguri, Maiduguri, Nigeria; ephraimigwe@gmail.com

Anas Mu’azu: Department of Microbiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia; anasinmuazu1@yahoo.com

Sani Aliyu: Department of Microbiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia; sanialiyu32@gmail.com

Maryam Ibrahim Umar: Department of Postgraduate, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia; maryamiumar@gmail.com

 

Received: 12-09-2015, Revised: 19-11-2015, Accepted: 29-11-2015, Published online: 02-01-2016

 

Corresponding author: Umar Faruk Abdullahi, e-mail: docfaroukxy@yahoo.com


Citation: Abdullahi UF, Igwenagu E, Mu’azu A, Aliyu S, Umar MI (2016) Intrigues of biofilm: A perspective in veterinary medicine, Veterinary World 9(1): 12-18.



Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which regulate the pathophysiology of biofilm. Ability of biofilm formation in a variety of inanimate surfaces such as animal food contact surfaces is responsible for a host of biofilm diseases affecting animals and umans. In this review, we highlighted some of the challenges of biofilm in livestock and food industries. Also highlighted are; mechanisms of biofilm development, best diagnostic approach and possible novel therapeutic measures needed to combat the menace of biofilm in veterinary medicine.

Keywords: antibiotic resistance, biofilm, contact surfaces, quorum sensing, veterinary medicine.



1. Costeron, J.W., Stewart, P.S. and Greenberg, E.P. (1999) Bacterial biofilms: A common cause of persistent infections. Science, 284: 1318-1322.
http://dx.doi.org/10.1126/science.284.5418.1318
 
2. Clutterbuck, A.L., Woods, E.J., Knottenbelt, D.C., Cleqq, P.D., Cochrane, C.A. and Percival, S.L, (2007) Biofilms and their relevance to veterinary medicine. Vet. Microbiol., 125(3-4): 390.
http://dx.doi.org/10.1016/j.vetmic.2006.12.029
 
3. Garcia, A.B. and Percival, S.L. (2011) Zoonotic infections: The role of biofilm. Biofilm Vet. Med., 6: 69-110.
http://dx.doi.org/10.1007/978-3-642-21289-5_3
 
4. Zambori, C., Tirziu, E., Nichita, I., Cumpanasoiu, C., Gros, R.V., Seres, M., Mladin, B. and Mot, D. (2012) Biofilm implication in oral diseases of dogs and cats. Anim. Sci. Biotechnol., 45(2): 208.
 
5. Nam, E.H., Ko, S., Chac, J.S. and Hwang, C.Y. (2013) Characterization and zoonotic potential of uropathogenic Escherichia coli isolated from dogs. J. Microbiol. Biotechnol., 23(3): 422-429.
http://dx.doi.org/10.4014/jmb.1209.09051
 
6. Stoodley, P., Sauer, K., Davies, D.G. and Costerton, J.W. (2002) Biofilms as complex differentiated communities. Annu. Rev. Microbiol., 56(1): 187-209.
http://dx.doi.org/10.1146/annurev.micro.56.012302.160705
PMid:12142477
 
7. Sauer, K., Cullen, M.C., Rickard, A.H., Zeef, L.A.H., Davies, D.G. and Gilbert, P. (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J. Bacteriol., 186(21): 7312-7326.
http://dx.doi.org/10.1128/JB.186.21.7312-7326.2004
PMid:15489443 PMCid:PMC523207
 
8. McDougald, D., Klebensberger, J., Tolker‐Nielsen, T., Webb, J.S., Conibear, T., Rice, S. A. and Kjelleberg, S. (2008) Pseudomonas aeruginosa: A model for biofilm formation. Pseudomonas: Model Organism, Pathogen, Cell Factory, Wiley-VCH, Weinheim. p215-253.
http://dx.doi.org/10.1002/9783527622009.ch9
 
9. Chamberlain, A.H.L. (1992) The role of adsorbed layers in bacterial adhesion. In: Biofilms: Science and Technology. Springer, Netherlands. p59-67.
http://dx.doi.org/10.1007/978-94-011-1824-8_6
 
10. Rittle, K.H., Helmstetter, C.E., Meyer, A.E. and Baier, R.E. (1990) Escherichia coli retention on solid surfaces as functions of substratum surface energy and cell growth phase. Biofouling, 2(2): 121-130.
http://dx.doi.org/10.1080/08927019009378138
 
11. Percival, S.L., Malic, S., Cruz, H. and Williams, D.W. (2011) Introduction to biofilms. In: Biofilms and Veterinary Medicine. Springer, Berlin, Heidelberg. p41-68.
http://dx.doi.org/10.1007/978-3-642-21289-5_2
 
12. Wu, Y. and Outten, F.W. (2009) IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J. Bacteriol., 191: 1248-1257.
http://dx.doi.org/10.1128/JB.01086-08
PMid:19074392 PMCid:PMC2631988
 
13. Singh, A., Walker, M., Rousseau, J. and Weese, J. (2013) Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Vet. Res., 9: 93.
http://dx.doi.org/10.1186/1746-6148-9-93
PMid:23641755 PMCid:PMC3681638
 
14. Banin, E., Vasil, M.L. and Greenberg, E.P. (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc. Natl. Acad. Sci., 102: 11076-11081.
http://dx.doi.org/10.1073/pnas.0504266102
PMid:16043697 PMCid:PMC1182440
 
15. Anderson, G.G., Moreau-Marquis, S., Stanton, B.A. and O'Toole, G.A. (2008) In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect. Immun., 76: 1423-1433.
http://dx.doi.org/10.1128/IAI.01373-07
PMid:18212077 PMCid:PMC2292855
 
16. Kim, T., Young, B.M. and Young, G.M. (2008) Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl. Environ. Microbiol., 74: 5466-5474.
http://dx.doi.org/10.1128/AEM.00222-08
PMid:18606789 PMCid:PMC2546615
 
17. Kline, K.A., Falker, S., Dahlberg, S., Normark, S. and Henriques-Normark, B. (2009) Bacterial adhesins in host-microbe interactions. Cell Host Microbe, 5: 580-592.
http://dx.doi.org/10.1016/j.chom.2009.05.011
PMid:19527885
 
18. Pizarro-Cerdá, J. and Cossart, P. (2006) Bacterial adhesion and entry into the host cell. Cell, 124: 715-727.
http://dx.doi.org/10.1016/j.cell.2006.02.012
PMid:16497583
 
19. Spurbeck, R.R., Stapleton, A.E., Johnson, J.R., Walk, S.T., Hooton, T.M. and Mobley, H.L. (2011) Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: Contribution of ygi and yad fimbriae. Infect. Immun., 79(12): 4753-4763.
http://dx.doi.org/10.1128/IAI.05621-11
PMid:21911462 PMCid:PMC3232662
 
20. Sauer, K., Camper, A.K., Ehrlich, G.D., Costerton, J.W. and Davies, D.G. (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol., 184(4): 1140-1154.
http://dx.doi.org/10.1128/jb.184.4.1140-1154.2002
PMCid:PMC134825
 
21. Proal, A. (2008) Understanding biofilms. Bacteriality: Exploring Chronic Disease . http://bacteriality.com/2008/05/26/biofilm. Accessed on 10/07/2015
 
22. Davey, M.E. and O'toole, G.A. (2000) Microbial biofilms: From ecology to molecular genetics. Microbiol. Mol. Biol. Rev., 64(4): 847-867.
http://dx.doi.org/10.1128/MMBR.64.4.847-867.2000
 
23. Reisner, A., Haagensen, J.A., Schembri, M.A., Zechner, E.L. and Molin, S. (2003) Development and maturation of Escherichia coli K‐12 biofilms. Mol. Microbiol., 48(4): 933-946.
http://dx.doi.org/10.1046/j.1365-2958.2003.03490.x
 
24. Karatan, E. and Watnick, P. (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol. Mol. Biol. Rev., 73(2): 310-347.
http://dx.doi.org/10.1128/MMBR.00041-08
PMid:19487730 PMCid:PMC2698413
 
25. Kaplan, J.Á. (2010) Biofilm dispersal: Mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res., 89(3): 205-218.
http://dx.doi.org/10.1177/0022034509359403
PMid:20139339 PMCid:PMC3318030
 
26. Choi, Y.C. and Morgenroth, E. (2003) Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Water Sci. Technol., 47(5): 69-76.
PMid:12701909
 
27. Ymele-Leki, P. and Ross, J.M. (2007) Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen. Appl. Environ. Microbiol., 73(6): 1834-1841.
http://dx.doi.org/10.1128/AEM.01319-06
PMid:17277217 PMCid:PMC1828840
 
28. Parizzi, S.Q.F. (1999) Adherence of bacteria on different surfaces appraised by Microscopia of Epifluorescência & Count in slabs. Lush , Brazil. (M.Sc. Dissertation. Science & Tecnology of Foods UFV ).
 
29. Pompermayer, D.M.C. and Gaylarde, C.C. (2000) The influence of temperature on the adhesion of mixed cultures of Staphylococcus aureus and Escherichia coli to polypropylene. Food Microbiol., 17(4): 361-365.
http://dx.doi.org/10.1006/fmic.1999.0291
 
30. Wirtanen, G., Helander, I.M. and Matilla-Sandholm, T. (2000) Microbial methods for testing disinfectant efficiency on Pseudomonas biofilm. Colloids Surf. B Biointerfaces, 20(1): 37-50.
http://dx.doi.org/10.1016/S0927-7765(00)00173-9
 
31. Zottola, E.A. and Sasahara, K.C. (1994) Microbial biofilms in the food processing industry – Should they be a concern? Int. J. Food Microbiol., 23(2): 125-148.
http://dx.doi.org/10.1016/0168-1605(94)90047-7
 
32. Perron, G.G., Zasloff, M. and Bell, G. (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc. R. Soc. B Biol. Sci., 273: 251-256.
http://dx.doi.org/10.1098/rspb.2005.3301
 
33. Ruggeri, V., Francolini, I., Donelli, G. and Piozzi, A. (2007) Synthesis, characterization, and in vitro activity of antibiotic releasing polyurethanes to prevent bacterial resistance. J. Biomed. Mater. Res., 81: 287-298.
http://dx.doi.org/10.1002/jbm.a.30984
PMid:17120216
 
34. Flint, S.H., Bremer, P.J. and Brooks, J.D. (1997) Biofilms in dairy manufacturing plant – description, current concerns and methods of control. Biofouling, 11: 81-97.
http://dx.doi.org/10.1080/08927019709378321
 
35. Cervinkova, D., Volka, A., Borodacova, I., Mako Conencova, A., Vrtkova, I., Babak, V., Marosevic, D. and Taglic, Z. (2013) Prevalence of mastitis pathogens in milk from cow clinically healthy cows. Vet. Med., 58(11): 567-575.
 
36. Parkar, S., Flint, S., Teh, K.H., Brooks, J. and Bremer, P. (2015) Pathogen contamination in dairy manufacturing environments. In: Biofilms in the Dairy Industry. John Wiley & Sons, Ltd., Chichester, UK.
http://dx.doi.org/10.1002/9781118876282.ch9
 
37. Asao, T., Kumeda, Y., Kawai, T., Shibata, T., Oda, H., Haruki, K., Nakazawa, H. and Kozaki, S. (2003) An extensive outbreak of Staphylococcal food poisoning due to low-fat milk in Japan: Estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol. Infect., 130: 33-40.
http://dx.doi.org/10.1017/s0950268802007951
 
38. Costerton, J.W., Veeh, R., Shirtliff, M., Pasmore, M., Post, C. and Ehrlich, G. (2003) The application of biofilm science to the study and control of chronic bacterial infections. J. Clin. Invest., 112:1466-1477.
http://dx.doi.org/10.1172/JCI200320365
PMid:14617746 PMCid:PMC259139
 
39. Percival, S.L. and Bowler, P.G. (2004) Biofilm and the potential role in wound healing. Wounds, 16: 234-240.
 
40. Meyle, E., Stroh, P. and Gunther, F. (2010) Destruction of bacterial biofilms by polymorphonuclear neutrophils: Relative contribution of phagocytosed DNA release and degranulation. Int. J. Artif Organs, 33: 608-620.
PMid:20890882
 
41. Ghafoor, A., Hay, I.D. and Rehm, B.H. (2011) Role of exopolysacharides in Pseudomonas aeruginosa biofilm architecture. Appl. Environ. Microbiol., 77: 5238-5246.
http://dx.doi.org/10.1128/AEM.00637-11
PMid:21666010 PMCid:PMC3147449
 
42. Seward, R.J., Lambert, T. and Tourner, K.J. (1998) Molecular epidemiology of Aminoglycoside resistance in Acinetobacter spp. J. Med. Microbiol., 47: 455-462.
http://dx.doi.org/10.1099/00222615-47-5-455
PMid:9879947
 
43. Qin, S., Wang, Y., Zhang, Q., Chen, X., Shen, Z., Deng, F., Wu, C. and Shen, J. (2012) Identification of a novel genomic island conferring resistance to multiple aminoglycoside antibiotics in Campylobacter coli. Antimicrob. Agents Chemother., 1(56): 5332-5339.
http://dx.doi.org/10.1128/AAC.00809-12
PMid:22869568 PMCid:PMC3457361
 
44. Rice, L.B. (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: ESKAPE. J. Infect. Dis., 197(8): 1079-1081.
http://dx.doi.org/10.1086/533452
PMid:18419525
 
45. Alice, J.G., Percival, S.L. and Cochrane, C.A. (2011) Biofilms and role to infection and disease in veterinary medicine. Life Sci. Microbiol., 6: 111-128.
 
46. Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S. and Ciofu, O. (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents, 35(4): 322-332.
http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011
PMid:20149602
 
47 Brook, I. (2009) The role of beta lactamase producing bacteria in mixed infections. BMC Infect. Dis., 9: 202.
http://dx.doi.org/10.1186/1471-2334-9-202
PMid:20003454 PMCid:PMC2804585
 
48 Oliviera, M., Dias, F.R. and Pomba, C. (2014) Biofilm and fluroquinolone resistance of canine Escherichia coli uropathogenic isolates. BMC Res. Notes., 7: 499.
http://dx.doi.org/10.1186/1756-0500-7-499
PMid:25099929 PMCid:PMC4132243
 
49 Osman, K.M., Abd El-Razik, K.A., Marie, H.S.H. and Arafa, A. (2015) Relevance of biofilm formation and virulence of different species of coagulase-negative staphylococci to public health. Eur. J. Clin. Microbiol. Infect. Dis., 34(10): 2009-2016.
http://dx.doi.org/10.1007/s10096-015-2445-3
PMid:26173695
 
50 Kamelia, M.O., Tara, R.Z, Ahmed, S. and Ahmed, O. (2014) Prevalence, pathogenic capability, virulence genes, biofilm formation, and antibiotic resistance of Listeria in goat and sheep milk confirm need of hygienic milking conditions. Pathog. Glob. Health., 108(1): 21.
http://dx.doi.org/10.1179/2047773213Y.0000000115
PMid:24548157 PMCid:PMC4083164
 
51 Kamelia, M.O., Ahmed, S., Ahmed, O. and Tara, R.Z. (2014) Confirmed low prevalence of Listeria mastitis in she-camel milk delivers a safe, alternative milk for human consumption. Acta. Trop., 130(2014): 1-6.
http://dx.doi.org/10.1016/j.actatropica.2013.10.001
PMid:24161878
 
52 Johnson, J.R., Owens, K., Gajewski, A. and Clabots, C. (2008) Escherichia coli colonization patterns among human household members and pets, with attention to acute urinary tract infection. J. Infect. Dis., 197: 218-224.
http://dx.doi.org/10.1086/524844
PMid:18179385
 
53 Abdullahi, U.F., Naim, R, ALiyu, S., Mu'azu, A., Wan-Taib, W.R., Saleh, A. and Baig. A.A. (2015) Loop-mediated isothermal amplification (LAMP), an innovation in gene amplification: Bridging the gap in molecular diagnostics; a review. Indian J. Sci. Technol., 9(12): 55767.
http://dx.doi.org/10.17485/ijst/2015/v8i17/55767
 
54 Anastasiadis, P., Mojica, K.D.A., Allen, J.S. and Matter, M.L. (2014) Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles. J. Nanobiotechnol., 12: 24.
http://dx.doi.org/10.1186/1477-3155-12-24
PMid:24997588 PMCid:PMC4113671
 
55 Dongari-Bagtzoglou, A. (2008) Pathogenesis of mucosal biofilm infections: Challenges and progress. Expert Rev. Anti-Infect. Ther., 6(2): 201-208.
http://dx.doi.org/10.1586/14787210.6.2.201
PMid:18380602 PMCid:PMC2712878
 
56 Brady, R.A., Leid, J.G., Camper, A.K., Costerton, J.W. and Shirtliff, M.E. (2006) Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect. Immun., 74: 3415-3426.
http://dx.doi.org/10.1128/IAI.00392-06
PMid:16714572 PMCid:PMC1479260
 
57 Segall, G.M., Nino-Murcia, M., Jacobs, T. and Chang, K. (1989) The role of bone scan and radiography in the diagnostic evaluation of suspected pedal osteomyelitis. Clin. Nucl Med., 14: 255-260.
http://dx.doi.org/10.1097/00003072-198904000-00003
PMid:2706867
 
58 Römling, U. and Balsalobre, C. (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med., 272(6): 541-561.
http://dx.doi.org/10.1111/joim.12004
PMid:23025745
 
59 Sifri, CD. (2008) Healthcare epidemiology: Quorum sensing: Bacteria talk sense. J. Clin. Infect. Dis., 47: 1070-1076.
http://dx.doi.org/10.1086/592072
PMid:18781869
 
60 Van Houdt, R., Givskov, M. and Michiels, C.W. (2007) Quorum sensing in Serratia. FEMS Microbiol. Rev., 31(4): 407-424.
http://dx.doi.org/10.1111/j.1574-6976.2007.00071.x
PMid:17459113
 
61 Schillaci, D. and Vitale, M. (2012) Biofilm related to animal health, zoonosis and food transmitted diseases: Alternative target for antimicrobial strategy. J. Micobiol. Biochem. Technol., 4: 7-10.
http://dx.doi.org/10.4172/1948-5948.1000e108
 
62 Kasimanickam, R.K., Ranjan, A., Asokan, G.V., Kasimanickam, V.R. and Kastelic, J.P. (2013) Prevention and treatment of biofilms by hybrid- and nanotechnologies. Int. J. Nanomed., 8: 2809-2819.
http://dx.doi.org/10.2147/IJN.S44100
PMid:23946652 PMCid:PMC3739460
 
63 Borriello, G., Werner, E., Roe, F., Kim, A.M., Ehrlich, G.D. and Stewart, P.S. (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother., 48(7): 2659-2664.
http://dx.doi.org/10.1128/AAC.48.7.2659-2664.2004
PMid:15215123 PMCid:PMC434183
 
64 Pickering, S.A., Bayston, R. and Scammell, B.E. (2003) Electromagnetic augmentation of antibiotic efficacy in infection of orthopaedic implants. J. Bone Joint Surg. Br., 85(4): 588-593.
http://dx.doi.org/10.1302/0301-620X.85B4.12644
 
65 Weiling, F.U., Forster, T., Mayer, O., Curtin, J.J., Lehman, S.M. and Donlan, R.M. (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother., 54(1): 397-404.
http://dx.doi.org/10.1128/AAC.00669-09
PMid:19822702 PMCid:PMC2798481
 
66 Verma, V., Harjai, K. and Chhibber, S. (2010) Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling, 26(6): 729-737.
http://dx.doi.org/10.1080/08927014.2010.511196
PMid:20711894
 
67 Zadoks, R.N., Middleton, J.R., McDougall, S., Katholm, J. and Schukken, Y.H. (2011) Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland Biol. Neoplasia, 16(4): 357-372.
http://dx.doi.org/10.1007/s10911-011-9236-y
PMid:21968538 PMCid:PMC3208832
 
68 Melchior, M.B., Fink-Gremmels, J. and Gaastra, W. (2006a) Comparative assessment of the antimicrobial susceptibility of Staphylococcus aureus isolates from bovine mastitis in biofilm versus planktonic culture. J. Vet. Med. Series B Infect. Dis. Vet. Public Health., 53: 326-332.
http://dx.doi.org/10.1111/j.1439-0450.2006.00962.x
PMid:16930277
 
69 Melchior, M.B., Vaarkamp, H. and Fink-Gremmels, J. (2006b) Biofilms: A role in recurrent mastitis infections? Vet. J., 171: 398-407.
http://dx.doi.org/10.1016/j.tvjl.2005.01.006
PMid:16624706
 
70 Singh, A.V., Singh, S.V., Singh, P.K., Sohal, J.S, Swain, N, Rajindran, A.S. and Vinodh, O.R. (2009) Multiple tests based prevalence estimates of Mycobacterium avium sub specie Paratuberculosis infection in elite farms of goats and sheep. Indian J. Small Rumin., 15: 178-182.
 
71 Lombard, J.E., Gardner, I.A., Jafarzadeh, S.R., Fossler, C.P., Harris, B., Capsel, R.T., Wagner, B.A. and Johnson, W.O. (2013) Herd-level prevalence of Mycobacterium avium sub specie Paratuberculosis infection in United States diary-herds. Prev. Vet. Med., 108(2-3): 234-238.
http://dx.doi.org/10.1016/j.prevetmed.2012.08.006
PMid:22979969
 
72 Olson, M.E., Ceri, H., Morck, D.W., Buret, A.G. and Read, R.R. (2002) Biofilm bacteria: Formation and comparative susceptibility to antibiotics. Can. J. Vet. Res., 66(2): 86-92.
PMid:11989739 PMCid:PMC226988
 
73 Bastos, B.L., Dias Portela, R.W., Dorella, F.A., Ribeiro, D., Seyffert, N., Luiz de Paula, T., Miyoshi, A., Oliveira, S.C., Meyer, R. and Azevedo, V. (2012) Corynebacterium pseudotuberculosis: Immunological responses in animal models and zoonotic potential. J. Clin. Cell. Immunol., S4: 005.
http://dx.doi.org/10.4172/2155-9899.s4-005
 
74 Tadepalli, S., Narayanan, S.K., Stewart, G.C., Chengappa, M.M. and Nagaraja, T.G. (2009) Fusobacterium necrophorum: A ruminal bacteria that invades liver to cause abscesses in cattle. Anerobes, 15(1-2): 36-43.
http://dx.doi.org/10.1016/j.anaerobe.2008.05.005
 
75 Westgate, S.J., Percival, S., Knottenbelt, D.C., Clegg, P.D. and Cochrane, C.A. (2010) Chronic equine wounds: What is the role of infection and biofilms? Wounds, 22(6): 138-147.
PMid:25901461
 
76 Hennig, G.E., Kraus, B.H., Fister, R., King, V.L., Steckel, R.R. and Kirker-Head, C.A. (2001) Comparison of two methods for pre-surgical disinfection of the equine hoof. J. Vet. Surg., 30:366–373.
http://dx.doi.org/10.1053/jvet.2001.24392
 
77 Chen, Y.M., Wright, P.J., Lee, C.S. and Browning, G.F. (2003) Uropathogenic virulence factors in isolates of Escherichia coli from clinical cases of canine pyometra and feces of healthy bitches. Vet. Microbiol., 94: 57-69.
http://dx.doi.org/10.1016/S0378-1135(03)00063-4
 
78 Hagman, R. and Kuhn, I. (2002) Escherichia coli strains isolated from the uterus and urinary bladder of bitches suffering from pyometra: Comparison by restriction enzyme digestion and pulsed-field gel electrophoresis. Vet. Microbiol., 84: 143-153.
http://dx.doi.org/10.1016/s0378-1135(01)00449-7