Open Access
Research
(Published
online: 26-07-2016)
15.
Effect of oral administration of Bacillus coagulans B37
and Bacillus pumilus B9 strains on fecal coliforms,
Lactobacillus and Bacillus spp. in rat animal model -
Lopamudra Haldar and D. N. Gandhi
Veterinary World, 9(7): 766-772
doi:
10.14202/vetworld.2016.766-772
Lopamudra Haldar:
Department of Basic Sciences, Faculty of Science and Technology,
ICFAI University, Kamalghat - 799 210, Tripura, India; mohor7@gmail.com
D. N. Gandhi:
Dairy Microbiology Division, National Dairy Research Institute,
Karnal - 132 001, Haryana, India; DNG: dngandhi@rediffmail.com
Received: 18-03-2016, Accepted: 16-06-2016, Published:
26-07-2016
Corresponding author:
Lopamudra Haldar, e-mail: mohor7@gmail.com
Citation:
Haldar L, Gandhi DN (2016) Effect of oral administration of
Bacillus coagulans B37 and Bacillus pumilus B9
strains on fecal coliforms, Lactobacillus and Bacillus
spp. in rat animal model, Veterinary World, 9(7):
766-772.
Abstract
Aim:
To investigate the effect of oral administration of two
Bacillus strains on fecal coliforms, Lactobacillus
and Bacillus spp. in rat animal model.
Materials and Methods:
An in vivo experiment was conducted for 49-day period on
36 adult male albino Wister rats divided equally into to four
groups. After 7-day adaptation period, one group (T1) was fed on
sterile skim milk along with basal diet for the next 28 days.
Second (T2) and (T3) groups received spore biomass of
Bacillus coagulans B37 and Bacillus pumilus B9,
respectively, suspended in sterilized skim milk at 8-9 log
colony-forming units/ml plus basal diet for 28 days, while
control group (T4) was supplied with clean water along with
basal diet. There was a 14-day post-treatment period. A total of
288 fecal samples (8 fecal collections per rat) were collected
at every 7-day interval starting from 0 to 49 days and subjected
to the enumeration of the counts of coliforms and lactobacilli
and Bacillus spores using respective agar media. In
vitro acid and bile tolerance tests on both the strains were
performed.
Results:
The rats those (T2 and T3) received either B. coagulans
B37 or B. pumilus B9 spore along with non-fermented skim
milk showed decrease (p<0.01) in fecal coliform counts and
increase (p<0.05) in both fecal lactobacilli and Bacillus
spore counts as compared to the control group (T4) and the group
fed only skim milk (T1). In vitro study indicated that
both the strains were found to survive at pH 2.0 and 3.0 even up
to 3 h and tolerate bile up to 2.0% concentration even after 12
h of exposure.
Conclusions:
This study revealed that oral administration of either B.
coagulans B37 or B. pumilus B9 strains might be
useful in reducing coliform counts accompanied by concurrent
increase in lactobacilli counts in the intestinal flora in rats.
Keywords:
acid salt tolerance, antibacterial activity, Bacillus
coagulans, Bacillus pumilus, bile salt tolerance,
probiotics.
References
1. FAO/WHO. (2002) Guidelines for the Evaluation of
Probiotics in Food. Report of a Joint FAO/WHO Working Group
on Drafting Guidelines for Evaluation of Probiotics in Food.
London, Ontario, Canada. April 30 and May 01, 2002.
Available from:
http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf.
Last accessed on 14/03/16. |
|
2. Butel, M.J. (2014) Probiotics, gut microbiota and health.
Med. Mal. Infect., 44(1): 1-8.
http://dx.doi.org/10.1016/j.medmal.2013.10.002
PMid:24290962 |
|
3. Martinez, R.C., Bedani, R. and Saad, S.M. (2015)
Scientific evidence for health effects attributed to the
consumption of probiotics and prebiotics: An update for
current perspectives and future challenges. Br. J. Nutr.,
114(12): 1993-2015.
http://dx.doi.org/10.1017/S0007114515003864
PMid:26443321 |
|
4. Kumari, A., Catanzaro, R. and Marotta, F. (2011) Clinical
importance of lactic acid bacteria: A short review. Acta
Biomed., 82(3): 177-180.
PMid:22783712 |
|
5. Cutting, S.M. (2011) Bacillus probiotics. Food Microbiol.,
28(2): 214-220.
http://dx.doi.org/10.1016/j.fm.2010.03.007
PMid:21315976 |
|
6. Bader, J., Albin, A. and Stahl, U. (2012) Spore-forming
bacteria and their utilisation as probiotics. Benef.
Microbes, 3(1): 67-75.
http://dx.doi.org/10.3920/BM2011.0039
PMid:22348911 |
|
7. Lefevre, M., Racedo, S.M., Ripert, G., Housez, B.,
Cazaubiel, M., Maudet, C., Jüsten, P., Marteau, P. and
Urdaci, M.C. (2015) Probiotic strain Bacillus subtilis CU1
stimulates immune system of elderly during common infectious
disease period: A randomized, double-blind
placebo-controlled study. Immun. Ageing, 12: 24.
http://dx.doi.org/10.1186/s12979-015-0051-y |
|
8. Peng, H., Wang, J.Q., Kang, H.Y., Dong, S.H., Sun, P.,
Bu, D.P. and Zhou, L.Y. (2012) Effect of feeding Bacillus
subtilis natto fermentation product on milk production and
composition, blood metabolites and rumen fermentation in
early lactation dairy cows. J. Anim. Physiol. Anim. Nutr.
(Berl)., 96(3): 506-512.
http://dx.doi.org/10.1111/j.1439-0396.2011.01173.x
PMid:21635575 |
|
9. Larsen, N., Thorsen, L., Kpikpi, E.N., Stuer-Lauridsen,
B., Cantor, M.D., Nielsen, B., Brockmann, E., Derkx, P.M.
and Jespersen, L. (2014) Characterization of Bacillus spp.
Strains for use as probiotic additives in pig feed. Appl.
Microbiol. Biotechnol., 98(3): 1105-1118.
http://dx.doi.org/10.1007/s00253-013-5343-6
PMid:24201893 |
|
10. Jeong, J.S. and Kim, I.H. (2014) Effect of Bacillus
subtilis C-3102 spores as a probiotic feed supplement on
growth performance, noxious gas emission, and intestinal
microflora in broilers. Poult. Sci., 93(12): 3097-3103.
http://dx.doi.org/10.3382/ps.2014-04086
PMid:25260523 |
|
11. Urgesi, R., Casale, C., Pistelli, R., Rapaccini, G.L.
and de Vitis, I. (2014) A randomized double-blind
placebo-controlled clinical trial on efficacy and safety of
association of simethicone and Bacillus coagulans (Colinox®)
in patients with irritable bowel syndrome. Eur. Rev. Med.
Pharmacol. Sci., 18(9): 1344-1353.
PMid:24867512 |
|
12. Choi, C.H., Kwon, J.G., Kim, S.K., Myung, S.J., Park,
K.S., Sohn, C.I., Rhee, P.L., Lee, K.J., Lee, O.Y., Jung,
H.K., Jee, S.R., Jeen, Y.T., Choi, M.G., Choi, S.C., Huh,
K.C. and Park, H. (2015) Efficacy of combination therapy
with probiotics and mosapride in patients with IBS without
diarrhea: A randomized, double-blind, placebo-controlled,
multicenter, Phase II trial. Neurogastroenterol. Motil.,
27(5): 705-716.
http://dx.doi.org/10.1111/nmo.12544
PMid:25809913 |
|
13. Rosales-Mendoza, S. and Angulo, C. (2015) Bacillus
subtilis comes of age as a vaccine production host and
delivery vehicle. Exp. Rev. Vaccines, 14(8): 1135-1148.
PMid:26028252 |
|
14. Raut, S.V. and Pingle, Y.A. (2010) Screening and
characterization of antimicrobial substances produced by
Bacillus species. J. Pure Appl. Microbiol., 4: 321-331. |
|
15. Haldar, L., Gandhi, D.N., Majumdar, D. and De, S. (2015)
Characterization of indigenous Bacillus coagulans isolated
from cattle and buffalo milk. Int. J. Microbiol. Res., 7:
686-691. |
|
16. Atlas, R.M. (2004) Handbook of Microbiological Media.
3rd ed. Taylor & Francis, Boca Raton.
http://dx.doi.org/10.1201/9781420039726 |
|
17. Rana, R. and Gandhi, D.N. (2000) Effect of basal medium
and pH on the growth of Lactobacillus acidophilus. Indian J.
Dairy Sci., 53: 338-342. |
|
18. Endres, J.R., Qureshi, I., Farber, T., Hauswirth, J.,
Hirka, G., Pasics, I. and Schauss, A.G. (2011) One-year
chronic oral toxicity with combined reproduction toxicity
study of a novel probiotic, Bacillus coagulans, as a food
ingredient. Food Chem. Toxicol., 49: 1174-1182.
http://dx.doi.org/10.1016/j.fct.2011.02.012
PMid:21338652 |
|
19. De Clerck, E., Rodriguez-Diaz, M., Forsyth, G., Lebbe,
L., Logan, N.A. and De Vos, P. (2004) Polyphasic
characterization of Bacillus coagulans strains, illustrating
heterogeneity within this species, and emended description
of the species. Syst. Appl. Microbiol., 27: 50-60.
http://dx.doi.org/10.1078/0723-2020-00250
PMid:15053321 |
|
20. Clark, P.A., Cotton, L.N. and Martin, J.H. (1993)
Selection of Bifidobacteria for use as dietary adjuncts in
cultured dairy foods: II. Tolerance to simulated pH of human
stomachs. Cult. Dairy Prod. J., 28: 11-14. |
|
21. Clark, P.A. and Martin, J.H. (1994) Selection of
Bifidobacteria for use as dietary adjuncts in cultured dairy
foods: III. Tolerance to simulated bile concentrations of
human small intestines. Cult. Dairy Prod. J., 29: 20-21. |
|
22. de Oliveira, C.P., da Silva, J.A. and de
Siqueira-Júnior, J.P. (2015) Nature of the antimicrobial
activity of Lactobacillus casei, Bifidobacterium bifidum and
Bifidobacterium animalis against foodborne pathogenic and
spoilage microorganisms. Nat. Prod. Res., 29(22): 2133-2136.
http://dx.doi.org/10.1080/14786419.2014.989844
PMid:25533144 |
|
23. Georgieva, R., Yocheva, L., Tserovska, L., Zhelezova,
G., Stefanova, N., Atanasova, A., Danguleva, A., Ivanova,
G., Karapetkov, N., Rumyan, N. and Karaivanova, E. (2015)
Antimicrobial activity and antibiotic susceptibility of
Lactobacillus and Bifidobacterium spp. Intended for use as
starter and probiotic cultures. Biotechnol. Biotechnol.
Equip., 29(1): 84-91.
http://dx.doi.org/10.1080/13102818.2014.987450
PMid:26019620 PMCid:PMC4434095 |
|
24. Mazaya, B., Hamzawy, M.A., Khalil, M.A., Tawkol, W.M.
and Sabit, H. (2015) Immunomodulatory and antimicrobial
efficacy of Lactobacilli against enteropathogenic infection
of Salmonella typhi: In-vitro and in-vivo study. Int. J.
Immunopathol. Pharmacol., 28(4): 469-478.
http://dx.doi.org/10.1177/0394632015592099
PMid:26303120 |
|
25. Vidya Laxme, B., Rovetto, A., Grau, R. and Agrawal, R.
(2014) Synergistic effects of probiotic Leuconostoc
mesenteroides and Bacillus subtilis in malted ragi (Eleucine
corocana) food for antagonistic activity against V. Cholerae
and other beneficial properties. J. Food Sci. Technol.,
51(11): 3072-3082.
http://dx.doi.org/10.1007/s13197-012-0834-5
PMid:26396299 PMCid:PMC4571230 |
|
26. Tsukahara, T., Tsuruta, T., Nakanishi, N., Hikita, C.,
Mochizuki, M. and Nakayama, K. (2013) The preventive effect
of Bacillus subtilus strain DB9011 against experimental
infection with enterotoxcemic Escherichia coli in weaning
piglets. Anim. Sci. J., 84(4): 316-321.
http://dx.doi.org/10.1111/asj.12003
PMid:23590505 |
|
27. Lin, Z., Shi, Y., Deng, B., Mao, X., Yu, D. and Li, W.
(2015) Protective immunity against Eimeria tenella infection
in chickens following oral immunization with Bacillus
subtilis expressing Eimeria tenella 3-1E protein. Parasitol.
Res., 114(9): 3229-3236.
http://dx.doi.org/10.1007/s00436-015-4539-3
PMid:25994313 |
|
28. Zhou, D., Zhu, Y.H., Zhang, W., Wang, M.L., Fan, W.Y.,
Song, D., Yang, G.Y., Jensen, B.B. and Wang, J.F. (2015)
Oral administration of a select mixture of Bacillus
probiotics generates Tr1 cells in weaned F4ab/acR - Pigs
challenged with an F4+ ETEC/VTEC/EPEC strain. Vet. Res., 46:
95.
http://dx.doi.org/10.1186/s13567-015-0223-y
PMid:26384321 PMCid:PMC4574530 |
|
29. Haldar, L., Gandhi, D.N. and Mazumdar, D. (2016)
Functional and probiotic potential of indigenous Bacillus
coagulans and Bacillus pumilus strains isolated from buffalo
milk. Int. J. Microbiol. Res., 8(3): 731-736. |
|
30. Donnet-Hughes, A., Rochat, F., Serrant, P., Aeschlimann,
J.M. and Schiffrin, E.J. (1999) Modulation of nonspecific
mechanisms of defense by lactic acid bacteria: Effective
dose. J. Dairy Sci., 82: 863-869.
http://dx.doi.org/10.3168/jds.s0022-0302(99)75304-x |
|
31. Hosoi, T., Ametani, A., Kiuchi, K. and Kaminogawa, S.
(2000) Improved growth and viability of lactobacilli in the
presence of Bacillus subtilis (natto), catalase, or
subtilisin. Can. J. Microbiol., 46(10): c892-c897.
http://dx.doi.org/10.1139/cjm-46-10-892 |
|
32. Tavares Batista M, Souza, R.D., Paccez, J.D., Luiz, W.B.,
Ferreira, E.L., Cavalcante, R.C., Ferreira, R.C. and
Ferreira, L.C. (2014) Gut adhesive Bacillus subtilis spores
as a platform for mucosal delivery of antigens. Infect.
Immun., 82(4): 1414-1423.
http://dx.doi.org/10.1128/IAI.01255-13
PMid:24421038 PMCid:PMC3993416 |
|
33. Ghelardi, E., Celandroni, F., Salvetti, S., Gueye, S.A.,
Lupetti, A. and Senesi, S. (2015) Survival and persistence
of Bacillus clausii in the human gastrointestinal tract
following oral administration as spore-based probiotic
formulation. J. Appl. Microbiol., 119(2): 552-559.
http://dx.doi.org/10.1111/jam.12848
PMid:25973914 |
|
34. Baick, S.C. and Kim, C.H. (2015) Assessment of
characteristics and functional properties of Lactobacillus
species isolated from kimchi for dairy use. Korean J. Food
Sci. Anim. Resour., 35(3): 339-349.
http://dx.doi.org/10.5851/kosfa.2015.35.3.339
PMid:26761848 PMCid:PMC4662357 |
|
35. Hanifi, A., Culpepper, T., Mai, V., Anand, A., Ford,
A.L., Ukhanova, M., Christman, M., Tompkins, T.A. and Dahl,
W.J. (2015) Evaluation of Bacillus subtilis R0179 on
gastrointestinal viability and general wellness: A
randomised, double-blind, placebo-controlled trial in
healthy adults. Benef. Microbes, 6(1): 19-27.
http://dx.doi.org/10.3920/BM2014.0031
PMid:25062611 |
|
36. Fontana, L., Bermudez-Brito, M., Plaza-Diaz, J.,
Mu-oz-Quezada, S. and Gil, A. (2013) Sources, isolation,
characterisation and evaluation of probiotics. Br. J. Nutr.,
109 Suppl 2: S35-S50.
http://dx.doi.org/10.1017/s0007114512004011 |
|
37. Shobharani, P. and Halami, P.M. (2014) Cellular fatty
acid profile and H(+)-ATPase activity to assess acid
tolerance of Bacillus sp. For potential probiotic functional
attributes. Appl. Microbiol. Biotechnol., 98(21): 9045-9058.
http://dx.doi.org/10.1007/s00253-014-5981-3
PMid:25125040 |
|