Open Access
Research
(Published
online: 05-07-2016)
4.
Effectiveness of a recombinant human
follicle stimulating hormone on the ovarian follicles,
peripheral progesterone, estradiol-17β, and pregnancy rate of
dairy cows -
Mohamed Ali and Moustafa M. Zeitoun
Veterinary World, 9(7): 699-704
doi:
10.14202/vetworld.2016.699-704
Mohamed Ali:
Department of Animal Production and Breeding, Qassim University,
College of Agriculture and Veterinary Medicine, Buraidah 6622,
Saudi Arabia; mohamed0_9@yahoo.com
Moustafa M. Zeitoun:
Department of Animal Production and Breeding, Qassim University,
College of Agriculture and Veterinary Medicine, Buraidah 6622,
Saudi Arabia; mmzeitoun@yahoo.com
Received: 12-03-2016, Accepted: 02-06-2016, Published online:
05-07-2016
Corresponding author:
Mohamed Ali, e-mail: mohamed0_9@yahoo.com
Citation:
Ali M, Zeitoun MM (2016) Effectiveness of a recombinant human
follicle stimulating hormone on the ovarian follicles,
peripheral progesterone, estradiol-17β, and pregnancy rate of
dairy cows, Veterinary World, 9(7): 699-704.
Abstract
Aims:
This study aimed at elucidating the effects of recombinant human
follicle stimulating hormone (r-hFSH) on the ovarian follicular
dynamics, progesterone, estradiol-17β profiles, and pregnancy of
dairy cows.
Materials and Methods:
Three groups (G, n=5 cows) of multiparous dairy cows were used.
G1 (C) control cows were given controlled internal drug release
(CIDR) and prostaglandin F2α; G2 (L) cows were given low dose
(525 IU and G3 (H) cows were given high dose (1800 IU) of r-hFSH
on twice daily basis at the last 3 days before CIDR removal. All
cows were ultrasonically scanned for follicular growth and
dynamics, and blood samples were collected every other day for
two consecutive estrus cycles for the determination of
estradiol-17β and progesterone.
Results:
Estrus was observed in all C and L but not in H cows. Dominant
follicle was bigger in L compared to C and H cows. Dominant
follicle in C (16.00±2.5 mm) and L cows (17.40±2.3 mm)
disappeared at 72 h after CIDR removal. However, in H cows, no
ovulation has occurred during 7 days post-CIDR removal.
Progesterone was not different (p>0.10) among groups, whereas
estradiol-17β revealed significant (p<0.01) reduction in H
(15.96±2.5 pg/ml) cows compared to C (112.26±26.1 pg/ml) and L
(97.49±15.9 pg/ml) cows. Pregnancy rate was higher in L cows
(60%) compared with C cows (20%). However, H cows were not
artificially inseminated due to non-ovulation. Only a cow of C
group has calved one calf, however, 2 of the L cows gave birth
of twins and a cow gave single calf.
Conclusion:
Administration of a low dose (525 IU) of r-hFSH resulted in an
optimal size of dominant follicle, normal values of progesterone
and estradiol-17β, and 40% twinning rate, howeverusing 1800 IU
of r-hFSH, have adverse effects on ovarian follicular dynamics
and hormonal profiles with non-pregnancy of dairy cows raised
under hot climate.
Keywords:
dairy cows, estradiol-17β, follicles, progesterone, recombinant
human follicle stimulating hormone.
References
1. Mapletoft, R.J. and Bo, G.A. (2013) Innovative strategies
for superovulation in cattle. Anim. Reprod., 10: 174-179. |
|
2. Mattos, M.C.C., Bastos, M.R., Guardieiro, M.M., Carvalho,
J.O., Francoc, M.M., Mourão, G.B., Barros, C.M. and Sartori,
R. (2011) Improvement of embryo production by the
replacement of the last two doses of porcine
follicle-stimulating hormone with equine chorionic
gonadotropin in Sindhi donors. Anim. Reprod. Sci., 125:
119-123.
http://dx.doi.org/10.1016/j.anireprosci.2011.02.028
PMid:21470801 |
|
3. Gabriel, A., Reuben, B. and Mapletoft, J. (2014)
Historical perspectives and recent research on
superovulation in cattle. Theriogenology, 81: 38-48.
http://dx.doi.org/10.1016/j.theriogenology.2013.09.020
PMid:24274408 |
|
4. Gervais, A., Hammel, Y.A. and Pelloux, S. (2003)
Glycosylation of human gonatrophins: Characterization and
batch-to-batch consistency. Glycobiology, 13: 179-189.
http://dx.doi.org/10.1093/glycob/cwg020
PMid:12626416 |
|
5. Kim, D.J., Seok, S.H., Baek, M.W., Lee, H.Y., Juhn, J.H.,
Lee, S., Yun, M. and Park, J.H. (2010) Highly expressed
recombinant human follicle stimulating hormone from Chinese
hamster ovary cells grown in serum-free medium and its
effect on induction of folliculogenesis and ovulation.
Fertil. Steril., 93: 2652-2660.
http://dx.doi.org/10.1016/j.fertnstert.2009.05.009
PMid:19535048 |
|
6. Radwanska, E., Frankenberg, J. and Allen, E. (1978)
Plasma progesterone levels in normal and early pregnancy.
Fertil. Steril., 30: 398-402.
http://dx.doi.org/10.1016/S0015-0282(16)43571-5 |
|
7. Goldstein, D., Zuckerman, H., Harpaz, S., Barkai, J.,
Gev, A., Gordon, S., Shalev, E. and Schwartz, M. (1982)
Correlation between estradiol and progesterone in cycles
with luteal phase deficiency. Fertil. Steril., 37: 348-354.
http://dx.doi.org/10.1016/S0015-0282(16)46094-2 |
|
8. SPSS. (2007) Statistical Package for the Social Sciences.
Version 16 for Windows. SPSS, Chicago, USA. |
|
9. Hu, J., Bao, G., Ma, X., Li, W., Lei, A., Yang, C., Gao,
Z. and Wang, H. (2010) FSH is superior to ECG for promoting
ovarian response in Chinese Bamei gilts. Anim. Reprod. Sci.,
122: 313-316.
http://dx.doi.org/10.1016/j.anireprosci.2010.10.004
PMid:21074338 |
|
10. Zanetti, E.S., Munerato, M.S., Cursino, M.S. and Duarte,
J.M.B. (2014) Comparing two different superovulation
protocols on ovarian activity and fecal glucocorticoid
levels in the brown brocket deer (Mazama gouazoubira).
Reprod. Biol. Endocrinol., 12: 24-32.
http://dx.doi.org/10.1186/1477-7827-12-24
PMid:24646096 PMCid:PMC3994842 |
|
11. Rahman, M.R., Rahman, M.M., Wan Khadijah, W.E. and
Abdullah, R.B. (2014) Follicle Stimulating Hormone (FSH)
dosage based on body weight enhances ovulatory responses and
subsequent embryo production in goats. Asian-Aust. J. Anim.
Sci., 27: 1270-1274. |
|
12. Son, H.N., Hanh, N.V., Huu, Q.X. and Chau, L.T. (2013)
Effect of bovine ovarian status on superovulation. Tạp Chí
Sinh Học, 35: 243-247.
http://dx.doi.org/10.15625/0866-7160/v35n2.3111 |
|
13. Mapletoft, R.J. (2006) Bovine embryo transfer. In:
I.V.I.S, editor. IVIS Reviews in Veterinary Medicine.
Ithaca, NY: International Veterinary Information Service,
R0104.1106. Available from: http://www.ivis.org. Last
accessed on 5/1/2016 |
|
14. da Costa, S.L., da Costa, E.P., Pereira, E.C.M.,
Benjamin, L.A., Verde, I.B.L., Celestino, J.L.H. and de
Figueiredo, J.R. (2015) The human follicle stimulating
hormone (HFSH) keeps the normal ultrastructure of caprine
preantral follicles cultured in vitro. Semina: Ciências
Agrárias, Londrina, 36(3), S1: 1965-1978.
http://dx.doi.org/10.5433/1679-0359.2015v36n3supl1p1965 |
|
15. Mullen, M.P., Cooke, D.J. and Crow, M.A. (2013)
Structural and functional roles of FSH and LH as
glycoproteins regulating reproduction in Mammalian species.
In: Vizcarra, J., editor. Gonadotropin. Ch.
8InTech,International Publisher p155-180. |
|
16. Bousfield, G.R. and Dias, J.A. (2011) Synthesis and
secretion of gonadotropins including structure-function
correlates. Rev. Endocr. Metabol. Disord., 12: 289-302.
http://dx.doi.org/10.1007/s11154-011-9191-3
PMid:21739108 PMCid:PMC3208096 |
|
17. Green, E.D. and Baenziger, J.U. (1988) Asparagine-linked
oligosaccharides on lutropin, follitropin, and thyrotropin.
I. Structural elucidation of the sulfated and sialylated
oligosaccharides on bovine, ovine, and human pituitary
glycoprotein hormones. J. Bio. Chem., 263: 25-35. |
|
18. Ulloa-Aguirre, A. and Timossi, C. (1998)
Structure-function relationship of follicle-stimulating
hormone and its receptor. Hum. Reprod. Update, 4: 260-283.
http://dx.doi.org/10.1093/humupd/4.3.260
PMid:9741710 |
|
19. George, J.W., Dille, E.A. and Heckert, L.L. (2011)
Current concepts of follicle-stimulating hormone receptor
gene regulation. Biol. Reprod., 84: 7-17.
http://dx.doi.org/10.1095/biolreprod.110.085043
PMid:20739665 PMCid:PMC4480823 |
|
20. Okamoto, T. and Nishimoto, I. (1992) Detection of G
protein-activator regions in M4 subtype muscarinic
cholinergic and tc2-adrenergic receptors based upon
characteristics in primary structure. J. Biol. Chem., 267:
8342-8346.
PMid:1314825 |
|
21. Butler, S.T., Pelton, S.H. and Butler, W.R. (2004)
Insulin increases 17β-estradiol production by the dominant
follicle of the first postpartum follicle wave in dairy
cows. Reproduction, 127: 537-545.
http://dx.doi.org/10.1530/rep.1.00079
PMid:15129009 |
|
22. Kanitz, W., Becker, F., Schneider, F., Kanitz, E.,
Leiding, C., Nohner, H.P. and Pöhland, R. (2002)
Superovulation in cattle: Practical aspects of gonadotropin
treatment and insemination. Reprod. Nutr. Dev., 42: 587-599.
http://dx.doi.org/10.1051/rnd:2002045
PMid:12625423 |
|
23. Braileanu, G.T., Albanese, C., Card, C. and Chedrese,
P.J. (1998) FSH bioactivity in commercial preparations of
gonadotropins. Theriogenology, 49: 1031-1037.
http://dx.doi.org/10.1016/S0093-691X(98)00051-X |
|
24. Stanton, P.G., Pozvek, G., Burgon, P.G., Robertson, D.M.
and Hearn, M.T. (1993) Isolation and characterization of
human LH isoforms. J. Endocrinol., 138: 529-543.
http://dx.doi.org/10.1677/joe.0.1380529
PMid:8277226 |
|
25. Tamilmani, G., Varshney, V.P., Dubey, P.K., Pathak, M.C.
and Sharma, G.T. (2013) Influence of FSH on in vitro growth,
steroidogenesis and DNA synthesis of buffalo (Bubalus
bubalis) ovarian preantral follicles. Anim. Reprod., 10:
32-40. |
|
26. Burns, D.S., Jimenez-Krassel, F., Ireland, J.L., Knight,
P.G. and Ireland, J.J. (2005) Numbers of antral follicles
during follicular waves in cattle: Evidence for high
variation among animals, very high repeatability in
individuals, and an inverse association with serum
follicle-stimulating hormone concentrations. Biol. Reprod.,
73: 54-62.
http://dx.doi.org/10.1095/biolreprod.104.036277 |
|
27. Singh, J., Dominguez, M., Jaiswal, R. and Adams, G.P.
(2004) A simple ultrasound test to predict the
superstimulatory response in cattle. Theriogenology, 62:
227-243.
http://dx.doi.org/10.1016/j.theriogenology.2003.09.020
PMid:15159116 |
|