Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 19-06-2016)

12. Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration - Dwi Liliek Kusindarta, Hevi Wihadmadyatami, Yuda Heru Fibrianto, Widagdo Sri Nugroho, Heru Susetya, Dewi Kania Musana, Hery Wijayanto, Surya Agus Prihatna and A. E. T. H. Wahyuni

Veterinary World, 9(6): 605-610

 

 

   doi: 10.14202/vetworld.2016.605-610

 

 

Dwi Liliek Kusindarta: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; indarta@ugm.ac.id

Hevi Wihadmadyatami: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; heviwihadmadyatami@ugm.ac.id

Yuda Heru Fibrianto: Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; fibrianto1802@gmail.com

Widagdo Sri Nugroho: Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; weesnugroho@ugm.ac.id

Heru Susetya: Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; heruanggikiki@yahoo.com

Dewi Kania Musana: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; musanakd@ugm.ac.id

Hery Wijayanto: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; herykh@ugm.ac.id

Surya Agus Prihatna: Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; prihatno@ugm.ac.id

A. E. T. H. Wahyuni: Department of Microbiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; wahyuni_aeth@yahoo.com

 

Received: 13-12-2015, Accepted: 06-05-2016, Published online: 19-06-2016

 

Corresponding author: Dwi Liliek Kusindarta, e-mail: indarta@ugm.ac.id


Citation: Kusindarta DL, Wihadmadyatami H, Fibrianto YH, Nugroho WS, Susetya H, Musana DK, Wijayanto H, Prihatna SA, Wahyuni AETH (2016) Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration, Veterinary World, 9(6): 605-610.



Aim: This research was conducted to clarify the capability of human umbilical mesenchymal stem cells conditioned medium (HU-MSCM) to promote regenerations of primary wound healing on the incision skin injury.

Materials and Methods: In this study, two approaches in vitro and in vivo already done. On in vitro analysis, tube formation was performed using HU vein endothelial cells in the presence of HU-MSCM, in some experiments cells line was incubated prior the presence of lipopolysaccharide and HU-MSCM then apoptosis assay was performed. Furthermore, in vivo experiments 12 female rats (Rattus norvegicus) were used after rats anesthetized, 7 mm wound was made by incision on the left side of the body. The wound was treated with HU-MSCM containing cream, povidone iodine was run as a control. Wound healing regenerations on the skin samples were visualized by hematoxylin-eosin staining.

Results: In vitro models elucidate HU-MSCM may decreasing inflammation at the beginning of wound healing, promote cell migration and angiogenesis. In addition in vivo models show that the incision length on the skin is decreasing and more smaller, HE staining describe decreasing of inflammation phase, increasing of angiogenesis, accelerate fibroplasia, and maturation phase.

Conclusions: Taken together our observation indicates that HU-MSCM could promote the acceleration of skin tissue regenerations in primary wound healing process.

Keywords: human umbilical mesenchymal stem cells conditioned medium, regenerations, wound healing.



1. Hardy, M.A. (1989) The biology of scar formation. Phys. Ther., 69(12): 1014-1024.
PMid:2479956
 
2. Heureux, N.L. (2000) Stem cell and blood. Mol. Ther., 1, S83-S106.
http://dx.doi.org/10.1006/mthe.2000.0153
 
3. Okita, K., Nagata, N. and Yamanaka, S. (2011) Immunogenicity of induced pluripotent stem cells. Circ. Res., 109(7): 720-721.
http://dx.doi.org/10.1161/RES.0b013e318232e187
PMid:21921270
 
4. Araki, R., Uda, M., Hoki, Y., Sunayama, M., Nakamura, M., Ando, S., Sugiura, M., Ideno, H., Shimada, A., Nifuji, A. and Abe, M. (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, 494(7435): 100-104.
http://dx.doi.org/10.1038/nature11807
PMid:23302801
 
5. Tan, Y., Ooi, S. and Wang, L. (2014) Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: Genetic and epigenetic perspectives. Curr. Stem Cell Res. Ther., 9(1): 63-72.
http://dx.doi.org/10.2174/1574888X113086660068
PMid:24160683 PMCid:PMC3873036
 
6. Wei, X., Yang, X., Han, Z., Qu, F., Shao, L. and Shi, Y. (2013) Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacol. Sin., 34(6): 747-754.
http://dx.doi.org/10.1038/aps.2013.50
PMid:23736003 PMCid:PMC4002895
 
7. Christopeit, M., Schendel, M., Föll, J., Müller, L.P., Keysser, G. and Behre, G. (2008) Marked improvement of severe progressive systemic sclerosis after transplantation of mesenchymal stem cells from an allogeneic haploidentical-related donor mediated by ligation of CD137L. Leukemia, 22(5): 1062-1064.
http://dx.doi.org/10.1038/sj.leu.2404996
PMid:17972956
 
8. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R.J., Keating, A., Prockop, D.J. and Horwitz, E.M. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4): 315-317.
http://dx.doi.org/10.1080/14653240600855905
PMid:16923606
 
9. Kim, H.O., Choi, S.M. and Kim, H.S. (2013) Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. Tissue Eng. Regen. Med., 10(3): 93-101.
http://dx.doi.org/10.1007/s13770-013-0010-7
 
10. Baglio, S.R., Pegtel, D.M. and Baldini, N. (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol., 3: 1-11.
http://dx.doi.org/10.3389/fphys.2012.00359
PMid:22973239 PMCid:PMC3434369
 
11. Fukuoka, H., Suga, H., Narita, K., Watanabe, R. and Shintani, S. (2012) The latest advance in hair regeneration therapy using proteins secreted by adipose-derived stem cells. Am. J. Cosmet. Surg., 29(4): 273-282.
http://dx.doi.org/10.5992/AJCS-D-12-00015.1
 
12. Zhou, B.R., Xu, Y., Xu, Y., Guo, S.L., Wang, Y., Zhu, F., Permatasari, F., Wu, D., Yin, Z. and Luo, D. (2013) The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. Biomed. Res Int., 2013: 519126.
http://dx.doi.org/10.1155/2013/519126
PMid:24381938 PMCid:PMC3867954
 
13. Park, B.S., Kim, W.S., Choi, J.S., Kim, H.K., Won, J.H., Ohkubo, F. and Fukuoka, H. (2010) Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: Evidence of increased growth factor secretion. Biomed. Res., 31(1): 27-34.
http://dx.doi.org/10.2220/biomedres.31.27
 
14. Hwang, J. and Weiss, R.E. (2014) Steroid-induced diabetes: A clinical and molecular approach to understanding and treatment. Diabetes Metab. Res. Rev., (30): 96-102.
http://dx.doi.org/10.1002/dmrr.2486
PMid:24123849 PMCid:PMC4112077
 
15. Di Santo, S., Yang, Z., von Ballmoos, M.W., Voelzmann, J., Diehm. N., Baumgartner, I. and Kalka, C. (2009) Novel cell-free strategy for therapeutic angiogenesis: In vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One, 4(5): e5643.
http://dx.doi.org/10.1371/journal.pone.0005643
 
16. Teodelinda, M., Michele, C., Sebastiano, C., Ranieri, C. and Chiara, G. (2011) Amniotic liquid derived stem cells as reservoir of secreted angiogenic factors capable of stimulating neo-arteriogenesis in an ischemic model. Biomaterials, 32(15): 3689-3699.
http://dx.doi.org/10.1016/j.biomaterials.2011.01.071
PMid:21371750
 
17. Wihadmadyatami, H., Röder, L., Berghöfer, H., Bein, G., Heidinger, K., Sachs, U.J. And Santoso, S. (2016) Immunisation against αIIbβ3 and αvβ3 in a Type 1 variant of Glanzmann's thrombasthenia caused by a missense mutation Gly540Asp on β3. Thromb. Haemost., 116(2).
http://dx.doi.org/10.1160/TH15-12-0982
PMid:27098940
 
18. Brooks, P.C., Montgomery, A.M.P., Rosenfeld, M., Reisfeld, R.A., Hu, T.H., Klier, G. and Cheresh, D.A. (1994) Integrin avb3 antagonists promote tumor-regression by inducing apoptosis of angiogenic blood-vessels. Cell, 79(7): 1157-1164.
http://dx.doi.org/10.1016/0092-8674(94)90007-8
 
19. Pawitan, J.A. (2014) Prospect of stem cell conditioned medium in regenerative medicine. Biomed. Res. Int., 2014: 965849.
http://dx.doi.org/10.1155/2014/965849
PMid:25530971 PMCid:PMC4229962
 
20. Velnar, T., Bailey, T. and Smrkolj, V. (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res., 37(5): 1528-1542.
http://dx.doi.org/10.1177/147323000903700531
 
21. Mutsaers, S.E., Laurent, G.J., Bishop, E. and Mcgrouther, G. (1997) Mechanisms of Tissue Repair: From Wound Healing to Fibrosis. Int. J. Biochem. Cell Biol., 29(1): 5-17.
http://dx.doi.org/10.1016/S1357-2725(96)00115-X
 
22. Brooks, P.C., Clarck, R.A.F. and Cheresh, D.A. (1994) Requirement of vascular integrin avb3 for angiogenesis. Science, 264(5158):569-571.
http://dx.doi.org/10.1126/science.7512751
PMid:7512751
 
23. Horton, M A. (1997) The alpha v beta 3 integrin vitronectin receptor. Int. J. Biochem. Cell Biol., 29(5): 721-725.
http://dx.doi.org/10.1016/S1357-2725(96)00155-0
 
24. Aggarwal, S. and Pittenger, M.F. (2009) Human mesenchymal stem cells modulate allogeneic immune cell responses. Transplantation, 105(4): 1815-1822.
 
25. Singer, N.G. and Caplan, A.I. (2011) Mesenchymal stem cells: Mechanisms of inflammation. Annu. Rev. Pathol., 6: 457-478.
http://dx.doi.org/10.1146/annurev-pathol-011110-130230
PMid:21073342
 
26. Zheng, Z.H., Li, X.Y., Ding, J., Jia, J.F. and Zhu, P. (2008) Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of Type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology, 47(1): 22-30.
http://dx.doi.org/10.1093/rheumatology/kem284
PMid:18077486
 
27. Wu, Y.S. and Chen, S.N. (2014) Apoptotic cell: Linkage of inflammation and wound healing. Front Pharmacol., 5: 1-6.
http://dx.doi.org/10.3389/fphar.2014.00001
PMid:24478702 PMCid:PMC3896898
 
28. Desmoulière, A., Badid, C., Bochaton-Piallat, M.L. and Gabbiani, G. (1997) Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int. J. Biochem. Cell Biol., 29(1): 19-30.
http://dx.doi.org/10.1016/S1357-2725(96)00117-3
 
29. Branski, L.K., Gauglitz, G.G., Herndon, D.N. and Jeschke, M.G. (2009) A review of gene and stem cell therapy in cutaneous wound healing. Burns, 35(2): 171-180.
http://dx.doi.org/10.1016/j.burns.2008.03.009
PMid:18603379 PMCid:PMC3899575
 
30. Chen, L., Tredget, E.E., Wu, P.Y.G., Wu, Y. and Wu, Y. (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One, 3(4): e1886.
http://dx.doi.org/10.1371/journal.pone.0001886
 
31. Kim, W.S., Park, B.S., Sung, J.H., Yang, J.M., Park, S.B., Kwak, S.J. and Park, J.S. (2007) Wound healing effect of adipose-derived stem cells: A critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci., 48(1): 15-24.
http://dx.doi.org/10.1016/j.jdermsci.2007.05.018
PMid:17643966
 
32. Singer, J.A. and Clark, R.A.F. (1999) Cutaneus wound healing. N. Engl. J. Med., 341: 738-746.
http://dx.doi.org/10.1056/NEJM199909023411006
PMid:10471461