Open Access
Research
(Published
online: 06-06-2016)
5.
The types of endocrine cells in the pancreas of Sunda porcupine
(Hystrix
javanica)
-
Teguh Budipitojo, Yuda Heru Fibrianto and Guntari Titik Mulyani
Veterinary World, 9(6): 563-567
doi:
10.14202/vetworld.2016.563-567
Teguh Budipitojo:
Department of Anatomy, Veterinary Medicine Faculty, Gadjah Mada
University, Yogyakarta, Indonesia; budipitojo@ugm.ac.id
Yuda Heru Fibrianto:
Department of Physiology, Veterinary Medicine Faculty, Gadjah
Mada University, Yogyakarta, Indonesia; fibrianto1802@gmail.com
Guntari Titik Mulyani:
Department of Internal Medicine, Veterinary Medicine Faculty,
Gadjah Mada University, Yogyakarta, Indonesia; guntari@ugm.ac.id
Received: 29-02-2016, Accepted: 27-04-2016, Published online:
06-06-2016
Corresponding author:
Teguh Budipitojo, e-mail: budipitojo@ugm.ac.id
Citation:
Budipitojo T, Fibrianto YH, Mulyani GT (2016) The types of
endocrine cells in the pancreas of Sunda porcupine (Hystrix
javanica),
Veterinary World, 9(6):
563-567.
Abstract
Aim:
To identify the types of endocrine cells in the pancreas of the
Sunda porcupine (Hystrix
javanica)
and its immunolocalization.
Materials and Methods:
Five adult
H. javanica
were used without sexual distinction. The presences of endocrine
cells (glucagon, insulin, somatostatin, and pancreatic
polypeptide [PP]) in pancreatic tissues were detected using the
avidinbiotin-peroxidase complex method.
Results:
The fusiform, round, and oval form endocrine cells were detected
in the islets of Langerhans and exocrine parts. Most of the
insulin cells were found in the central area, glucagon cells
were identified in the central and peripheral areas, and
somatostatin and PP cells were detected in the mantle area of
the islets of Langerhans. Glucagon and somatostatin cells were
also detected in smaller numbers of peripheral parts of the
islet. In all of the islet parts, glucagon endocrine cells were
most prevalent cell type and then, somatostatin, insulin, and
PP. In the exocrine parts, PP, somatostatin, glucagon, and
insulin endocrine cells were found in the inter-acinus part with
moderate, moderate, a few and rare numbers, in that order. In
the pancreatic duct, glucagon and somatostatin cells were found
between epithelial cells in rare numbers.
Conclusion:
The pancreas of Sunda porcupine (H.
javanica)
contains four types of major pancreatic endocrine cells with
approximately similar distribution patterns to the other
rodents, except for abundant glucagon cells in the peripheral
area of the islets of Langerhans.
Keywords:
endocrine cell types,
Hystrix javanica,
immunohistochemistry, pancreas, Sunda porcupine.
References
1. Lunde, D. and Aplin, K. (2008) Hystrix javanica. The IUCN
Red List of Threatened Species. Version. 2015.2. Available
from: http://www.iucnredlist.org. Downloaded on 07-09-2015. |
|
2. Woods, C.A. and Kilpatrick, C.W. (2005) Hystricognathi.
In: Wilson, D.E. and Reeder, D.M., editors. Mammal Species
of the World: A Taxonomic and Geographic Reference. 3rd ed.
Johns Hopkins University Press, Baltimore. p1538-1600. |
|
3. Purwaningsih, E. (2013) The first report of new species:
Trichuris landak n sp. Asian Pac. J. Trop. Biomed., 3(2):
85-88.
http://dx.doi.org/10.1016/S2221-1691(13)60029-5 |
|
4. Ciciotte, S.L., Lessard, M., Akeson, E.C., Cameron, E.,
Stearns, T.M., Denegre, J.M., Ruberte, J. and Svenson, K.L.
(2014) 3-Dimensional histological reconstruction and imaging
of the murine pancreas. Mamm. Genome., 25(9-10): 539-548.
http://dx.doi.org/10.1007/s00335-014-9522-2
PMid:24838824 PMCid:PMC4164858 |
|
5. Li, R., Yu, L., Zhang, X., Zhou, X., Wang, M. and Zhao,
H. (2015) Distribution of islet hormones in human adult
pancreatic ducts. Digestion, 91(2): 174-179.
http://dx.doi.org/10.1159/000371796
PMid:25765455 |
|
6. Ku, S.K., Lee1, H.S. and Lee, J.H. (2010) An
immunohistochemical study of pancreatic endocrine cells in
SKH-1 hairless mice. Eur. J. Histochem., 46: 229-236.
http://dx.doi.org/10.4081/1684 |
|
7. Gomez, D.L., O'Driscoll, M., Sheets, T.P., Hruban, R.H.,
Oberholzer, J., McGarrigle, J.J. and Shamblott, M.J. (2015)
Neurogenin 3 expressing cells in the human exocrine pancreas
have the capacity for endocrine cell fate. PLoS One,
10(8):e0133862.
http://dx.doi.org/10.1371/journal.pone.0133862 |
|
8. Arciszewski, M.B., Mozel, S. and Sienkiewicz, W. (2015)
Pituitary adenylate cyclase-activating peptide-27 (PACAP-27)
is co-stored with galanin, substance P and corticotropin
releasing factor (CRF) in intrapancreatic ganglia of the
sheep. Pol. J. Vet. Sci., 18(2): 343-350.
http://dx.doi.org/10.1515/pjvs-2015-0044 |
|
9. Sun, L., Dai, Y., Wang, C., Chu, Y., Su, X., Yang, J.,
Zhou, J., Huang, W. and Qian, H. (2015) Novel pentapeptide
GLP-1 (32-36) amide inhibits β-Cell apoptosis in vitro and
improves glucose disposal in streptozotocin-induced diabetic
mice. Chem. Biol. Drug, 86(6): 1482-1490.
http://dx.doi.org/10.1111/cbdd.12615
PMid:26178446 |
|
10. Wieczorek, G., Pospischil, A. and Perentes, E.A. (1998)
Comparative immunohisto-chemical study of pancreatic islets
in laboratory animals (rats, dogs, minipigs, nonhuman
primates). Exp. Toxicol. Pathol., 50(3): 151-172.
http://dx.doi.org/10.1016/S0940-2993(98)80078-X |
|
11. Ozdemir, D. (2005) Pancreas morphology of the porcupine
(Hystrix cristata). Rev. Med. Vet., 156(3): 135-137. |
|
12. Timurkaan, S., Girgin, A. and Karan, M. (2006)
Immunohistochemical study of the pancreatic endocrine cells
of the Hystrix cristata (porcupine). Rev. Med. Vet., 157(7):
357-360. |
|
13. Mori, E., Lovari, S., Sforzi, A., Romeo, G., Pisani, C.,
Massolo, A. and Fattorini, L. (2014) Patterns of spatial
overlap in a monogamous large rodent, the crested porcupine.
Behav. Process, 107: 112-118.
http://dx.doi.org/10.1016/j.beproc.2014.08.012
PMid:25168817 |
|
14. Dabbs, D.J. (2014) Diagnostic Immunohistochemistry. 3rd
ed. Churchill Livingstone Elsevier, Philadelphia, PA. |
|
15. Yesildag, B., Bock, T., Herrmanns, K., Wollscheid, B.
and Stoffel, M. (2015) Kin of IRRE-like protein 2 is a
phosphorylated glycoprotein that regulates basal insulin
secretion. J. Biol. Chem., 2015. pii: jbc. M115.684704.
http://dx.doi.org/10.1074/jbc.m115.684704 |
|
16. Camihort, G., Del Zotto, H., Gomez-Dumm, C.L. and
Gagliardino, J.J. (2000) Quantitative ultrastructural
changes induced by sucrose administration in the pancreatic
B cells of normal hamsters. Biocell, 24: 31-37.
PMid:10893797 |
|
17. Tariq, S., Rashed, H., Nurulain, S.M., Emerald, B.S.,
Koturan, S., Tekes, K. and Adeghate, E. (2015) Distribution
of nociceptin in pancreatic islet cells of normal and
diabetic rats. Pancreas, 44(4): 602-607.
http://dx.doi.org/10.1097/MPA.0000000000000306
PMid:25875798 |
|
18. Gomez Dumm, C.L., Console, G.M., Lunna, G.C., Dardenne,
M. and Goya, R.G. (1995) Quantitative immunohistochemical
changes in the endocrine pancreas of nonobase diabetic (NOD)
mice. Pancreas, 11: 396-401.
http://dx.doi.org/10.1097/00006676-199511000-00012 |
|
19. Ku, S.K., Lee, H.S., Park, K.D. and Lee, J.H. (2001) An
immunohis-tochemical study on the pancreatic islets cells of
the Mongolian gerbils, Meriones unguiculatus. J. Vet. Sci.,
2: 9-14.
PMid:14614288 |
|
20. Sasaki, M., Arai, T., Usui, T. and Oki, Y. (1991)
Immunohistochemical, ultrastructural, and hormonal studies
on the endocrine pancreas of voles (Microtus arvalis) with
monosodium aspartate-induced diabetes. Vet. Pathol., 28(6):
497-505.
http://dx.doi.org/10.1177/030098589102800606 |
|
21. Lotfy, M., Singh, J., Rashed, H., Tariq, S., Zilahi, E.
and Adeghate, E. (2014) The effect od glucagon-like
peptide-1 in the management of diabetes mellitus: Cellular
and molecular mechanism. Cell Tissue Res., 358(2): 343-358.
http://dx.doi.org/10.1007/s00441-014-1959-9
PMid:25115772 |
|