Veterinary World

     Open access and peer reviewed journal  

ISSN (Online): 2231-0916

 

Home l Editorial board l Instructions for authors l Reviewer guideline l Open access policy l Archives l FAQ


Open Access


Research (Published online: 29-05-2016)

18. The structural and functional recovery of pancreatic β-cells in type 1 diabetes mellitus induced mesenchymal stem cell-conditioned medium - Widagdo Sri Nugroho, Dwi Liliek Kusindarta, Heru Susetya, Ida Fitriana, Guntari Titik Mulyani, Yuda Heru Fibrianto, Aris Haryanto and Teguh Budipitojo

Veterinary World, 9(5): 535-539

 

 

   doi: 10.14202/vetworld.2016.535-539

 

 

Widagdo Sri Nugroho: Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; weesnugroho@ugm.ac.id

Dwi Liliek Kusindarta: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; indarta@ugm.ac.id

Heru Susetya: Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; heruanggikiki@yahoo.com

Ida Fitriana: Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; idafitriana.apt@gmail.com

Guntari Titik Mulyani: Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; guntari@ugm.ac.id

Yuda Heru Fibrianto: Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; fibrianto1802@gmail.com

Aris Haryanto: Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; arisharyanto@yahoo.com

Teguh Budipitojo: Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia; budipitojo@ugm.ac.id

 

Received: 02-11-2015, Accepted: 22-04-2016, Published online: 29-05-2016

 

Corresponding author: Teguh Budipitojo, e-mail: budipitojo@ugm.ac.id


Citation: Nugroho WS, Kusindarta DL, Susetya H, Fitriana I, Mulyani GT, Fibrianto YH, Haryanto A, Budipitojo T (2016) The structural and functional recovery of pancreatic β-cells in type 1 diabetes mellitus induced mesenchymal stem cell-conditioned medium, Veterinary World, 9(5): 535-539.



Aim: Various studies have shown that secreted factors alone in culture medium without stem cell are capable of repairing tissues by itself in various conditions involving damaged tissue/organ. Therefore, this study was aimed to investigate the role of human umbilical cord mesenchymal stem cell-derived conditioned medium (CM) on the recovery of pancreatic β-cells in Wistar rats (Rattus norvegicus) with type 1 diabetes mellitus.

Materials and Methods: The 0.05 ml CM induction was applied to the diabetic group of rats in weeks 1, 2, 3, and 4. 1 week after each CM induction, insulin concentration was analyzed using ELISA. The pancreas was divided into 3 regions, processed by paraffin method, stained with hematoxylin-eosin, and immunohistochemical method for insulin.

Results: This study indicated the decrease in the total number of islets and insulin concentration after the injection of single dose of alloxan. The exocrine acini were also damaged. Microscopic observation detected the presence of small islets in the diabetic group 1 week after the first 0.05 ml CM induction. The number and size of the islets increased in line with the CM doses and time of inductions. Immunohistochemically, the presence of low intensity of insulin-positive cells could be recognized at the splenic and duodenal regions of the pancreas, but not gastric region, 1 week after the first and second 0.05 ml CM induction. The intensity of staining and the number of insulin-positive cells increased dramatically in 1 week after the third and fourth 0.05 ml of CM induction in all regions of the pancreas. The data of insulin blood concentration showed clear differences between the second and the fourth induction of 0.05 ml CM induction.

Conclusions: This study showed very strong evidence on the role of human umbilical cord mesenchymal stem cell-derived CM in recovering the pancreatic β-cells damage in Wistar rats (R. norvegicus) with type 1 diabetes mellitus, structurally and functionally.

Keywords: conditioned-medium, pancreatic β-cells, structural and functional recovery, type 1 diabetes mellitus.



1. Yang, D., Wang, W. and Li, L. (2013) The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair. PLoS One, 8(3): Article ID:e59020.
http://dx.doi.org/10.1371/journal.pone.0059020
 
2. Timmers, L., Lim, S.K., Hoefer, I.E., Arslan, F., Lai, R.C., van Oorschot, A.A., Goumans, M.J., Strijder, C., Sze, S.K., Choo, A., Piek, J.J., Doevendans, P.A., Pasterkamp, G. and de Kleijn, D.P. (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem. Cell Res., 6(3): 206-214.
http://dx.doi.org/10.1016/j.scr.2011.01.001
PMid:21419744
 
3. Mishra, P.J. and Banerjee, D. (2012) Cell-free derivatives from mesenchymal stem cells are effective in wound therapy. World J. Stem. Cells, 4(5): 35-43.
http://dx.doi.org/10.4252/wjsc.v4.i5.35
PMid:22993660 PMCid:PMC3443710
 
4. Hynes, B., Kumar, A.H.S., O'Sullivan, J., Buneker, C.K., Leblond, A.L., Weiss, S., Schmeckpeper, J., Martin, K. and Caplice, N.M. (2013) Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. Eur. Heart J., 34(10): 782-789.
http://dx.doi.org/10.1093/eurheartj/ehr435
PMid:22173909
 
5. Kim, H.O. and Choi, S. (2013) Mesenchymal stem cell-derived secretome and microvesicles as a cell-free therapeutics for neurodegenerative disorders. J. Tissue Eng. Reg. Med., 10(3): 93-101.
http://dx.doi.org/10.1007/s13770-013-0010-7
 
6. Pawitan, J.A. (2014) Prospect of stem cell conditioned medium in regenerative medicine - A review. BioMed. Res. Int., 2014: Article ID:965849, 14.
 
7. White, N.H., Sun, W., Cleary, P.A., Danis, R.P., Davis, M.D., Hainsworth, D.P., Hubbard, L.D., Lachin, J.M. and Nathan, D.M. (2008) Prolonged effect of intensive therapy onthe risk of retinopathy complications in patients with Type 1 diabetes mellitus: 10 years after the diabetes control and complications trial. Arch. Ophthalmol., 126(12): 1707-1715.
http://dx.doi.org/10.1001/archopht.126.12.1707
PMid:19064853 PMCid:PMC2663518
 
8. Ho, J.C.Y., Lai, W. and Li, M. (2012) Reversal of endothelial progenitor cell dysfunction in patients with type 2 diabetes using a conditioned medium of human embryonic stem cell derived endothelial cells. Diabetes Metab. Res., 28(5): 462-473.
http://dx.doi.org/10.1002/dmrr.2304
PMid:22492468
 
9. Zagoura, D.S., Roubelakis, M.G. and Bitsika, V. (2012) Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut, 61(6): 894-906.
http://dx.doi.org/10.1136/gutjnl-2011-300908
PMid:21997562
 
10. Bhang, S.H., Lee, S., Shin, J.Y., Lee, T.J., Jang, H.K. and Kim, B.S. (2014) Efficacious and clinically relevant conditioned medium of human adipose-derived stem cells for therapeutic angiogenesis, Mol. Ther. Oncol., 22(4): 862.
http://dx.doi.org/10.1038/mt.2013.301
 
11. Sze, S.K., de Kleijn, D.P.V. and Lai, R.C. (2007) Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol. Cell Proteomics, 6(10): 1680-1689.
http://dx.doi.org/10.1074/mcp.M600393-MCP200
PMid:17565974
 
12. Shen, C., Lie, P., Miao, T., Yu, M., Lu, Q., Feng, T., Li, J., Zu, T., Liu, X. and Li, H. (2015) Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol. Med. Rep., 12(1): 20-30.
http://dx.doi.org/10.3892/mmr.2015.3409
 
13. Kumar, P., Taha, A., Kumar, N., Kumar, V. and Baquer, N.Z. (2015) Sodium orthovanadate and Trigonella foenum graecum prevents neuronal parameters decline and impaired glucose homeostasis in alloxan diabetic rats. Prague. Med. Rep., 116(2): 122-38.
http://dx.doi.org/10.14712/23362936.2015.51
PMid:26093667
 
14. Kimura, N., Shiraishi, S., Mizunashi, K., Ohtsu, H. and Kimura, I. (2001) synaptotagmin I expression in mast cells of normal human tissues, syste mic mast cell disease, and a human mast cell leukemia cell line. J. Histochem. Cytochem., 49(3): 341-346.
http://dx.doi.org/10.1177/002215540104900308
 
15. Chabot, J.M. (2002) A Report from the World Health Organization. Rev. Pract., 52(19): 2155-2156.
 
16. Kort, H.D., Koning, E.J.D., Rabelink, T.J., Bruijn, J.A. and Bajema, I.M. (2011) Islet transplantation in Type 1 diabetes. Br. Med. J., 342: d217.
http://dx.doi.org/10.1136/bmj.d217
 
17. Goldner, M.G. and Gomori, G. (1944) Studies on the mechanism of alloxan diabetes. ISRN Endocrinol., 35(4): 241.
http://dx.doi.org/10.1210/endo-35-4-241
 
18. Lenzen, S. (2008) The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia, 51(2): 216-226.
http://dx.doi.org/10.1007/s00125-007-0886-7
PMid:18087688
 
19. Szkudelski, T., Kandulska, K. and Okulicz, M. (1998) Alloxan in vivo does not only exert deleterious effects on pancreatic B cells. Physiol. Res., 47: 343-346.
PMid:10052602
 
20. Kliber, A., Szkudelski, T. and Chichlowska, J. (1996) Alloxan stimulation and subsequent inhibition of insulin release from in situ perfused rat pancreas. J. Physiol. Pharmacol., 47: 321-328.
PMid:8807559
 
21. Ooi, Y.Y., Dheen, S.T. and Tay, S.S. (2015) Paracrine effects of mesenchymal stem cells-conditioned medium on microglial cytokines expression and nitric oxide production. Neuroimmunomodulation, 22(4): 233-242.
http://dx.doi.org/10.1159/000365483
 
22. Mansouri, A. (2012) Development and regeneration in the endocrine pancreas – Review article. ISRN Endocrinol., 2012: Article ID:640956, 12.
 
23. Chen, Y., Xiang, L.X., Shao, J.Z., Pan, R.L., Wang, Y.X., Dong, X.J. and Zhang, G.R. (2010) Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J. Cell Mol. Med., 14(6B): 1494-1508.
http://dx.doi.org/10.1111/j.1582-4934.2009.00912.x
 
24. Tasso, R., Augello, A., Boccardo, S., Salvi, S., Caridà, M., Postiglione, F., Fais, F., Truini, Cancedda, R. and Pennesi, G. (2009) Recruitment of host's osteoprogenitor cells using exogenous mesenchymal stem cells seeded on porousceramic. Tissue Eng. Pt. A., 15(8): 2203-2212.
http://dx.doi.org/10.1089/ten.tea.2008.0269
PMid:19265473
 
25. Shyu, W.C., Lee, Y.J., Liu, D.D., Lin, S.Z. and Li, H. (2006) Homing genes, cell therapy and stroke. Front. Biosci., 11: 899-907.
http://dx.doi.org/10.2741/1846
PMid:16146779
 
26. Borowiak, M. and Melton, D.A. (2009) How to make beta cells? Curr. Opin. Cell Biol., 21(6): 727-732.
http://dx.doi.org/10.1016/j.ceb.2009.08.006
PMid:19781928 PMCid:PMC4617625
 
27. Bonner-Weir, S. and Weir, G.C. (2005) New sources of pancreatic beta-cells. Nat. Biotechnol., 23(7): 857-861.
http://dx.doi.org/10.1038/nbt1115
PMid:16003374
 
28. Porat, S. and Dor, Y. (2007) New sources of pancreatic beta cells. Curr. Diabetes Rep., 7(4): 304-308.
http://dx.doi.org/10.1007/s11892-007-0049-8
 
29. Alismail, H. and Jin, S. (2014) Microenvironmental stimuli for proliferation of functional islet β-cells. Cell. Biosci., 4(1): 4-12.
http://dx.doi.org/10.1186/2045-3701-4-12