Open Access
Research
(Published
online: 29-05-2016)
18.
The structural and functional recovery of
pancreatic β-cells in type 1 diabetes mellitus induced
mesenchymal stem cell-conditioned medium -
Widagdo Sri Nugroho, Dwi Liliek Kusindarta, Heru Susetya, Ida
Fitriana, Guntari Titik Mulyani, Yuda Heru Fibrianto, Aris
Haryanto and Teguh Budipitojo
Veterinary World, 9(5): 535-539
doi:
10.14202/vetworld.2016.535-539
Widagdo Sri Nugroho:
Department of Veterinary Public Health, Faculty of Veterinary
Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia;
weesnugroho@ugm.ac.id
Dwi Liliek Kusindarta:
Department of Anatomy, Faculty of Veterinary Medicine,
Universitas Gadjah Mada, Yogyakarta, Indonesia; indarta@ugm.ac.id
Heru Susetya:
Department of Veterinary Public Health, Faculty of Veterinary
Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia;
heruanggikiki@yahoo.com
Ida Fitriana:
Department of Pharmacology, Faculty of Veterinary Medicine,
Universitas Gadjah Mada, Yogyakarta, Indonesia; idafitriana.apt@gmail.com
Guntari Titik Mulyani:
Department of Internal Medicine, Faculty of Veterinary Medicine,
Universitas Gadjah Mada, Yogyakarta, Indonesia; guntari@ugm.ac.id
Yuda Heru Fibrianto:
Department of Physiology, Faculty of Veterinary Medicine,
Universitas Gadjah Mada, Yogyakarta, Indonesia; fibrianto1802@gmail.com
Aris Haryanto:
Department of Biochemistry, Faculty of Veterinary Medicine,
Universitas Gadjah Mada, Yogyakarta, Indonesia; arisharyanto@yahoo.com
Teguh Budipitojo:
Department of Anatomy, Faculty of Veterinary Medicine,
Universitas Gadjah Mada, Yogyakarta, Indonesia; budipitojo@ugm.ac.id
Received: 02-11-2015, Accepted: 22-04-2016, Published online:
29-05-2016
Corresponding author:
Teguh Budipitojo, e-mail: budipitojo@ugm.ac.id
Citation:
Nugroho WS, Kusindarta DL, Susetya H, Fitriana I, Mulyani GT,
Fibrianto YH, Haryanto A, Budipitojo T (2016) The structural and
functional recovery of pancreatic β-cells in type 1 diabetes
mellitus induced mesenchymal stem cell-conditioned medium,
Veterinary World, 9(5):
535-539.
Abstract
Aim:
Various studies have shown that secreted factors alone in
culture medium without stem cell are capable of repairing
tissues by itself in various conditions involving damaged
tissue/organ. Therefore, this study was aimed to investigate the
role of human umbilical cord mesenchymal stem cell-derived
conditioned medium (CM) on the recovery of pancreatic β-cells in
Wistar rats (Rattus
norvegicus)
with type 1 diabetes mellitus.
Materials and Methods:
The 0.05 ml CM induction was applied to the diabetic group of
rats in weeks 1, 2, 3, and 4. 1 week after each CM induction,
insulin concentration was analyzed using ELISA. The pancreas was
divided into 3 regions, processed by paraffin method, stained
with hematoxylin-eosin, and immunohistochemical method for
insulin.
Results:
This study indicated the decrease in the total number of islets
and insulin concentration after the injection of single dose of
alloxan. The exocrine acini were also damaged. Microscopic
observation detected the presence of small islets in the
diabetic group 1 week after the first 0.05 ml CM induction. The
number and size of the islets increased in line with the CM
doses and time of inductions. Immunohistochemically, the
presence of low intensity of insulin-positive cells could be
recognized at the splenic and duodenal regions of the pancreas,
but not gastric region, 1 week after the first and second 0.05
ml CM induction. The intensity of staining and the number of
insulin-positive cells increased dramatically in 1 week after
the third and fourth 0.05 ml of CM induction in all regions of
the pancreas. The data of insulin blood concentration showed
clear differences between the second and the fourth induction of
0.05 ml CM induction.
Conclusions:
This study showed very strong evidence on the role of human
umbilical cord mesenchymal stem cell-derived CM in recovering
the pancreatic β-cells damage in Wistar rats (R.
norvegicus)
with type 1 diabetes mellitus, structurally and functionally.
Keywords:
conditioned-medium, pancreatic β-cells, structural and
functional recovery, type 1 diabetes mellitus.
References
1. Yang, D., Wang, W. and Li, L. (2013) The relative
contribution of paracine effect versus direct
differentiation on adipose-derived stem cell transplantation
mediated cardiac repair. PLoS One, 8(3): Article ID:e59020.
http://dx.doi.org/10.1371/journal.pone.0059020 |
|
2. Timmers, L., Lim, S.K., Hoefer, I.E., Arslan, F., Lai,
R.C., van Oorschot, A.A., Goumans, M.J., Strijder, C., Sze,
S.K., Choo, A., Piek, J.J., Doevendans, P.A., Pasterkamp, G.
and de Kleijn, D.P. (2011) Human mesenchymal stem
cell-conditioned medium improves cardiac function following
myocardial infarction. Stem. Cell Res., 6(3): 206-214.
http://dx.doi.org/10.1016/j.scr.2011.01.001
PMid:21419744 |
|
3. Mishra, P.J. and Banerjee, D. (2012) Cell-free
derivatives from mesenchymal stem cells are effective in
wound therapy. World J. Stem. Cells, 4(5): 35-43.
http://dx.doi.org/10.4252/wjsc.v4.i5.35
PMid:22993660 PMCid:PMC3443710 |
|
4. Hynes, B., Kumar, A.H.S., O'Sullivan, J., Buneker, C.K.,
Leblond, A.L., Weiss, S., Schmeckpeper, J., Martin, K. and
Caplice, N.M. (2013) Potent endothelial progenitor
cell-conditioned media-related anti-apoptotic, cardiotrophic,
and pro-angiogenic effects post-myocardial infarction are
mediated by insulin-like growth factor-1. Eur. Heart J.,
34(10): 782-789.
http://dx.doi.org/10.1093/eurheartj/ehr435
PMid:22173909 |
|
5. Kim, H.O. and Choi, S. (2013) Mesenchymal stem
cell-derived secretome and microvesicles as a cell-free
therapeutics for neurodegenerative disorders. J. Tissue Eng.
Reg. Med., 10(3): 93-101.
http://dx.doi.org/10.1007/s13770-013-0010-7 |
|
6. Pawitan, J.A. (2014) Prospect of stem cell conditioned
medium in regenerative medicine - A review. BioMed. Res.
Int., 2014: Article ID:965849, 14. |
|
7. White, N.H., Sun, W., Cleary, P.A., Danis, R.P., Davis,
M.D., Hainsworth, D.P., Hubbard, L.D., Lachin, J.M. and
Nathan, D.M. (2008) Prolonged effect of intensive therapy
onthe risk of retinopathy complications in patients with
Type 1 diabetes mellitus: 10 years after the diabetes
control and complications trial. Arch. Ophthalmol., 126(12):
1707-1715.
http://dx.doi.org/10.1001/archopht.126.12.1707
PMid:19064853 PMCid:PMC2663518 |
|
8. Ho, J.C.Y., Lai, W. and Li, M. (2012) Reversal of
endothelial progenitor cell dysfunction in patients with
type 2 diabetes using a conditioned medium of human
embryonic stem cell derived endothelial cells. Diabetes
Metab. Res., 28(5): 462-473.
http://dx.doi.org/10.1002/dmrr.2304
PMid:22492468 |
|
9. Zagoura, D.S., Roubelakis, M.G. and Bitsika, V. (2012)
Therapeutic potential of a distinct population of human
amniotic fluid mesenchymal stem cells and their secreted
molecules in mice with acute hepatic failure. Gut, 61(6):
894-906.
http://dx.doi.org/10.1136/gutjnl-2011-300908
PMid:21997562 |
|
10. Bhang, S.H., Lee, S., Shin, J.Y., Lee, T.J., Jang, H.K.
and Kim, B.S. (2014) Efficacious and clinically relevant
conditioned medium of human adipose-derived stem cells for
therapeutic angiogenesis, Mol. Ther. Oncol., 22(4): 862.
http://dx.doi.org/10.1038/mt.2013.301 |
|
11. Sze, S.K., de Kleijn, D.P.V. and Lai, R.C. (2007)
Elucidating the secretion proteome of human embryonic stem
cell-derived mesenchymal stem cells. Mol. Cell Proteomics,
6(10): 1680-1689.
http://dx.doi.org/10.1074/mcp.M600393-MCP200
PMid:17565974 |
|
12. Shen, C., Lie, P., Miao, T., Yu, M., Lu, Q., Feng, T.,
Li, J., Zu, T., Liu, X. and Li, H. (2015) Conditioned medium
from umbilical cord mesenchymal stem cells induces migration
and angiogenesis. Mol. Med. Rep., 12(1): 20-30.
http://dx.doi.org/10.3892/mmr.2015.3409 |
|
13. Kumar, P., Taha, A., Kumar, N., Kumar, V. and Baquer,
N.Z. (2015) Sodium orthovanadate and Trigonella foenum
graecum prevents neuronal parameters decline and impaired
glucose homeostasis in alloxan diabetic rats. Prague. Med.
Rep., 116(2): 122-38.
http://dx.doi.org/10.14712/23362936.2015.51
PMid:26093667 |
|
14. Kimura, N., Shiraishi, S., Mizunashi, K., Ohtsu, H. and
Kimura, I. (2001) synaptotagmin I expression in mast cells
of normal human tissues, syste mic mast cell disease, and a
human mast cell leukemia cell line. J. Histochem. Cytochem.,
49(3): 341-346.
http://dx.doi.org/10.1177/002215540104900308 |
|
15. Chabot, J.M. (2002) A Report from the World Health
Organization. Rev. Pract., 52(19): 2155-2156. |
|
16. Kort, H.D., Koning, E.J.D., Rabelink, T.J., Bruijn, J.A.
and Bajema, I.M. (2011) Islet transplantation in Type 1
diabetes. Br. Med. J., 342: d217.
http://dx.doi.org/10.1136/bmj.d217 |
|
17. Goldner, M.G. and Gomori, G. (1944) Studies on the
mechanism of alloxan diabetes. ISRN Endocrinol., 35(4): 241.
http://dx.doi.org/10.1210/endo-35-4-241 |
|
18. Lenzen, S. (2008) The mechanisms of alloxan-and
streptozotocin-induced diabetes. Diabetologia, 51(2):
216-226.
http://dx.doi.org/10.1007/s00125-007-0886-7
PMid:18087688 |
|
19. Szkudelski, T., Kandulska, K. and Okulicz, M. (1998)
Alloxan in vivo does not only exert deleterious effects on
pancreatic B cells. Physiol. Res., 47: 343-346.
PMid:10052602 |
|
20. Kliber, A., Szkudelski, T. and Chichlowska, J. (1996)
Alloxan stimulation and subsequent inhibition of insulin
release from in situ perfused rat pancreas. J. Physiol.
Pharmacol., 47: 321-328.
PMid:8807559 |
|
21. Ooi, Y.Y., Dheen, S.T. and Tay, S.S. (2015) Paracrine
effects of mesenchymal stem cells-conditioned medium on
microglial cytokines expression and nitric oxide production.
Neuroimmunomodulation, 22(4): 233-242.
http://dx.doi.org/10.1159/000365483 |
|
22. Mansouri, A. (2012) Development and regeneration in the
endocrine pancreas – Review article. ISRN Endocrinol., 2012:
Article ID:640956, 12. |
|
23. Chen, Y., Xiang, L.X., Shao, J.Z., Pan, R.L., Wang, Y.X.,
Dong, X.J. and Zhang, G.R. (2010) Recruitment of endogenous
bone marrow mesenchymal stem cells towards injured liver. J.
Cell Mol. Med., 14(6B): 1494-1508.
http://dx.doi.org/10.1111/j.1582-4934.2009.00912.x |
|
24. Tasso, R., Augello, A., Boccardo, S., Salvi, S., Caridà,
M., Postiglione, F., Fais, F., Truini, Cancedda, R. and
Pennesi, G. (2009) Recruitment of host's osteoprogenitor
cells using exogenous mesenchymal stem cells seeded on
porousceramic. Tissue Eng. Pt. A., 15(8): 2203-2212.
http://dx.doi.org/10.1089/ten.tea.2008.0269
PMid:19265473 |
|
25. Shyu, W.C., Lee, Y.J., Liu, D.D., Lin, S.Z. and Li, H.
(2006) Homing genes, cell therapy and stroke. Front. Biosci.,
11: 899-907.
http://dx.doi.org/10.2741/1846
PMid:16146779 |
|
26. Borowiak, M. and Melton, D.A. (2009) How to make beta
cells? Curr. Opin. Cell Biol., 21(6): 727-732.
http://dx.doi.org/10.1016/j.ceb.2009.08.006
PMid:19781928 PMCid:PMC4617625 |
|
27. Bonner-Weir, S. and Weir, G.C. (2005) New sources of
pancreatic beta-cells. Nat. Biotechnol., 23(7): 857-861.
http://dx.doi.org/10.1038/nbt1115
PMid:16003374 |
|
28. Porat, S. and Dor, Y. (2007) New sources of pancreatic
beta cells. Curr. Diabetes Rep., 7(4): 304-308.
http://dx.doi.org/10.1007/s11892-007-0049-8 |
|
29. Alismail, H. and Jin, S. (2014) Microenvironmental
stimuli for proliferation of functional islet β-cells. Cell.
Biosci., 4(1): 4-12.
http://dx.doi.org/10.1186/2045-3701-4-12 |
|