Open Access
Research
(Published
online: 09-05-2016)
4.
The efficacy of Na-butyrate encapsulated
in palm fat on performance of broilers infected with necrotic
enteritis with gene expression analysis -
M. G. Eshak, M. A. Elmenawey, A. Atta, H. B. Gharib, B. Shalaby
and M. H. H. Awaad
Veterinary World, 9(5): 450-457
doi:
10.14202/vetworld.2016.450-457
M. G. Eshak:
Department of Cell Biology, National Research Centre, Dokki,
Cairo, Egypt; mgergis@yahoo.com
M. A. Elmenawey:
Department of Animal Production, Faculty of Agriculture, Cairo
University, Cairo, Egypt; elmenawey7@yahoo.com
A. Atta:
Department of Animal Production, Faculty of Agriculture, Cairo
University, Cairo, Egypt; abdomatta@hotmail.com
H. B. Gharib:
Department of Animal Production, Faculty of Agriculture, Cairo
University, Cairo, Egypt; hassangharib2001@gmail.com
B. Shalaby:
Department of Bacteriology, Animal Health Research Institute,
Dokki, Cairo, Egypt; basmashalaby300@hotmail.com
M. H. H. Awaad:
Department of Poultry Diseases, Faculty of Veterinary Medicine,
Cairo University, Cairo, Egypt; awaad3@gmail.com
Received: 31-10-2015, Accepted: 31-03-2016, Published online:
09-05-2016
Corresponding author:
M. H. H. Awaad, e-mail: awaad3@gmail.com
Citation:
Eshak MG, Elmenawey MA, Atta A, Gharib HB, Shalaby B, Awaad MHH
(2016) The efficacy of Na-butyrate encapsulated in palm fat on
performance of broilers infected with necrotic enteritis with
gene expression analysis,
Veterinary World, 9(5):
450-457.
Abstract
Aim:
To study the efficacy of Na-butyrate encapsulated in palm fat on
performance of broiler chickens experimentally infected with
necrotic enteritis (NE) with the determination of its protective
effect against the changes in the gene expression profiles and
deoxyribonucleic acid (DNA) fragmentation.
Materials and Methods:
A total of 800 one-day-old male Arbor Acres Plus broiler
chickens were randomly allocated into four groups for 5 weeks.
Na-butyrate was supplemented at dosages of 1 kg/ton for starter
diet, 0.5 kg/ton for grower diet, and 0.25 kg/ton for finisher
diet (presence or absence). Birds of groups 1 and 2 were
inoculated by crop gavages with 4×108 CFU/ml/bird of
Clostridium perfringens
in phosphate buffered saline for 4 successive days, from 14 to
17 days of age to produce NE.
Results:
Addition of Na-butyrate, encapsulated in palm fat, to ration of
experimentally infected broilers with NE resulted in increased
final body weight, at 35 days of age, reduced total feed
consumption, improved feed conversion ratio, reduced cumulative
mortality, and increased production number. There were increased
intestinal diameter, intestinal length, and significantly
increased the weight of bursa of Fabricius(BF) with higher
hemagglutination inhibition titers against Newcastle disease
(ND) vaccination versus untreated infected and untreated
negative control birds. The results showed increased expression
levels of alpha-toxin and glyceraldehyde-3-phosphate
dehydrogenase in the bursa tissues of broilers infected with
C. perfringens.
However, the expression levels of these genes in broilers
treated with Na-butyrate were similar to the non-infected
control group. Supplementation of broilers with Na-butyrate
increased the expression level of insulin-like growth factor-1
(IGF-1) and decreased the DNA fragmentation induced by
C. perfringens.
Conclusion:
Na-butyrate significantly improved chicken broiler body weights,
increased relative weights of BF, increased antibody titers
against ND vaccination, numerically lowered mortality due to
C. perfringens
infection, increased the expression level of IGF-1, and
decreased the DNA fragmentation induced by
C. perfringens.
Obtained results point out the effectiveness of Na-butyrate
encapsulated in palm fat in improving the production performance
variables, immune response, and intestinal morphology in
experimentally induced NE as well as in non-infected chicken
broilers.
Keywords:
chickens, deoxyribonucleic acid fragmentation, gene expression
analysis, Na-butyrate, necrotic enteritis.
References
1. Aarestrup, F.M. (1999) Association between the
consumption of antimicrobial agents in animal husbandry and
the occurrence of resistant bacteria among food animals.
Int. J. Antimicrob. Agends., 12: 279-285.
http://dx.doi.org/10.1016/S0924-8579(99)90059-6 |
|
2. Sengupta, N., Alam, S., Kumar, R. and Singh, L. (2011)
Diversity and antibiotic susceptibility pattern of
cultivable anaerobic bacteria from soil and sewage samples
of India. Infect. Genet. Evol., 11: 64-77.
http://dx.doi.org/10.1016/j.meegid.2010.10.009
PMid:20965279 |
|
3. Llanco, L.A., Nakano, V., Ferreiranda, A. and
Avila-Campos, M. (2012) Toxinotyping and antimicrobial
susceptibility of Clostridium perfringens isolated from
broiler chickens with necrotic enteritis. Int. J. Microbiol.
Res., 4: 290-294.
http://dx.doi.org/10.9735/0975-5276.4.7.290-294 |
|
4. Shojadoost, B., Andrew, R. and John, F. (2012) The
successful experimental induction of necrotic enteritis in
chickens by Clostridium perfringens a critical review. Vet.
Res., 43: 74-86.
http://dx.doi.org/10.1186/1297-9716-43-74
PMid:23101966 PMCid:PMC3546943 |
|
5. Roediger, W.E. (1982) Utilization of nutrients by
isolated epithelial cells of the rat colon.
Gastroenterology, 83: 424-429.
PMid:7084619 |
|
6. Gálfi, P. and Neogrády, S. (2002) The pH-dependent
inhibitory action of n-butyrate on gastrointestinal
epithelial cell division. Food Res. Int., 34: 581-586.
http://dx.doi.org/10.1016/S0963-9969(01)00075-8 |
|
7. Leu, R., Hu, Y., Brown, I. and Young, G. (2009) Effect of
high amylase maize starches on colonic fermentation and
apoptotic response to DNA-damage in the colon of rats. Nutr.
Metab.,6: 11.
http://dx.doi.org/10.1186/1743-7075-6-11
PMid:19267935 PMCid:PMC2656505 |
|
8. Young, G.P. and Gibson, P.R. (1995) Butyrate and the
human cancer cell. Cambridge University Press, Cambridge. |
|
9. LeLeu, R., Brown, I., Hu, Y., Morita, T., Esterman, A.
and Young, G. (2007) Effect of dietary resistant starch and
protein on colonic fermentation and intestinal
tumourigenesis in rats. Carcinogenesis, 28: 240-245.
http://dx.doi.org/10.1093/carcin/bgl245
PMid:17166881 |
|
10. Fernández-Rubio, C., Ordónez, C., Abad-González, J.,
Garcia-Gallego, A., Pilar Honrubia, M., Jose Mallo, J. and
Balana-Fouce, R. (2008) Butyric acid based feed additives
help protect broiler chickens from Salmonella enteritidis
infection. Poult. Sci., 88: 943-948.
http://dx.doi.org/10.3382/ps.2008-00484
PMid:19359681 |
|
11. Candela, M., Maccaferri, S., Turroni, S., Carnevali, P.
and Brigidi, P. (2010) Functional intestinal microbiome, new
frontiers in prebiotic design. Int. J. Food Microbiol.,140:
93-101.
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.04.017
PMid:20471127 |
|
12. Elmenawey, M.A. and Gharib, H.B. (2013) Effects of
monospecies and multispecies probiotics on productive
performance, intestinal histomorphological parameters and
immune response in broilers. Egypt. J. Anim. Prod., 50:
93-102. |
|
13. NRC. (1994) Nutrient Requirements of Poultry. 9th ed.
National Academy Press, Washington, DC. |
|
14. Timbermont, L., Lanckriet, A., Gholamiandehkordi, A.,
Pasmans, F., Martel, A., Haesebrouck, F., Ducatelle, R. and
Van Immerseel, F. (2009) Origin of Clostridium perfringens
isolates determines the ability to induce necrotic enteritis
in broilers. Comp. Immunol. Microbiol. Infect. Dis., 32:
503-512.
http://dx.doi.org/10.1016/j.cimid.2008.07.001
PMid:18783830 |
|
15. North, M.O. (1984) Broiler, roaster, and capon
management. In: Commercial Chicken Production Manual. 3rd
ed. Ch. 20. The AVI Publishing Company Inc., Westport
Connecticut. p387. |
|
16. Timmerman, H., Veldman, A., van den Elsen, E., Rombouts,
F. and Beynen, A. (2006) Mortality and growth performance of
broilers given drinking water supplemented with
chicken-specific probiotics. Poult. Sci., 85: 1383-1388.
http://dx.doi.org/10.1093/ps/85.8.1383
PMid:16903468 |
|
17. Swayne, D.E., Glisson, J.R., Jackwood, M.W., Pearson,
J.E. and Reed, W.M. (1998) A Laboratory Manual for the
Isolation and Identification of Avian Pathogens. 4th ed.
American Association of Avian Pathologists. Inc., Kennett
Square, Pennsylvania, USA.
PMCid:PMC109865 |
|
18. Gibb, R.K., Taylor, D., Wan, T., Oconnor, D., Doering,
D. and Gercel-Taylor, C. (1997) Apoptosis as a measure of
chemosensitivity to cisplatin and taxol therapy in ovarian
cancer cell lines. Gynecol. Oncol., 65: 13-22.
http://dx.doi.org/10.1006/gyno.1997.4637
PMid:9103385 |
|
19. Ali, F.K., El-Shafai, S.A., Samhan, F.A. and Khalil,
W.K.B. (2008) Effect of water pollution on expression of
immune response genes of Solea aegyptiaca in Lake Qarun.
Afr. J. Biotechnol., 7: 1418-1425. |
|
20. Elmegeed, G., Khalil, W., Mohareb, R., Ahmed, H.,
Abd-Elhalim, M. and Elsayed, G. (2011) Cytotoxicity and gene
expression profiles of novel synthesized steroid derivatives
as chemotherapeutic anti-breast cancer agents. Bioorgan.
Med. Chem., 19: 6860-6872.
http://dx.doi.org/10.1016/j.bmc.2011.09.033
PMid:22000946 |
|
21. Kulkarni, R., Parreira, V., Sharif, S. and Prescott, J.
(2007) Immunization of Broiler chickens against Clostridium
perfringens - Induced necrotic enteritis. Clin. Vac.
Immunol., 14: 1070-1077.
http://dx.doi.org/10.1128/CVI.00162-07
PMid:17634510 PMCid:PMC2043299 |
|
22. Hwang, H.S., Han, K.J., Ryu, Y.H., Yang, E.J., Kim,
Y.S., Jeong, S.Y., Lee, Y.S.,Lee, M.S., Koo, S.T. and Choi,
S.M. (2009) Protective effects of electroacupuncture on
acetylsalicylic acid-induced acute gastritis in chicken.
World J. Gastroenterol., 15: 973-977.
http://dx.doi.org/10.3748/wjg.15.973
PMid:19248197 PMCid:PMC2653412 |
|
23. Houshmand, M., Azhar, K., Zulkifli, I., Bejo, M. and
Kamyab, A. (2011) Effects of nonantibiotic feed additives on
performance, nutrient retention, gut pH, and intestinal
morphology of broilers fed different levels of energy. J.
Appl. Poult. Res., 20: 121-128.
http://dx.doi.org/10.3382/japr.2010-00171 |
|
24. Bio-Rad Laboratories, Inc. (2006) Real-Time PCR
Applications Guide. Bulletin 5279. Bio-Rad Laboratories,
Inc., Hercules, CA.p101. |
|
25. SAS Institute Inc. (2004) SAS/STAT® 9.1 User's Guide.
SAS Institute Inc., Cary, NC. |
|
26. Duncan, D.B. (1955) Multiple range and multiple F
testes. Biometrics, 11: 7-42.
http://dx.doi.org/10.2307/3001478 |
|
27. Vanhoutvin, S.A., Troost, F.J., Hamer, H.M., Lindsey,
P.J., Koek, G.H., Jonkers, D.M., Kodde, A., Venema, K. and
Brummer, R.J. (2009) Butyrate-induced transcriptional
changes in human colonic mucosa. PLoS One, 4: e6759.
http://dx.doi.org/10.1371/journal.pone.0006759 |
|
28. Zhang, W.H., Gao, F., Zhu, Q.F., Li, C., Jiang, Y., Dai,
S.F. and Zhou, G.H. (2011) Dietary sodium butyrate
alleviates the oxidative stress induced by corticosterone
exposure and improves meat quality in broiler chickens.Poult.
Sci., 90: 2592-2599.
http://dx.doi.org/10.3382/ps.2011-01446
PMid:22010246 |
|
29. Gauthier, R. (2002) Intestinal health, the key to
productivity (The case of organic acids). Scientific
precongress Avicola IASA. XXVII Convencion ANECA-WPDC,
Puerto Vallarta, Jal. Mexico, 30 April 2002. |
|
30. Awaad, M.H.H., Atta, A.M., Elmenawey, M., Shalaby, B.,
Abdelaleem, G.A., Madian, K., Ahmed, K., Marzin, D.,
Benzoni, G. and Iskander, D.K. (2011) Effect of acidifiers
on gastrointestinal tract integrity, zootechnical
performance and colonization of Clostridium perfringens and
aerobic bacteria in broiler chickens.J. Am. Sci., 7:
618-628. |
|
31. Jankowskia, J., Juśkiewiczb, J., Lichtorowicza, K. and
Zdunċzykb, Z. (2012) Effects of the dietary level and source
of sodium on growth performance, gastrointestinal digestion
and meat characteristics in turkeys. Anim. Feed Sci.
Technol., 178: 74-83.
http://dx.doi.org/10.1016/j.anifeedsci.2012.09.012 |
|